Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size Analysis
2.2. Differential Scanning Calorimetry (DSC)
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Flow Properties of Powder Blends
2.5. Evaluation of LX Dispersible Tablets Properties
2.6. In Vitro Dissolution Studies
2.7. Response Surface Methodology for Optimization of LXDT
2.8. Statistical Analysis and Summary of Fit
2.9. Influence of Independent Variables on the In-Vitro Dispersibility Time (Y1)
0.7083 X12 + 1.21 X22 + 6.21 X32
2.10. Influence of Independent Variables on the Tablet Friability (Y2)
2.11. Influence of Independent Variables on the Dissolution Efficiency (Y3)
+ 0.7792 X12 + 1.03X22 − 6.50 X32
2.12. Influence of Independent Variables on the Content Uniformity (Y4)
X2X3 + 0.5954 X12 + 6.36 X22 + 0.7099 X32
2.13. Optimization
2.14. The Stability of LXDT
2.14.1. Hardness
2.14.2. Friability
2.14.3. Dispersibility Time
2.14.4. Drug Content during Stability Study
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Particle Size Analysis
3.2.2. Experimental Design
Formulation | Mcc/Mannitol Ratio (X1) | Mixing Time (X2) | Disintegrant Conc. (X3) |
---|---|---|---|
F1 | 2 | 5 | 10 |
F2 | 2 | 10 | 6 |
F3 | 1 | 10 | 10 |
F4 | 1 | 5 | 6 |
F5 | 2 | 15 | 2 |
F6 | 3 | 15 | 6 |
F7 | 1 | 10 | 2 |
F8 | 2 | 10 | 6 |
F9 | 3 | 10 | 10 |
F10 | 2 | 15 | 10 |
F11 | 3 | 5 | 6 |
F12 | 3 | 10 | 2 |
F13 | 1 | 15 | 6 |
F14 | 2 | 5 | 2 |
F15 | 2 | 10 | 6 |
3.2.3. Flow Properties of Powder Blends
Differential Scanning Calorimetry (DSC)
Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.2.4. Tablet Direct Compression
3.2.5. Evaluation of Tablets
Hardness, Friability and Thickness
Weight Uniformity
Content Uniformity
Dispersibility
3.2.6. In Vitro Dissolution Studies
3.2.7. Accelerated Stability Study
3.2.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, I.; Fatahalla, F. Pilot study of relative bioavailability of two oral formulations of ketoprofen 25 mg in healthy subjects. A fast-dissolving lyophilized tablet as compared to immediate release tablet. Drug Dev. Ind. Pharm. 2007, 33, 505–511. [Google Scholar] [CrossRef]
- Gohel, M.; Patel, M.; Amin, A.; Agrawal, R.; Dave, R.; Bariya, N. Formulation design and optimization of mouth dissolve tablets of nimesulide using vacuum drying technique. Am. Assoc. Pharm. Sci. 2004, 5, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Nafadi, M.; Fatahalla, F. Formulation of a fast-dissolving ketoprofen tablet using freeze-drying in blisters technique. Drug Dev. Ind. Pharm. 2006, 32, 437–442. [Google Scholar] [CrossRef]
- Indurwade, N.; Rajyaguru, T.; Nakhat, P. Novel approach: Fast dissolvi ng tablets. Indian Drugs Bombay 2002, 39, 405–409. [Google Scholar]
- Samprasit, W.; Akkaramongkolporn, P.; Ngawhirunpat, T.; Rojanarata, T.; Opanasopit, P. Formulation and evaluation of meloxicam oral disintegrating tablet with dissolution enhanced by combination of cyclodextrin and ion exchange resins. Drug Dev. Ind. Pharm. 2015, 41, 1006–1016. [Google Scholar] [CrossRef]
- Kulkarni, S.; Ranjit, P.; Patel, N.; Someshwara, B.; Ramesh, B.; Ashok, P. Formulation and evaluation of fast disintigrating Meloxicam tablets and its comparison with marketed product. Int. J. Drug Deliv. Technol. 2010, 2. [Google Scholar] [CrossRef] [Green Version]
- El-Mahrouk, G.; Aboul-Einien, M.H.; Elkasabgy, N.A. Formulation and evaluation of meloxicam orally dispersible capsules. Asian J. Pharm. Sci. 2009, 4, 8–22. [Google Scholar]
- Rangasamy, M.; Balasubramaniam, A.; Gummadevelly, S. Design and Evaluation of β-cyclodextrin Complexes of Meloxicam Tablet. Res. J. Pharm. Technol. 2008, 1, 484–486. [Google Scholar]
- Inamdar, N.; Bhise, K.; Memon, S. Solubility enhancement and development of dispersible tablet of meloxicam. Asian J. Pharm. 2008, 2, 128–132. [Google Scholar] [CrossRef]
- Jafar, M. Improving dissolution of meloxicam using solid dispersions. Iran. J. Pharm. Res. 2006, 4, 231–238. [Google Scholar]
- Searle, A.; Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 2000, 21, 271. [Google Scholar] [CrossRef] [PubMed]
- Maggioris, D.; Goulas, A.; Alexopoulos, A.; Chatzi, E.; Kiparissides, C. Prediction of particle size distribution in suspension polymerization reactors: Effect of turbulence nonhomogeneity. Chem. Eng. Sci. 2000, 55, 4611–4627. [Google Scholar] [CrossRef]
- Patel, D.M.; Shah, H.R.; Patel, R.J.; Patel, C.N. Preparation and characterization of lornoxicam co-crystals. World J. Pharm. Pharm. Sci. 2014, 3, 713–732. [Google Scholar]
- Hadi, M.A.; Rao, N.R.; Rao, A.S. Formulation and evaluation of compression Coated tablets of Lornoxicam for Targeting early morning peak symptoms of Rheumatoid arthritis. Dhaka Univ. J. Pharm. Sci. 2013, 12, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Chaulang, G.; Patil, K.; Ghodke, D.; Khan, S.; Yeole, P. Preparation and characterization of solid dispersion tablet of furosemide with crospovidone. Res. J. Pharm. Technol. 2008, 1, 386–389. [Google Scholar]
- Das, K.; Ray, D.; Bandyopadhyay, N.; Sengupta, S. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ. 2010, 18, 355–363. [Google Scholar] [CrossRef]
- Ye, P.; Byron, T. Characterization of D-mannitol by thermal analysis, FTIR and Raman spectroscopy. J. Vib. Eng. Technol. 2008, 40, 24–27. [Google Scholar]
- Wilson, K.E.; Crossman, E. The influence of tablet shape and pan speed on intra-tablet film coating uniformity. Drug Dev. Ind. Pharm. 1997, 23, 1239–1243. [Google Scholar] [CrossRef]
- Akseli, I.; Cetinkaya, C. Drug tablet thickness estimations using air-coupled acoustics. Int. J. Pharm. 2008, 351, 165–173. [Google Scholar] [CrossRef]
- Gordon, M.S. Process considerations in reducing tablet friability and their effect on in vitro dissolution. Drug Dev. Ind. Pharm. 1994, 20, 11–29. [Google Scholar] [CrossRef]
- Carlson, J.A.; Mann, H.J.; Canafax, D.M. Effect of pH on disintegration and dissolution of ketoconazole tablets. Am. J. Hosp. Pharm. 1983, 40, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Elkordy, A.A.; Tan, X.N.; Essa, E.A. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles. Eur. J. Pharm. Biopharm. 2013, 83, 203–223. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients; Libros Digitales-Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Desai, P.M.; Er, P.X.H.; Liew, C.V.; Heng, P.W.S. Functionality of disintegrants and their mixtures in enabling fast disintegration of tablets by a quality by design approach. Aaps Pharmscitech 2014, 15, 1093–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, S.; Salam, F.B.A.; Hima, H.N.; Bhuiyan, S.; Chowdhury, S. Comparative in-vitro quality evaluation of some brands of Metronidazole tablet available in Bangladesh. Int. J. Appl. Res. 2017, 3, 753–758. [Google Scholar]
- Blanco, M.; Alcalá, M. Content uniformity and tablet hardness testing of intact pharmaceutical tablets by near infrared spectroscopy: A contribution to process analytical technologies. Anal. Chim. Acta 2006, 557, 353–359. [Google Scholar] [CrossRef]
- Osei-Yeboah, F.; Sun, C.C. Validation and applications of an expedited tablet friability method. Int. J. Pharm. 2015, 484, 146–155. [Google Scholar] [CrossRef]
- Beck, S.; Bouchard, J.; Berry, R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 2012, 13, 1486–1494. [Google Scholar] [CrossRef]
- Silva, D.A.; Webster, G.K.; Bou-Chacra, N.; Löbenberg, R. The significance of disintegration testing in pharmaceutical development. Dissolution Technol. 2018, 25, 30–38. [Google Scholar] [CrossRef]
- Chaudhary, H.; Gauri, S.; Rathee, P.; Kumar, V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Bhyan, B.; Jangra, S.; Kaur, M.; Singh, H. Orally fast dissolving films: Innovations in formulation and technology. Int. J. Pharm. Sci. Rev. Res. 2011, 9, 9–15. [Google Scholar]
- Padamwar, P.A.; Poonam, P.P. Formulation and evaluation of fast dissolving oral film of bisoprololfumarate. Int. J. Pharma Sci. Res. 2015, 6, 135–142. [Google Scholar]
- United States Pharmacopeia and National Formulary (USP 41-NF 36). Available online: https://online.uspnf.com/uspnf/document/GUID-AC788D41-90A2-4F36-A6E7-769954A9ED09_1_en-US (accessed on 3 March 2018).
- Dun, J.; Osei-Yeboah, F.; Boulas, P.; Lin, Y.; Sun, C.C. A systematic evaluation of dual functionality of sodium lauryl sulfate as a tablet lubricant and wetting enhancer. Int. J. Pharm. 2018, 552, 139–147. [Google Scholar] [CrossRef]
- Office, S. British Pharmacopoeia 2016; Stationery Office: London, UK, 2015. [Google Scholar]
- Nandhini, J.; Rajalakshmi, A. Dispersible Tablets: A review. J. Pharm. Adv. Res. 2018, 1, 148–155. [Google Scholar]
- Taha, E.I.; Al-Suwayeh, S.A.; Mahrous, G.M. Simple, fast and reliable reversed phase HPLC method for lornoxicam analysis in pharmaceutical formulations. World J. Pharm. Res. 2018, 8, 28–35. [Google Scholar]
- Rashid, M.A.; Bilani, M.; Shazly, G.; Kazi, M. Development, Validation and Application of a Novel UHPLC-UV Method for the Simultaneous Determination of Valsartan and Nifedipine in the New Formulation of Self-Nanoemulsifying Drug Delivery Systems. Separations 2022, 9, 325. [Google Scholar] [CrossRef]
Formulation | Angle of Repose (°) | Carr’s Index (%) | Comment |
---|---|---|---|
F1 | 41 | 22 | Passable |
F2 | 42 | 23 | Passable |
F3 | 41 | 22 | Passable |
F4 | 42 | 21 | Passable |
F5 | 43 | 23 | Passable |
F6 | 41 | 21 | Passable |
F7 | 43 | 22 | Passable |
F8 | 44 | 22 | Passable |
F9 | 42 | 23 | Passable |
F10 | 43 | 23 | Passable |
F11 | 42 | 21 | Passable |
F12 | 44 | 22 | Passable |
F13 | 43 | 21 | Passable |
F14 | 42 | 23 | Passable |
F15 | 41 | 22 | Passable |
FN | Hardness (kp) | Friability (%) | Thickness (mm) | Weight Variation (Average (mg) ± RSD%) | Dispersib Ility (s) | LX Content (%) ± SD | AV (%) |
---|---|---|---|---|---|---|---|
F1 | 2.45 ± 0.65 | 0.7 | 3.574 | 252.05 ± 3.50 | 11 | 101.41 ± 6.20 | 14.82 |
F2 | 4.06 ± 1.06 | 0.5 | 3.293 | 250.25 ± 3.07 | 7 | 99.65 ± 1.10 | 3.50 |
F3 | 3.72 ± 1.32 | 0.8 | 3.153 | 252.3 ± 2.10 | 13 | 102.46 ± 1.50 | 4.47 |
F4 | 4.3 ± 1.12 | 1 | 3.162 | 250.95 ± 2.66 | 12 | 103.45 ± 4.33 | 12.00 |
F5 | 2.87 ± 0.73 | 0.51 | 3.15 | 250.1 ± 2.22 | 18 | 101.20 ± 3.59 | 8.16 |
F6 | 4.16 ± 0.45 | 0.24 | 3.275 | 251.4 ± 2.70 | 6 | 98.80 ± 3.48 | 8.66 |
F7 | 3.62 ± 0.933 | 0.71 | 3.74 | 251.55 ± 2.96 | 20 | 101.77 ± 1.11 | 4.88 |
F8 | 2.85 ± 0.48 | 0.55 | 3.37 | 251.95 ± 4.44 | 8 | 98.81 ± 1.27 | 3.15 |
F9 | 4.13 ± 0.4 | 0.41 | 3.212 | 250.25 ± 2.20 | 8 | 101.29 ± 2.75 | 6.41 |
F10 | 2.52 ± 1.04 | 0.72 | 3.451 | 250.25 ± 3.43 | 12 | 98.60 ± 3.90 | 9.50 |
F11 | 4.09 ± 0.7 | 0.22 | 3.283 | 252 ± 3.09 | 6 | 96.08 ± 4.38 | 12.00 |
F12 | 4.84 ± 1.09 | 0.2 | 3.2 | 251.55 ± 3.19 | 16 | 101.12 ± 2.01 | 5.00 |
F13 | 4.31 ± 1.34 | 0.88 | 3.478 | 251.75 ± 2.95 | 13 | 101.44 ± 4.51 | 10.69 |
F14 | 3.82 ± 0.8 | 0.5 | 3.177 | 251.35 ± 2.96 | 18 | 98.54 ± 4.40 | 11.33 |
F15 | 3.00 ± 0.74 | 0.48 | 3.324 | 252.35 ± 3.47 | 7 | 96.54 ± 2.10 | 5.00 |
Runs | Independent Variable | Dependent Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed Value | Predicted Value | ||||||||||
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | Y1 | Y2 | Y3 | Y4 | |
1 | 2 | 5 | 10 | 11.00 | 0.7 | 75.30 | 14.82 | 10.75 | 0.6588 | 75.79 | 13.86 |
2 | 2 | 10 | 6 | 7.00 | 0.5 | 79.30 | 3.50 | 7.33 | 0.5613 | 80.50 | 3.88 |
3 | 1 | 10 | 10 | 13.00 | 0.8 | 72.00 | 4.47 | 13.75 | 0.9401 | 70.76 | 5.46 |
4 | 1 | 5 | 6 | 12.00 | 1 | 75.80 | 12.00 | 11.50 | 0.8601 | 76.55 | 11.97 |
5 | 2 | 15 | 2 | 18.00 | 0.51 | 68.80 | 8.16 | 18.25 | 0.4638 | 68.31 | 9.12 |
6 | 3 | 15 | 6 | 6.00 | 0.24 | 83.00 | 8.66 | 6.50 | 0.2626 | 82.25 | 8.69 |
7 | 1 | 10 | 2 | 20.00 | 0.71 | 64.00 | 4.88 | 20.25 | 0.7626 | 64.21 | 4.92 |
8 | 2 | 10 | 6 | 8.00 | 0.55 | 83.10 | 3.15 | 7.33 | 0.5613 | 80.50 | 3.88 |
9 | 3 | 10 | 10 | 8.00 | 0.41 | 77.60 | 6.41 | 7.75 | 0.3601 | 77.39 | 6.38 |
10 | 2 | 15 | 10 | 12.00 | 0.72 | 73.90 | 9.50 | 11.75 | 0.6413 | 74.86 | 9.50 |
11 | 3 | 5 | 6 | 6.00 | 0.22 | 81.10 | 12.00 | 6.50 | 0.2801 | 80.83 | 12.99 |
12 | 3 | 10 | 2 | 16.00 | 0.2 | 65.40 | 5.00 | 15.25 | 0.1826 | 66.64 | 4.01 |
13 | 1 | 15 | 6 | 13.00 | 0.88 | 77.20 | 10.69 | 12.50 | 0.8426 | 77.48 | 9.70 |
14 | 2 | 5 | 2 | 18.00 | 0.5 | 66.00 | 11.33 | 18.25 | 0.4813 | 65.04 | 11.33 |
15 | 2 | 10 | 6 | 7.00 | 0.48 | 79.10 | 5.00 | 7.33 | 0.5613 | 80.50 | 3.88 |
Response | Model | Sequential p-Value | Lack of Fit p-Value | R2 | Adjusted R² | Predicted R2 | Adequate Precision | Significant Terms | PRESS | F Value |
---|---|---|---|---|---|---|---|---|---|---|
Dispersibility time (Y1) | Quadratic | 0.0001 | 0.298 | 0.9897 | 0.9711 | 0.8650 | 21.1608 | A, C, B2, C2 | 41.50 | 53.36 |
Tablet friability (Y2) | Linear | < 0.0001 | 0.1542 | 0.9119 | 0.8879 | 0.8242 | 18.2395 | A, C | 0.1419 | 37.95 |
Dissolution efficiency (Y3) | Quadratic | 0.0124 | 0.8094 | 0.9432 | 0.8410 | 0.651 | 8.9001 | C, C2 | 140.87 | 17.72 |
Content uniformity (Y4) | Quadratic | 0.0011 | 0.3512 | 0.9586 | 0.8841 | 0.4805 | 9.8471 | B, B² | 96.65 | 12.87 |
Ingredient | Mg/Tablet | Response | Predicted | Observed ± SD |
---|---|---|---|---|
MCC | 166.06 | |||
Mannitol | 55.35 | Dispersibility time | 5.17 | 4.4 ± 0.63 |
CP | 15.58 | Tablet friability | 0.27 | 0.19 |
LX | 8 | Dissolution efficiency | 81.92 | 80.64 ± 2.45 |
SLS | 5 | Content uniformity (AV) | 4.37 | 4.65 ± 0.13 |
Parameter | Initial Time | 1 Months | 3 Months | 6 Months |
---|---|---|---|---|
Hardness (kp) | 4.01 ± 0.70 | 3.98 ± 0.85 | 4.0 ± 0.58 | 3.94 ± 0.75 |
Friability (%) | 0.360 | 0.328 | 0.431 | 0.530 |
Thickness (mm) | 3.426 ± 0.12 | 3.36 ± 0.134 | 3.40 ± 0.141 | 3.41 ± 0.113 |
Dispersibility time (s) | 4 | 4 | 5 | 4 |
LX content % | 99.62 ± 0.77 | 99.32 ± 0.72 | 98.05 ± 1.03 | 95.14 ±1.41 |
LXDT | Xefo ® 8 mg | ||||
---|---|---|---|---|---|
Initial Time | 1 Months | 3 Months | 6 Months | ||
Time (min) | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
5.0 | 70.70 ± 0.90 | 69.07 ± 1.02 | 67.93 ± 0.68 | 66.87 ± 1.15 | 60.2 ± 2.10 |
10.0 | 80.30 ± 2.2 | 79.43 ± 1.17 | 78.12 ± 0.78 | 76.9 ± 1.32 | 70.51 ± 1.02 |
20.0 | 88.31 ± 2.4 | 87.37 ± 1.29 | 85.93 ± 0.86 | 84.60 ± 1.45 | 82.1 ± 1.36 |
30.0 | 92.73 ± 2.6 | 91.74 ± 1.36 | 90.22 ± 0.90 | 88.81 ± 1.52 | 89.71 ± 0.7 |
60.0 | 95.51 ± 2.62 | 95.41 ± 1.41 | 93.84 ± 0.94 | 92.37 ± 1.59 | 93.45 ± 2.4 |
Independent Variables, Factor | Low (−1) | Middle (0) | High (1) |
---|---|---|---|
X1: MCC/ Mannitol ratio (w/w) | 1 | 2 | 3 |
X2: Mixing time (min) | 5 | 10 | 15 |
X3: Disintegrant concentration (%) | 2 | 6 | 10 |
Dependent variables, Response | |||
Y1: Dispersibility time (sec) | |||
Y2: Tablet friability (%) | |||
Y3: Dissolution efficiency (%) | |||
Y4: Content uniformity (Acceptance value) |
Ingredients | |||||
---|---|---|---|---|---|
Formulation | MCC% | Mannitol% | CP% | LX% | SLS% |
F1 | 56.53 | 28.27 | 10 | 3.2 | 2 |
F2 | 59.2 | 29.6 | 6 | 3.2 | 2 |
F3 | 42.4 | 42.4 | 10 | 3.2 | 2 |
F4 | 44.4 | 44.4 | 6 | 3.2 | 2 |
F5 | 61.87 | 30.93 | 2 | 3.2 | 2 |
F6 | 66.6 | 22.2 | 6 | 3.2 | 2 |
F7 | 46.4 | 46.4 | 2 | 3.2 | 2 |
F8 | 59.2 | 29.6 | 6 | 3.2 | 2 |
F9 | 63.6 | 21.2 | 10 | 3.2 | 2 |
F10 | 56.53 | 28.27 | 10 | 3.2 | 2 |
F11 | 66.6 | 22.2 | 6 | 3.2 | 2 |
F12 | 69.6 | 23.2 | 2 | 3.2 | 2 |
F13 | 44.4 | 44.4 | 6 | 3.2 | 2 |
F14 | 61.87 | 30.93 | 2 | 3.2 | 2 |
F15 | 59.2 | 29.6 | 6 | 3.2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almotairi, N.; Mahrous, G.M.; Al-suwayeh, S.; Kazi, M. Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach. Pharmaceuticals 2022, 15, 1463. https://doi.org/10.3390/ph15121463
Almotairi N, Mahrous GM, Al-suwayeh S, Kazi M. Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach. Pharmaceuticals. 2022; 15(12):1463. https://doi.org/10.3390/ph15121463
Chicago/Turabian StyleAlmotairi, Nawaf, Gamal M. Mahrous, Saleh Al-suwayeh, and Mohsin Kazi. 2022. "Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach" Pharmaceuticals 15, no. 12: 1463. https://doi.org/10.3390/ph15121463
APA StyleAlmotairi, N., Mahrous, G. M., Al-suwayeh, S., & Kazi, M. (2022). Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach. Pharmaceuticals, 15(12), 1463. https://doi.org/10.3390/ph15121463