Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = synthetic cytokinins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5713 KiB  
Article
A Non-Specific Phytohormone Regulatory Network in Saccharina japonica Coordinates Growth and Environmental Adaptation
by Jiexin Cui, Jinli Zhu, Yinru Dai, Jincheng Yuan, Wen Lin and Tao Liu
Plants 2025, 14(12), 1821; https://doi.org/10.3390/plants14121821 - 13 Jun 2025
Cited by 1 | Viewed by 582
Abstract
Saccharina japonica (S. japonica) is a large-scale intertidal aquatic plant that exhibits characteristics such as rhizoid, holdfast, and blade differentiation. It demonstrates remarkable environmental adaptability. However, compared with higher plants, details about its phytohormone content, distribution, synthesis, and accumulation remain poorly [...] Read more.
Saccharina japonica (S. japonica) is a large-scale intertidal aquatic plant that exhibits characteristics such as rhizoid, holdfast, and blade differentiation. It demonstrates remarkable environmental adaptability. However, compared with higher plants, details about its phytohormone content, distribution, synthesis, and accumulation remain poorly understood. In this study, the phytohormone contents distribution and expression patterns of synthetic genes in different parts of S. japonica, including the rhizoid, petiole, basis, middle, and tip, were analyzed in detail by combining targeted metabolomics and transcriptomics analyses. A total of 20 phytohormones were detected in S. japonica, including auxin, abscisic acid (ABA), cytokinin (CTK), ethylene (ETH), gibberellin (GA), jasmonate acid (JA), and salicylic acid (SA), with significant site-differentiated accumulation. ABA and JA were significantly enriched in the tips (28.01 ng·g−1 FW and 170.67 ng·g−1 FW, respectively), whereas SA accumulated specifically only in the rhizoid. We also identified 12 phytohormones, such as gibberellin A1, methyl jasmonate, and trans-zeatin for the first time in S. japonica. Transcriptomic profiling revealed the tissue-specific expression of phytohormone biosynthesis genes, such as CYP735A (CTK synthesis), in the rhizoids and LOX/NCED (JA/ABA synthesis) in the tips. Key pathways, such as carotenoid biosynthesis and cysteine methionine metabolism, were found to be differentially enriched across tissues, aligning with hormone accumulation patterns. Additionally, an enrichment analysis of differentially expressed genes between various parts indicated that different parts of S. japonica performed distinct functions even though it does not have organ differentiation. This study is the first to uncover the distribution characteristics of phytohormones and their synthetic differences in different parts of S. japonica and elucidates how S. japonica achieves functional specialization through non-specific phytohormone regulation despite lacking organ differentiation, which provides an important theoretical basis for research on the developmental biology of macroalgae and their mechanisms of response to adversity. Full article
Show Figures

Figure 1

17 pages, 5268 KiB  
Article
Anti-Proliferative Activity of Ethylenediurea Derivatives with Alkyl and Oxygen-Containing Groups as Substituents
by Maxim Oshchepkov, Leonid Kovalenko, Antonida Kalistratova, Galina Sherstyanykh, Evgenia Gorbacheva, Alexey Antonov, Nisreen Khadour and Mikhail Akimov
Biomedicines 2025, 13(2), 316; https://doi.org/10.3390/biomedicines13020316 - 29 Jan 2025
Viewed by 993
Abstract
Background/Objectives: Natural cytokinins are a promising group of anti-tumor agents. In this work, we hypothesized that modification of the ethylenediurea moiety with alkyl and oxygen-containing groups could be a way to enhance the anti-proliferative properties of the molecule. Methods: Ten new [...] Read more.
Background/Objectives: Natural cytokinins are a promising group of anti-tumor agents. In this work, we hypothesized that modification of the ethylenediurea moiety with alkyl and oxygen-containing groups could be a way to enhance the anti-proliferative properties of the molecule. Methods: Ten new analogs of ethylenediurea with these substitutions were tested for anti-proliferative activity in the human cancer cell lines MDA-MB-231 (breast cancer), A-375 (melanoma), and U-87 MG (glioblastoma) during 72 h of incubation using resazurin test and evaluated the substances receptor using molecular docking. Results: The compound with the carbamate link and ethylene substituent on the phenyl ring inhibited proliferation in these models by 70–90% without cytotoxic effects. The compound did not affect the viability of the immortalized fibroblast cell line Bj-5ta. The compound was also able to enhance the action of doxorubicin and temozolomide by about 20%. According to the molecular modeling data, the probable receptor target for the synthesized compound was the A2AR adenosine receptor. Conclusions: The results obtained on the ethylenediurea analogs with ethyl substituent in the aromatic ring are promising for the development of novel anticancer therapeutics. Full article
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis
by Giovanni Mian, Michele Consolini, Antonio Cellini, Andrea Strano, Tommaso Magoni, Marco Mastroleo, Irene Donati and Francesco Spinelli
Agronomy 2025, 15(1), 215; https://doi.org/10.3390/agronomy15010215 - 16 Jan 2025
Cited by 2 | Viewed by 1364
Abstract
CPPU, N-(2-Chloro-4-pyridyl)-N-phenylurea, is a synthetic cytokinin extensively used to enhance fruit size and overall quality in several crops, including kiwifruit. This study aimed to investigate the effects of three different CPPU application strategies (2.3, 3.0, and 4.6 ppm) and two crop load levels [...] Read more.
CPPU, N-(2-Chloro-4-pyridyl)-N-phenylurea, is a synthetic cytokinin extensively used to enhance fruit size and overall quality in several crops, including kiwifruit. This study aimed to investigate the effects of three different CPPU application strategies (2.3, 3.0, and 4.6 ppm) and two crop load levels on key fruit quality parameters at harvest, as well as on post-harvest storage performance. Our results demonstrate that two applications of CPPU (4.6 ppm) significantly increased fruit weight, especially under standard crop-load conditions, likely due to more efficient resource allocation. Additionally, fruit firmness improved with two or three CPPU applications, probably because of enhanced cell wall development. Crop load consistently influenced fruit firmness, with lower loads resulting in softer fruits. The soluble solids content was not significantly affected by the two CPPU applications; however, it was notably influenced by crop load, with fruits from the standard crop load showing higher sugar accumulation. A similar trend was observed in fruit dry weight, where CPPU had a greater impact under standard crop loads. Regarding post-harvest performance, CPPU applications showed a limited effect on maintaining fruit firmness during the first five months of storage. Overall, CPPU can be a potential strategy to enhance fruit quality, but its effectiveness depends heavily on field management practices. Therefore, controlling field variables is essential to fully realize the benefits of CPPU and to avoid interference with the plant’s physiological responses. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 1575 KiB  
Review
Soil Symphony: A Comprehensive Overview of Plant–Microbe Interactions in Agricultural Systems
by Arpitha Chatchatnahalli Tharanath, Raje Siddiraju Upendra and Karthik Rajendra
Appl. Microbiol. 2024, 4(4), 1549-1567; https://doi.org/10.3390/applmicrobiol4040106 - 27 Nov 2024
Cited by 6 | Viewed by 5107
Abstract
The rhizosphere, a narrow region of soil surrounding plant roots, is an environment rich in microbial diversity that profoundly influences plants’ health, growth, and agricultural productivity. This microbial community, known as the rhizosphere microbiome, consists of a complex array of bacteria, fungi, archaea, [...] Read more.
The rhizosphere, a narrow region of soil surrounding plant roots, is an environment rich in microbial diversity that profoundly influences plants’ health, growth, and agricultural productivity. This microbial community, known as the rhizosphere microbiome, consists of a complex array of bacteria, fungi, archaea, and other microorganisms that engage in complex interactions with plant roots. These microorganisms contribute to nutrient cycling, mineral uptake facilitation, and protection against soil-borne pathogens, thereby promoting plant growth and resilience towards biotic and abiotic stresses. Additionally, microbial signaling molecules, including phytohormones such as auxins, cytokinin, gibberellins, ethylene, and abscisic acid, play a pivotal role in regulating these interactions by modulating plants’ responses to environmental stressors. Recent advancements in microbiomics have enabled a deeper understanding of the rhizosphere’s diversity, composition, and functions, paving the way for more sustainable agricultural practices. By harnessing the potential of the rhizosphere microbiome, innovative strategies can be developed to reduce dependency on synthetic agrochemicals, enhance soil fertility, and increase crop yields. This review discusses the diversity and mechanisms of plant–microbe interactions, focusing on the role of microbial signaling molecules, and explores their applications in promoting agricultural sustainability. The insights gained from microbiomics studies can revolutionize farming practices by reducing dependency on chemical inputs, enhancing crop productivity, and nurturing soil health and environmental sustainability. Full article
(This article belongs to the Special Issue Microbiome in Ecosystem, 3rd Edition)
Show Figures

Figure 1

12 pages, 2072 KiB  
Article
Search for Expression Marker Genes That Reflect the Physiological Conditions of Blossom End Enlargement Occurrence in Cucumber
by Rui Li, Runewa Atarashi, Agung Dian Kharisma, Nur Akbar Arofatullah, Yuki Tashiro, Junjira Satitmunnaithum, Sayuri Tanabata, Kenji Yamane and Tatsuo Sato
Int. J. Mol. Sci. 2024, 25(15), 8317; https://doi.org/10.3390/ijms25158317 - 30 Jul 2024
Viewed by 1200
Abstract
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we [...] Read more.
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we discovered that preharvest treatment with a synthetic cytokinin, N-(2-Chloro-4-pyridyl)-N’-phenylurea (CPPU), promoted fruit growth and suppressed BEE occurrence. This suggests that excessive assimilate influx is not a main cause of BEE occurrence. Subsequently, the expression levels of seven sugar-starvation marker genes, CsSEF1, AS, CsFDI1, CsPID, CsFUL1, CsETR1, and CsERF1B, were compared among symptomatic and asymptomatic fruits, combined with and without CPPU treatment. Only CsSEF1 showed a higher expression level in asymptomatic fruits than in symptomatic fruits, regardless of CPPU treatment. This was then tested using fruits stored via the modified-atmosphere packaging technique, which resulted in a lower occurrence of BEE, and the asymptomatic fruits showed a higher CsSEF1 expression level than symptomatic fruits, regardless of the packaging method. CsSEF1 codes a CCCH-type zinc finger protein, and an increase in the expression of CsSEF1 was correlated with a decrease in the fruit respiration rate. Thus, CsSEF1 may be usable as a BEE expression marker gene. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Cucurbitaceous Crops)
Show Figures

Figure 1

10 pages, 1405 KiB  
Article
Metabolism of Fluorinated Topolin Cytokinins in Micropropagated Phalaenopsis amabilis
by Nino Murvanidze, Karel Doležal, Lenka Plačková and Stefaan P. O. Werbrouck
Horticulturae 2024, 10(7), 727; https://doi.org/10.3390/horticulturae10070727 - 10 Jul 2024
Cited by 1 | Viewed by 885
Abstract
Fluorinated cytokinins have emerged as promising alternatives to traditional cytokinins in Phalaenopsis plant tissue culture, offering enhanced stability and bioactivity. However, their metabolic fate and impact on endogenous cytokinin profiles remain largely unexplored. This study builds upon previous research to investigate the comparative [...] Read more.
Fluorinated cytokinins have emerged as promising alternatives to traditional cytokinins in Phalaenopsis plant tissue culture, offering enhanced stability and bioactivity. However, their metabolic fate and impact on endogenous cytokinin profiles remain largely unexplored. This study builds upon previous research to investigate the comparative metabolism of the traditional cytokinin 6-Benzylaminopurine (BA) with the successful alternatives 6-(3-fluorobenzylamino)purine (FmT) and 6-(3-fluorobenzylamino)purine 9-riboside (FmTR). Additionally, this study examines the impact of another crucial factor, the use of ventilated versus closed containers, on metabolic processes. The results revealed the distinct metabolic profiles associated with each treatment, highlighting the complex interplay between exogenous and endogenous cytokinin levels. This study is the first to investigate the effects of these stable, synthetic, and exogenous cytokinins on the naturally occurring cytokinin levels and their metabolites in micropropagated Phalaenopsis. Additionally, we proposed an alternative inactivation pathway involving the conversion of FmTR and BA to pT and pTR. These findings provide valuable insights into the intricate relationship between cytokinin metabolism and plant growth under in vitro conditions. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

22 pages, 3940 KiB  
Article
Exogenous Cytokinin 4PU-30 Modulates the Response of Wheat and Einkorn Seedlings to Ultraviolet B Radiation
by Elisaveta Kirova, Irina Moskova, Vasilissa Manova, Yana Koycheva, Zoia Tsekova, Denitsa Borisova, Hristo Nikolov, Ventzeslav Dimitrov, Iskren Sergiev and Konstantina Kocheva
Plants 2024, 13(10), 1401; https://doi.org/10.3390/plants13101401 - 17 May 2024
Cited by 2 | Viewed by 1518
Abstract
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation [...] Read more.
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

9 pages, 2567 KiB  
Communication
New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity
by Maxim S. Oshchepkov, Leonid V. Kovalenko, Antonida V. Kalistratova, Sergey V. Tkachenko, Olga N. Gorunova, Nataliya A. Bystrova and Konstantin A. Kochetkov
Int. J. Mol. Sci. 2024, 25(6), 3335; https://doi.org/10.3390/ijms25063335 - 15 Mar 2024
Cited by 2 | Viewed by 1215
Abstract
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), [...] Read more.
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), and relative water content in leaves (RWC), characterizing the drought resistance of plants, were determined. The results of laboratory studies showed that EDU and its hybrid derivatives have a positive effect on root length, the growth and development of shoots, as well as the ability of plants to tolerate stress caused by a lack of water. Full article
Show Figures

Graphical abstract

16 pages, 2616 KiB  
Article
Hormone Signals Involved in the Regulation of Cucumber Seedling Lateral Branch Elongation by Far-Red Light
by Shuhao Li, Jun Tian, Shengxiang Ran, Yuqi Zhou, Hongdou Gao and Fenglin Zhong
Agronomy 2024, 14(2), 366; https://doi.org/10.3390/agronomy14020366 - 12 Feb 2024
Viewed by 1935
Abstract
Cucumber (Cucumis sativus L.) lateral branch elongation is influenced by a variety of environmental signals, including light [e.g., far-red (FR) light] and hormones. In this experiment, the effect of FR light on the lateral branch elongation of cucumber (‘Zhongnong No. 26’) seedlings [...] Read more.
Cucumber (Cucumis sativus L.) lateral branch elongation is influenced by a variety of environmental signals, including light [e.g., far-red (FR) light] and hormones. In this experiment, the effect of FR light on the lateral branch elongation of cucumber (‘Zhongnong No. 26’) seedlings was investigated. The results showed that FR light significantly inhibited the lateral branch elongation of cucumber seedlings. In addition, FR light significantly increased the auxin (indole-3-acetic acid, IAA) content, decreased the cytokinin (CTK; Zeatin) content, and suppressed the expression of most CTK synthetic-related genes, such as IPTs, in cucumber seedlings. The lateral branch elongation of cucumber seedlings was assessed in response to decapitation and exogenous 6-BA treatment to further investigate the relationship between IAA and CTK on the lateral branch elongation of cucumber seedlings under FR light. Both decapitation and exogenous 6-BA treatment eliminated the inhibitory effect of FR light on the lateral branch elongation of cucumber seedlings. In conclusion, these results indicated that IAA and CTK were involved in the regulatory effects of FR light on cucumber seedling lateral branch elongation. Full article
(This article belongs to the Special Issue Effects of Spectrum and Light Intensity on Plant Growth Metabolism)
Show Figures

Figure 1

16 pages, 14356 KiB  
Article
Fungal-Mediated Biotransformation of the Plant Growth Regulator Forchlorfenuron by Cunninghamella elegans
by Charles M. Moreno, Jaclyn N. Moreno, Matthew C. Valdez, Melinda P. Baldwin, Ana C. Vallor and Paulo B. Carvalho
Metabolites 2024, 14(2), 101; https://doi.org/10.3390/metabo14020101 - 1 Feb 2024
Viewed by 3273
Abstract
The synthetic cytokinin forchlorfenuron (FCF), while seemingly presenting relatively low toxicity for mammalian organisms, has been the subject of renewed scrutiny in the past few years due to its increasing use in fruit crops and potential for bioaccumulation. Despite many toxicological properties of [...] Read more.
The synthetic cytokinin forchlorfenuron (FCF), while seemingly presenting relatively low toxicity for mammalian organisms, has been the subject of renewed scrutiny in the past few years due to its increasing use in fruit crops and potential for bioaccumulation. Despite many toxicological properties of FCF being known, little research has been conducted on the toxicological effects of its secondary metabolites. Given this critical gap in the existing literature, understanding the formation of relevant FCF secondary metabolites and their association with mammalian metabolism is essential. To investigate the formation of FCF metabolites in sufficient quantities for toxicological studies, a panel of four fungi were screened for their ability to catalyze the biotransformation of FCF. Of the organisms screened, Cunninghamella elegans (ATCC 9245), a filamentous fungus, was found to convert FCF to 4-hydroxyphenyl-forchlorfenuron, the major FCF secondary metabolite identified in mammals, after 26 days. Following the optimization of biotransformation conditions using a solid support system, media screening, and inoculation with a solid pre-formed fungal mass of C. elegans, this conversion time was significantly reduced to 7 days—representing a 73% reduction in total reaction time as deduced from the biotransformation products and confirmed by LC-MS, NMR spectroscopic data, as well as a comparison with synthetically prepared metabolites. Our study provides the first report of the metabolism of FCF by C. elegans. These findings suggest that C. elegans can produce FCF secondary metabolites consistent with those produced via mammalian metabolism and could be used as a more efficient, cost-effective, and ethical alternative for producing those metabolites in useful quantities for toxicological studies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

23 pages, 2861 KiB  
Article
Transcriptomic Analyses Reveal the Role of Cytokinin and the Nodal Stem in Microtuber Sprouting in Potato (Solanum tuberosum L.)
by Xia Zhang, Kaien Fujino and Hanako Shimura
Int. J. Mol. Sci. 2023, 24(24), 17534; https://doi.org/10.3390/ijms242417534 - 15 Dec 2023
Cited by 5 | Viewed by 2009
Abstract
In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting [...] Read more.
In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the “Zeatin biosynthesis” pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes. Full article
Show Figures

Graphical abstract

25 pages, 31223 KiB  
Article
In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities
by Ekaterina M. Savelieva, Anastasia A. Zenchenko, Mikhail S. Drenichev, Anna A. Kozlova, Nikolay N. Kurochkin, Dmitry V. Arkhipov, Alexander O. Chizhov, Vladimir E. Oslovsky and Georgy A. Romanov
Int. J. Mol. Sci. 2022, 23(19), 11334; https://doi.org/10.3390/ijms231911334 - 26 Sep 2022
Cited by 11 | Viewed by 2390
Abstract
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied [...] Read more.
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties. Full article
(This article belongs to the Special Issue Perception, Transduction and Crosstalk of Auxin and Cytokinin Signals)
Show Figures

Figure 1

17 pages, 405 KiB  
Review
Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review
by Chuene Victor Mashamaite, Bonga Lewis Ngcobo, Alen Manyevere, Isa Bertling and Olaniyi Amos Fawole
Plants 2022, 11(17), 2214; https://doi.org/10.3390/plants11172214 - 26 Aug 2022
Cited by 45 | Viewed by 14663
Abstract
The extensive use of synthetic chemical fertilizers is associated with environmental pollution and soil degradation. In addition, the high costs of these fertilizers necessitate the search for alternative, eco-friendly and safe natural sources of phytonutrients. The liquid extracted from moringa (Moringa oleifera [...] Read more.
The extensive use of synthetic chemical fertilizers is associated with environmental pollution and soil degradation. In addition, the high costs of these fertilizers necessitate the search for alternative, eco-friendly and safe natural sources of phytonutrients. The liquid extracted from moringa (Moringa oleifera Lam.) leaves has been used in agriculture to improve the growth and productivity of several crops. The efficacy of moringa leaf extract (MLE) is attributed to its high content of mineral nutrients, protein, vitamins, sugars, fiber, phenolics and free proline. In addition, MLE contains significant amounts of phytohormones, such as auxins, cytokinins and gibberellins. Furthermore, MLE is a valuable product promoting seed germination, plant growth and deeper root development, delaying fruit senescence and increasing the yield and quality of crops grown under normal or stressful conditions. Here, we review the research on MLE as a biostimulant to enhance crop growth and productivity. Moreover, we emphasize its possible introduction to smallholder farming systems to provide phytonutrients, and we further highlight research gaps in the existing knowledge regarding MLE application. Generally, MLE is an inexpensive, sustainable, eco-friendly and natural biostimulant that can be used to improve the growth and productivity attributes of various crops under non-stressful and stressful conditions. Full article
(This article belongs to the Special Issue Biostimulants as Growth Promoting and Stress Protecting Compounds)
23 pages, 3146 KiB  
Article
Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents
by Maxim Oshchepkov, Leonid Kovalenko, Antonida Kalistratova, Maria Ivanova, Galina Sherstyanykh, Polina Dudina, Alexey Antonov, Anastasia Cherkasova and Mikhail Akimov
Molecules 2022, 27(11), 3616; https://doi.org/10.3390/molecules27113616 - 4 Jun 2022
Cited by 4 | Viewed by 2613
Abstract
Natural cytokinines are a promising group of cytoprotective and anti-tumor agents. In this research, we synthesized a set of aryl carbamate, pyridyl urea, and aryl urea cytokinine analogs with alkyl and chlorine substitutions and tested their antiproliferative activity in MDA-MB-231, A-375, and U-87 [...] Read more.
Natural cytokinines are a promising group of cytoprotective and anti-tumor agents. In this research, we synthesized a set of aryl carbamate, pyridyl urea, and aryl urea cytokinine analogs with alkyl and chlorine substitutions and tested their antiproliferative activity in MDA-MB-231, A-375, and U-87 MG cell lines, and cytoprotective properties in H2O2 and CoCl2 models. Aryl carbamates with the oxamate moiety were selectively anti-proliferative for the cancer cell lines tested, while the aryl ureas were inactive. In the cytoprotection studies, the same aryl carbamates were able to counteract the CoCl2 cytotoxicity by 3–8%. The possible molecular targets of the aryl carbamates during the anti-proliferative action were the adenosine A2 receptor and CDK2. The obtained results are promising for the development of novel anti-cancer therapeutics. Full article
Show Figures

Graphical abstract

13 pages, 3411 KiB  
Article
Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis
by Juanjuan Ma, Lingling Xie, Qian Zhao, Yiting Sun and Dong Zhang
Int. J. Mol. Sci. 2022, 23(2), 581; https://doi.org/10.3390/ijms23020581 - 6 Jan 2022
Cited by 9 | Viewed by 3336
Abstract
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed [...] Read more.
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = −0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC. Full article
(This article belongs to the Special Issue Signaling in Plant Reproduction)
Show Figures

Figure 1

Back to TopTop