Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (834)

Search Parameters:
Keywords = synoptics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 (registering DOI) - 30 Jul 2025
Viewed by 87
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 305
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

19 pages, 3205 KiB  
Article
A Climatology of Errors in HREF MCS Precipitation Objects
by William A. Gallus, Anna Duhachek, Kristie J. Franz and Tyreek Frazier
Water 2025, 17(15), 2168; https://doi.org/10.3390/w17152168 - 22 Jul 2025
Viewed by 233
Abstract
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less [...] Read more.
Numerical weather prediction of warm season rainfall remains challenging and skill at achieving this is often much lower than during the cold season. Prior studies have shown that displacement errors play a large role in the poor skill of these forecasts, but less is known about how such errors compare to other sources of error, particularly within forecasts from convection-allowing ensembles. The present study uses the Method for Object-based Diagnostic Evaluation to develop a climatology of errors for precipitation objects from High-Resolution Ensemble Forecasting forecasts for mesoscale convective systems during the warm seasons from 2018 to 2023 in the United States. It is found that displacement errors in all ensemble members are generally not systematic, and on average are between 100 and 150 km. Errors are somewhat smaller in September, possibly reflecting increased forcing from synoptic-scale systems. Although most ensemble members have a negative error for the 10th percentile of rainfall intensity, the error becomes positive for heavier amounts. However, the total system rainfall is less than that observed for all members except the 12 UTC NAM. This is likely due to the negative errors for area that are present in all models, except again in the 12 UTC NAM. Full article
(This article belongs to the Special Issue Analysis of Extreme Precipitation Under Climate Change)
Show Figures

Figure 1

21 pages, 6329 KiB  
Article
Mesoscale Analysis and Numerical Simulation of an Extreme Precipitation Event on the Northern Slope of the Middle Kunlun Mountains in Xinjiang, China
by Chenxiang Ju, Man Li, Xia Yang, Yisilamu Wulayin, Ailiyaer Aihaiti, Qian Li, Weilin Shao, Junqiang Yao and Zonghui Liu
Remote Sens. 2025, 17(14), 2519; https://doi.org/10.3390/rs17142519 - 19 Jul 2025
Viewed by 285
Abstract
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of [...] Read more.
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of the driving mechanisms, we combine the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) reanalysis, regional observations, and high-resolution Weather Research and Forecasting model (WRF) simulations to dissect the 14–17 June 2021, extreme rainfall event. A deep Siberia–Central Asia trough and nascent Central Asian vortex established a coupled upper- and low-level jet configuration that amplified large-scale ascent. Embedded shortwaves funnelled abundant moisture into the orographic basin, where strong low-level moisture convergence and vigorous warm-sector updrafts triggered and sustained deep convection. WRF reasonably replicated observed wind shear and radar echoes, revealing the descent of a mid-level jet into an ultra-low-level jet that provided a mesoscale engine for storm intensification. Momentum–budget diagnostics underscore the role of meridional momentum transport along sloping terrain in reinforcing low-level convergence and shear. Together, these synoptic-to-mesoscale interactions and moisture dynamics led to this landmark extreme-precipitation event. Full article
Show Figures

Graphical abstract

12 pages, 3056 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 179
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

34 pages, 50713 KiB  
Article
Air Temperature Extremes in the Mediterranean Region (1940–2024): Synoptic Patterns and Trends
by Georgios Kotsias and Christos J. Lolis
Atmosphere 2025, 16(7), 852; https://doi.org/10.3390/atmos16070852 - 13 Jul 2025
Viewed by 461
Abstract
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, [...] Read more.
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, 850 hPa air temperature, and 1000 hPa and 500 hPa geopotential heights, obtained from the ERA5 database. For 12UTC and 04UTC, the 2 m air temperature anomalies are calculated and are used for the definition of Extremely High Temperature Days (EHTDs) and Extremely Low Temperature Days (ELTDs), respectively. Overall, 3787 EHTDs and 4872 ELTDs are defined. It is found that EHTDs are evidently more frequent in recent years (increased by 305% since the 1980s) whereas ELTDs are less frequent (decreased by 41% since the 1980s), providing a clear sign of warming of the Mediterranean climate. A multivariate statistical analysis combining factor analysis and k-means clustering, known as spectral clustering, is applied to the data resulting in the definition of nine EHTD and seven ELTD clusters. EHTDs are mainly associated with intense solar heating, blocking anticyclones and warm air advection. ELTDs are connected to intense radiative cooling of the Earth’s surface, cold air advection and Arctic outbreaks. This is a unique study for the Mediterranean region utilizing the high-resolution ERA5 data collected since the 1940s to define and investigate the variability of both high and low temperature extremes using a validated methodology. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 1214 KiB  
Article
Physical and Chemical Characteristics of Different Aerosol Fractions in the Southern Baikal Region (Russia) During the Warm Season
by Liudmila P. Golobokova, Tamara V. Khodzher, Vladimir A. Obolkin, Vladimir L. Potemkin and Natalia A. Onischuk
Atmosphere 2025, 16(7), 829; https://doi.org/10.3390/atmos16070829 - 8 Jul 2025
Viewed by 262
Abstract
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal [...] Read more.
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal impact from fuel and energy industries allowed us to observe regional and transboundary pollution transport. A large data array indicated that, during the shift of cyclones from Mongolia to the south of the Baikal region, the concentrations of Na+, Ca2+, Mg2+, K+, and Cl ions increased at the Irkutsk station, dominated by NH4+ and SO42−. The growth of the ionic concentrations at the Listvyanka station was observed in aerosol particles during the northwesterly transport. When air masses arrived from the southerly direction, the atmosphere was the cleanest. The analysis of 27 elements in aerosols revealed that Al, Fe, Mn, Cu, and Zn made the greatest contribution to air pollution at the Irkutsk station, while Fe, Al, Cu, Cr, Mn, and Ni made the greatest contribution to air pollution at the Listvyanka station. The dynamics of the investigated elements were mainly due to natural processes in the air under various synoptic situations and weather conditions in the region, although anthropogenic factors also affected the formation of aerosol composition wth certain directions of air mass transport. Full article
Show Figures

Figure 1

24 pages, 17002 KiB  
Article
The Role of Air Mass Advection and Solar Radiation in Modulating Air Temperature Anomalies in Poland
by Olga Zawadzka-Mańko and Krzysztof M. Markowicz
Atmosphere 2025, 16(7), 820; https://doi.org/10.3390/atmos16070820 - 5 Jul 2025
Viewed by 702
Abstract
This study examines the roles of air mass advection and solar radiation in shaping daily air temperature anomalies in Warsaw, Poland, from 2008 to 2023. It integrates solar radiation data, HYSPLIT back-trajectories, air temperature measurements, and machine learning methods, which are key atmospheric [...] Read more.
This study examines the roles of air mass advection and solar radiation in shaping daily air temperature anomalies in Warsaw, Poland, from 2008 to 2023. It integrates solar radiation data, HYSPLIT back-trajectories, air temperature measurements, and machine learning methods, which are key atmospheric factors contributing to temperature anomalies in different seasons. Radiation dominates during warm seasons, while advection-related geographic factors are more influential during winter. Increased solar radiation is observed across all seasons during high-positive temperature anomalies (exceeding two standard deviations). In contrast, cold anomalies in summer are accompanied by strong negative solar radiation anomalies (−136.3 W/m2), while winter cold events may still coincide with positive radiation anomalies (25.7 W/m2). Very slow circulation over Central Europe, which occurs twice as often in summer as in winter, leads to positive temperature (1.3 °C) and negative radiation (−2.1 W/m2) anomalies in summer and to negative temperature (−1.9 °C) anomalies and slightly positive radiation (0.3 W/m2) anomalies in winter. The seasonal variability in the spatial origin of air masses reflects shifts in synoptic-scale circulation patterns. These findings highlight the importance of considering the combined influence of radiative and advective processes in driving temperature extremes and their seasonal dynamics in mid-latitude climates. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 10218 KiB  
Article
Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
by María del Carmen Casas-Castillo, Xavier Navarro and Raül Rodríguez-Solà
Hydrology 2025, 12(7), 178; https://doi.org/10.3390/hydrology12070178 - 3 Jul 2025
Cited by 1 | Viewed by 467
Abstract
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense [...] Read more.
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense rain gauge network (1994–2019). The aim is to identify dominant spatial patterns and understand how storms evolve in relation to local urban and topographic features. Principal component analysis and simple scaling analysis revealed signs of a rainfall island effect, possibly linked to the urban heat island and modulated by orographic and coastal influences. Tailored rainfall indices highlighted a division between inland areas shaped by orography and coastal zones influenced by the sea. These spatial structures evolved with rainfall duration, shifting from localized contrasts at a 10 min resolution to more homogeneous distributions at daily scales. Storm tracking showed that 90% of speeds ranged from 5 to 60 km/h and intense rainfall events typically moved east–southeast toward the sea and north–northeast. Faster storms tended to follow preferred directions reflecting mesoscale circulations and possible modulations by local terrain. These findings underscore how urban morphology, local relief, and a coastal setting may shape rainfall at the city scale, in interaction with broader Mediterranean synoptic dynamics. Full article
Show Figures

Graphical abstract

18 pages, 2010 KiB  
Article
Frequency Analysis and Trend of Maximum Wind Speed for Different Return Periods in a Cold Diverse Topographical Region of Iran
by Leila Alimohamadian and Raoof Mostafazadeh
Climate 2025, 13(7), 138; https://doi.org/10.3390/cli13070138 - 2 Jul 2025
Viewed by 358
Abstract
This study examines the trends and statistical characteristics of daily maximum wind speed across various synoptic stations in Ardabil Province, Iran, with diverse topography. Using daily wind speed data from multiple synoptic stations, the research focuses on three primary objectives: assessing changes in [...] Read more.
This study examines the trends and statistical characteristics of daily maximum wind speed across various synoptic stations in Ardabil Province, Iran, with diverse topography. Using daily wind speed data from multiple synoptic stations, the research focuses on three primary objectives: assessing changes in daily maximum wind speed, fitting various statistical distributions to the data, and estimating wind speed values for different return periods. In this research, the temporal changes were evaluated while analyzing the frequency of the data, and then the maximum wind speed values were calculated and analyzed for different return periods by fitting frequency distributions. The analysis reveals notable variability in maximum wind speeds across stations. The trend analysis, conducted using the nonparametric Mann–Kendall method, reveals significant positive trends in maximum wind speed at Meshgin-Shahr and Sareyn (p < 0.05). Meanwhile, data from Khalkhal station displays a significant decreasing trend, while other stations, like Ardabil and Parsabad, show no meaningful trends. According to the statistical distributions analysis, the Fisher–Tippett T2 mirrored distribution demonstrates the best fit for Ardabil, with an absolute difference of 2.52%, while the Laplace distribution yields the lowest discrepancies for Bilesavar (3.50%) and Ardabil Airport (3.83%). This ranking indicates that, despite similar first-ranked distributions in some stations, secondary models show variability, suggesting localized influences on wind speed that modify distributional fit. As a conclusion, the Laplace (std) distribution stands out as the best-fit model for several stations, showing relative consistency across several stations. These findings demonstrate the necessity of site-specific statistical modeling to accurately represent wind speed patterns across the diverse landscapes of Ardabil Province. Based on the results, comparing the wind characteristics in the study area with those of other regions in Iran, as well as analyzing the reported trends, can be useful in determining the impact of the region’s climatic conditions and topography on wind patterns. This research offers key insights into wind speed variability and trends in Ardabil, crucial for climate adaptation and risk management of extreme wind events. Full article
(This article belongs to the Special Issue Wind‑Speed Variability from Tropopause to Surface)
Show Figures

Figure 1

15 pages, 469 KiB  
Article
The Canonical Gospels in Michel Henry’s “Philosophy of Christianity”: The Synoptics as a Praeparatio for the Gospel of John
by Francisco Martins and Andreas Gonçalves Lind
Religions 2025, 16(7), 855; https://doi.org/10.3390/rel16070855 - 1 Jul 2025
Viewed by 292
Abstract
This article explores Michel Henry’s interpretation of the canonical Gospels in his Christian Trilogy. While Henry’s phenomenology emphasizes the immanent self-manifestation of a truth transcending all linguistic mediations, he recognizes the canonical authority of the Gospels as authentic sources of Christ’s words, granting [...] Read more.
This article explores Michel Henry’s interpretation of the canonical Gospels in his Christian Trilogy. While Henry’s phenomenology emphasizes the immanent self-manifestation of a truth transcending all linguistic mediations, he recognizes the canonical authority of the Gospels as authentic sources of Christ’s words, granting privileged access to that same truth. His surprising focus on Synoptic Gospels, especially in Words of Christ, contrasts with his usual preference for Johannine and Pauline writings. However, his interpretation of the Synoptics tends to uniformize their literary and theological diversity and ignore the narratives and particularities of each Gospel. We suggest that Henry’s hermeneutics is guided less by an exegetical intention than by the principles of his radical phenomenology of life. In short, the article shows the clear risk of eisegetical projection at the core of Henry’s philosophy of Christianity. Full article
(This article belongs to the Special Issue Biblical Interpretation: Literary Cues and Thematic Developments)
22 pages, 1984 KiB  
Article
Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon
by Jhonatan A. A. Manco and Silvio Nilo Figueroa
Atmosphere 2025, 16(7), 789; https://doi.org/10.3390/atmos16070789 - 27 Jun 2025
Viewed by 357
Abstract
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the [...] Read more.
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the understanding of the diurnal cycles of ShCu clouds—from formation to maturation and dissipation—over the Central Amazon (CAMZ). Using observational data from the Green Ocean Amazon 2014 (GoAmazon) campaign and large eddy simulation (LES) modeling, we analyzed the diurnal cycles of six selected pure ShCu cases and their composite behavior. Our results revealed a well-defined cycle, with cloud formation occurring between 10 and 11 local time (LT), maturity from 13 to 15 LT, and dissipation by 17–18 LT. The vertical extent of the liquid water mixing ratio and the intensity of the updraft mass flux were closely associated with increases in turbulent kinetic energy (TKE), enhanced buoyancy flux within the cloud layer, and reduced large-scale subsidence. We further analyzed the diurnal cycles of the convective available potential energy (CAPE), the convective inhibition (CIN), the Bowen ratio (BR), and the vertically integrated TKE in the mixed layer (ITKE-ML), exploring their relationships with the cloud base mass flux (Mb) and cloud depth across the six ShCu cases. ITKE-ML and Mb exhibited similar diurnal trends, peaking at approximately 14–15 LT. However, no consistent relationships were found between CAPE (or BR) and Mb. Similarly, comparisons of the cloud depth with CAPE, BR, ITKE-ML, CIN, and Mb revealed no clear relationships. Smaller ShCu clouds were sometimes linked to higher CAPE and lower CIN. It is important to emphasize that these findings are preliminary and based on a limited sample of ShCu cases. Further research involving an expanded dataset and more detailed analyses of the TKE budget and synoptic conditions is necessary. Such efforts would yield a more comprehensive understanding of the factors influencing ShCu clouds’ vertical development. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 24903 KiB  
Technical Note
A Shipborne Doppler Lidar Investigation of the Winter Marine Atmospheric Boundary Layer over Southeastern China’s Coastal Waters
by Xiaoquan Song, Wenchao Lian, Fuyou Wang, Ping Jiang and Jie Wang
Remote Sens. 2025, 17(13), 2161; https://doi.org/10.3390/rs17132161 - 24 Jun 2025
Viewed by 373
Abstract
The Marine Atmospheric Boundary Layer (MABL), as a critical component of Earth’s climate system, governs the exchange of matter and energy between the ocean surface and the lower atmosphere. This study presents shipborne Doppler lidar observations conducted during 12 January to 3 February [...] Read more.
The Marine Atmospheric Boundary Layer (MABL), as a critical component of Earth’s climate system, governs the exchange of matter and energy between the ocean surface and the lower atmosphere. This study presents shipborne Doppler lidar observations conducted during 12 January to 3 February 2024, along the southeastern Chinese coast. Employing a Coherent Doppler Wind Lidar (CDWL) system onboard the R/V “Yuezhanyu” research vessel, we investigated the spatiotemporal variability of MABL characteristics through integration with ERA5 reanalysis data. The key findings reveal a significant positive correlation between MABL height and surface sensible heat flux in winter, underscoring the dominant role of sensible heat flux in boundary layer development. Through the Empirical Orthogonal Function (EOF) analysis of the ERA5 regional boundary layer height, sensible heat flux, and sea level pressure, we demonstrate MABL height over the coastal seas typically exceeds the corresponding terrestrial atmospheric boundary layer height and exhibits weak diurnal variation. The CDWL observations highlight complex wind field dynamics influenced by synoptic conditions and maritime zones. Compared to onshore regions, the MABL over offshore areas further away from land has lower wind shear changes and a more uniform wind field. Notably, the terrain of Taiwan, China, induces significant low-level jet formations within the MABL. Low-level jets and low boundary layer height promote the pollution episode observed by CDWL. This research provides new insights into MABL dynamics over East Asian marginal seas, with implications for improving boundary layer parameterization in regional climate models and advancing our understanding of coastal meteorological processes. Full article
Show Figures

Graphical abstract

18 pages, 3514 KiB  
Article
Bioclimatic Condition Variability in the Central Region of Poland in the Period 2001–2024
by Katarzyna Rozbicka, Tomasz Rozbicki and Grzegorz Majewski
Atmosphere 2025, 16(7), 774; https://doi.org/10.3390/atmos16070774 - 24 Jun 2025
Viewed by 335
Abstract
This study investigates the variations in the Universal Thermal Climate Index (UTCI) calculated based on meteorological data from six synoptic stations across the Central Region of Poland from 2001 to 2024, focusing on spatial and temporal trends in thermal stress. The average annual [...] Read more.
This study investigates the variations in the Universal Thermal Climate Index (UTCI) calculated based on meteorological data from six synoptic stations across the Central Region of Poland from 2001 to 2024, focusing on spatial and temporal trends in thermal stress. The average annual UTCI was found to be 7.7 °C, indicating “slight cold stress,” with regional differences. Higher values were recorded in the west and northwest compared to lower values in the southeast. Maximum UTCI values associated with “very strong heat stress” exceeded 40.0 °C, while minimum values denoting “extreme cold stress” occurred in eastern cities more often. A linear trend analysis revealed a general increase in UTCI values across all stations, varying from 0.6 °C to 1.8 °C per decade, and showed distinct positive trends for heat stress categories, particularly “strong heat stress.” In contrast, a decrease in “strong cold stress” was observed. Favorable bioclimatic conditions, defined as “comfort”, predominated during most months, especially from April to October, while extreme thermal conditions were infrequently recorded. This research shows significant changes in thermal comfort and stress patterns, highlighting regional disparities and the implications for public health and urban planning in response to evolving bioclimatic conditions. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

15 pages, 5319 KiB  
Article
Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study
by Alexandros Papadopoulos Zachos, Kondylia Velikou, Errikos-Michail Manios, Konstantia Tolika and Christina Anagnostopoulou
Atmosphere 2025, 16(6), 748; https://doi.org/10.3390/atmos16060748 - 18 Jun 2025
Viewed by 378
Abstract
Seasonal climate forecasts are an essential tool for providing early insight into weather-related impacts and supporting decision-making in sectors such as agriculture, energy, and disaster management. Accurate representation of atmospheric circulation at the seasonal scale is essential, especially in regions such as the [...] Read more.
Seasonal climate forecasts are an essential tool for providing early insight into weather-related impacts and supporting decision-making in sectors such as agriculture, energy, and disaster management. Accurate representation of atmospheric circulation at the seasonal scale is essential, especially in regions such as the Eastern Mediterranean, where complex synoptic patterns drive significant climate variability. The aim of this study is to perform a comparison of weather type classifications between ERA5 reanalysis and seasonal forecasts in order to assess the ability of seasonal data to capture the synoptic patterns over the Eastern Mediterranean. For this purpose, we introduce a regional seasonal forecasting framework based on the state-of-the-art Advanced Research WRF (WRF-ARW) model. A series of sensitivity experiments were also conducted to evaluate the robustness of the model’s performance under different configurations. Moreover, the ability of seasonal data to reproduce observed trends in weather types over the historical period is also examined. The classification results from both ERA5 and seasonal forecasts reveal a consistent dominance of anticyclonic weather types throughout most of the year, with a particularly strong signal during the summer months. Model evaluation indicates that seasonal forecasts achieve an accuracy of approximately 80% in predicting the daily synoptic condition (cyclonic or anticyclonic) up to three months in advance. These findings highlight the promising skill of seasonal datasets in capturing large-scale circulation features and their associated trends in the region. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

Back to TopTop