Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = synchrotron small-angle scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3197 KiB  
Article
Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes
by Bo Zhu, Tiany Ji, Qiong Liu and Lixin Li
Batteries 2025, 11(5), 203; https://doi.org/10.3390/batteries11050203 - 21 May 2025
Viewed by 581
Abstract
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a [...] Read more.
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a few-layer graphene (FLG)-coated hard carbon fiber composite is constructed. A uniform graphene encapsulation is confirmed by synchrotron small-angle X-ray scattering and transmission electron microscopy technologies. Post-cycling observation reveals FLG participation in forming a hybrid solid electrolyte interphase (SEI). At a proper concentration, the FLG with a small specific surface area and pore size characteristics is well matched in the SEI. The FLG-integrated SEI not only mitigates volume expansion but also enhances ion conductivity through its oxygen-rich functional groups. As a result, the composite structure maintains 98.2% capacity retention after 100 cycles and reaches 164 mAh g−1 at 1000 mA g−1, compared to 97 mAh g−1 for the pristine hard carbon. This work demonstrates that FLG coating simultaneously stabilizes the interfacial chemistry and improves the ion transport, offering a practical pathway to advance hard carbon anodes for high-performance sodium-ion batteries. Full article
Show Figures

Figure 1

23 pages, 10091 KiB  
Article
Size and Shape of Primary (Bio)Polyelectrolyte Complexes Chitosan/Gelatin: Study Using Small-Angle X-Ray Scattering from Synchrotron Radiation
by Aleksandr Podshivalov, Mikhail Litvinov, Aleksandr Kashurin and Ksenia Danilova
Polymers 2025, 17(9), 1236; https://doi.org/10.3390/polym17091236 - 30 Apr 2025
Viewed by 412
Abstract
In this work, using small-angle X-ray scattering from synchrotron radiation, the macromolecular structure of chitosan and gelatin polyelectrolytes and their mixtures at various pH values and ratios was studied to determine the size and shape of primary supramolecular (bio)PEC. Analysis of the scattering [...] Read more.
In this work, using small-angle X-ray scattering from synchrotron radiation, the macromolecular structure of chitosan and gelatin polyelectrolytes and their mixtures at various pH values and ratios was studied to determine the size and shape of primary supramolecular (bio)PEC. Analysis of the scattering profiles of the initial solutions of chitosan and gelatin with the building of the pair distance function showed the formation of single-modal distributions with a maximum molecular size of 46 and 32.2 nm, respectively. Ab initio reconstruction of the macromolecule’s shape showed the formation of objects shaped like an oblate spheroid. In mixtures of chitosan and gelatin at a pH below the isoelectric point, it was found that the scattering structures correspond to the initial biopolymers. However, it is observed that values of the aspect ratio at a ratio above 1:10 gradually increase, which indicates a slight elongation of the average particle and indirectly indicates the formation of dissipative structures of (bio)PEC. In mixtures at a pH above the isoelectric point, it was shown that at ratios above 1:5, the formation of primary supramolecular complexes is observed, which is accompanied by an increase in zero-scattering intensity by about three times, maximum molecular size by two to two-and-a-half times relative to the initial polymers, and the formation of elongated structures corresponding to the cylinder (swollen spiral). It may be a consequence of the increased efficiency of the polyelectrolyte associative interaction between chitosan and gelatin. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

21 pages, 3737 KiB  
Article
Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering
by Helena Cristina Vasconcelos, Maria Meirelles, Reşit Özmenteş and Luís Santos
Foundations 2025, 5(1), 5; https://doi.org/10.3390/foundations5010005 - 12 Feb 2025
Cited by 1 | Viewed by 1359
Abstract
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2 [...] Read more.
This study employs advanced structural characterization techniques, including anomalous small-angle X-ray scattering (ASAXS), small-angle X-ray scattering (SAXS), and X-ray photoelectron spectroscopy (XPS), to investigate erbium (Er3+)-doped silica-based glass-ceramic thin films synthesized via the sol–gel method. This research examines the SiO2-TiO2 and SiO2-TiO2-PO2.5 systems, focusing on the formation, dispersion, and structural integration of Er3+-containing nanocrystals within the amorphous matrix under different thermal treatments. Synchrotron radiation tuned to the LIII absorption edge of erbium enabled ASAXS measurements, providing element-specific details about the localization of Er3+ ions. The findings confirm their migration into crystalline phases, such as erbium phosphate (EPO) and erbium titanate (ETO). SAXS and Guinier analysis quantified nanocrystal sizes, revealing trends influenced by their composition and heat treatment. Complementary XPS analysis of the Er 5p core-level states provided detailed information on the chemical and electronic environment of the Er3+ ions, confirming their stabilization within the crystalline structure. Transmission electron microscopy (TEM) highlighted the nanoscale morphology, verifying the aggregation of Er3+ ions into well-defined nanocrystals. The results offer a deeper understanding of their size, distribution, and interaction with the surrounding matrix. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

19 pages, 1622 KiB  
Article
Saponins Effect on Human Insulin Amyloid Aggregation
by Eleonora Mari, Silvia Vilasi, Paolo Moretti, Maria Rosalia Mangione, Giorgia Giorgini, Roberta Galeazzi and Maria Grazia Ortore
Biomolecules 2025, 15(1), 40; https://doi.org/10.3390/biom15010040 - 31 Dec 2024
Viewed by 1494
Abstract
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular [...] Read more.
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation. In this work, we intensively study the effect of saponins, bioactive compounds, on human insulin aggregation. To monitor the kinetic of amyloid aggregation following secondary structure changes, we perform fluorescence and UV-Visible absorption spectroscopies, using Thioflavin T and Congo Red as amyloid specific probes, and Circular Dichroism. To study the overall structural features and size of aggregates, we perform Synchrotron Small-Angle X-ray Scattering and Dynamic Light Scattering experiments. The morphology of the aggregates was assessed by Atomic Force Microscopy. To deepen the understanding of the saponins interaction with insulin, a Molecular Dynamics investigation is performed, too. The reported data demonstrate that saponins interfere with the amyloid aggregation by inducing a strong inhibition on the formation of insulin fibrils, likely through specific interactions with insulin monomers. A dose-dependent effect is evident, and amyloid inhibition is already clear when saponins are just 0.01% w/w in solution. We suggest that saponins, which are natural metabolites present in a wide range of foods ranging from grains, pulses, and green leaves to sea stars and cucumbers, can be promising metabolites to inhibit human insulin aggregation. This basic research work can pave the way to further investigations concerning insulin amyloidosis, suggesting the use of saponins as amyloid inhibitors and/or stabilizing agents in solution. Full article
(This article belongs to the Collection Feature Papers in Molecular Structure and Dynamics)
Show Figures

Graphical abstract

18 pages, 6054 KiB  
Article
Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation
by Akmal Z. Umarov, Evgeniia A. Nikitina, Alexey A. Piryazev, Ioannis Moutsios, Martin Rosenthal, Andrey O. Kurbatov, Yulia D. Gordievskaya, Elena Yu. Kramarenko, Erfan Dashtimoghadam, Mitchell R. Maw, Sergei S. Sheiko and Dimitri A. Ivanov
Polymers 2024, 16(23), 3309; https://doi.org/10.3390/polym16233309 - 27 Nov 2024
Viewed by 1059
Abstract
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this [...] Read more.
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration. Under uniaxial stretching, the emergence of a distinct four-spot pattern in the small-angle region indicated the development of long-range order within the material. According to the affine deformation of a cubic lattice, the four-spot pattern’s interference maxima correspond to 110 reflections upon stretching along the [111] axis of the body-centered unit cell. The experimental findings were corroborated by computer simulations of dissipative particle dynamics that confirmed the formation of a bcc domain structure. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Graphical abstract

11 pages, 2135 KiB  
Article
Bottlebrush Elastomers with Crystallizable Side Chains: Monolayer-like Structure of Backbones Segregated in Intercrystalline Regions
by Evgeniia A. Nikitina, Erfan Dashtimoghadam, Sergei S. Sheiko and Dimitri A. Ivanov
Polymers 2024, 16(2), 296; https://doi.org/10.3390/polym16020296 - 22 Jan 2024
Cited by 2 | Viewed by 2108
Abstract
Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron [...] Read more.
Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 3887 KiB  
Article
Effect of Geometrical Confinement on Ordering of Thermoplastic Polyurethanes with Crystallizable Hard and Soft Blocks
by Ainur F. Abukaev, Marina A. Gorbunova, Denis V. Anokhin and Dimitri A. Ivanov
Crystals 2023, 13(12), 1662; https://doi.org/10.3390/cryst13121662 - 5 Dec 2023
Cited by 2 | Viewed by 2018
Abstract
A series of multi-block thermoplastic polyurethanes incorporating different soft block structures was synthesized. This was achieved using a poly(butylene adipate) oligomer combined with its macrodiols of both an aromatic and aliphatic nature. The composition of the hard block included 1,6-hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate, [...] Read more.
A series of multi-block thermoplastic polyurethanes incorporating different soft block structures was synthesized. This was achieved using a poly(butylene adipate) oligomer combined with its macrodiols of both an aromatic and aliphatic nature. The composition of the hard block included 1,6-hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and 1,4-butanediol. For the first time, the structural evolution and phase composition of both the hard and soft segments were analyzed during in situ thermal treatments. A combination of synchrotron small- and wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy was used to determine the influence of the macrodiol’s nature and crystallization conditions on the polymorphic behavior of poly(butylene adipate). Using a new synthesis scheme, a relatively high degree of crystallinity for urethane blocks was achieved, which depended on the diisocyanate type in the structure of the soft segment. The hard segment domains imposed geometrical constraints on poly(butylene adipate), thereby altering its crystallization process compared to the neat oligomer. Thus, crystallization after annealing at a low temperature (80 °C) was fast, predominantly yielding a metastable β-phase. When heated to 180 °C, which was higher than the hard segment’s melting temperature, a phase-separated structure was observed. Subsequent crystallization was slower, favoring the formation of the stable α-PBA modification. The phase separation could be observed even after the hard block melting. Notably slow crystallization from an isotropic melt was documented after the disruption of phase separation at 230 °C. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

10 pages, 2604 KiB  
Article
Study of the Formation of Precursor Clusters in an Aqueous Solution of KH2PO4 by Small-Angle X-ray Scattering and Molecular Dynamics
by Andrey E. Sukhanov, Petr V. Konarev, Vladimir I. Timofeev, Ildar F. Garipov, Ekaterina S. Smirnova, Georgy S. Peters, Kseniia B. Ilina, Yury V. Pisarevsky, Olga A. Alekseeva and Mikhail V. Kovalchuk
Crystals 2023, 13(11), 1577; https://doi.org/10.3390/cryst13111577 - 9 Nov 2023
Cited by 2 | Viewed by 1486
Abstract
The structure of an aqueous solution of potassium dihydrogen phosphate (KH2PO4, KDP) was studied by small-angle X-ray scattering (SAXS) and molecular dynamics (MD). According to SAXS data, the octameric species (KH2PO4)8 are formed in [...] Read more.
The structure of an aqueous solution of potassium dihydrogen phosphate (KH2PO4, KDP) was studied by small-angle X-ray scattering (SAXS) and molecular dynamics (MD). According to SAXS data, the octameric species (KH2PO4)8 are formed in solution in addition to K+, (H2PO4), and KH2PO4, while the presence of other types of oligomers is not observed. When the temperature drops below the saturation temperature (~60 °C), the volume fraction of octamers increases sharply, reaching 50% at 4 °C. The results of MD calculations of the temporal stability relationships of dimers (KH2PO4)2, tetramers (KH2PO4)4, and octamers (KH2PO4)8 show that the dimers and tetramers disintegrate rapidly (50–100 ps), while the octamers remain stable. A comparative analysis of the bonds between the octamers and the KDP crystal lattice was carried out when the octamer was inserted during crystal growth in the directions [001] and [100]. The possible relationship of the obtained results with the changes in the anisotropy of growth rates (habitus) of KDP crystals at different degrees of supersaturation is discussed. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

13 pages, 31479 KiB  
Article
Probing the Nano-Assembly Leading to Periodic Gratings in Poly(p-dioxanone)
by Min-Han Hao, Selvaraj Nagarajan and Eamor M. Woo
Nanomaterials 2023, 13(19), 2665; https://doi.org/10.3390/nano13192665 - 28 Sep 2023
Cited by 2 | Viewed by 1291
Abstract
This study used scanning electron microscopy via 3D dissection coupled with synchrotron radiation with microfocal beams of both small-angle X-ray scattering and wide-angle X-ray diffraction to analyze the periodic crystal aggregates of unusual poly(p-dioxanone) (PPDO) dendritic cactus-arm-like ring bands upon crystallization with a [...] Read more.
This study used scanning electron microscopy via 3D dissection coupled with synchrotron radiation with microfocal beams of both small-angle X-ray scattering and wide-angle X-ray diffraction to analyze the periodic crystal aggregates of unusual poly(p-dioxanone) (PPDO) dendritic cactus-arm-like ring bands upon crystallization with a diluent poly(vinyl alcohol) (PVA) that is capable of hydrogen bonding interactions with PPDO. Three-dimensional microscopy interior dissection clearly expounds that the banded periodic architectures are packed by alternately normal-oriented flat-on crystals underneath the valley, periodically interfaced/branched with horizontal-oriented edge-on fibrils underneath the ridge. The oblique angles between the valley’s flat-on crystals with the branches are ca. 25–45° (depending on gradient inclines and bending), which is also proved by the azimuthal angle in microbeam X-ray diffraction. The grating-like strut-rib assembly in the PPDO cactus-arm-like ring bands is further proved by novel iridescence tests. Full article
Show Figures

Figure 1

14 pages, 5669 KiB  
Article
3D Printed Microfluidic Cell for SAXS Time-Resolved Measurements of the Structure of Protein Crystallization Solutions
by Margarita A. Marchenkova, Sergei V. Chapek, Petr V. Konarev, Ksenia B. Ilina, Georgy S. Peters, Yury V. Pisarevsky, Vladimir A. Shishkov, Alexander V. Soldatov and Mikhail V. Kovalchuk
Crystals 2023, 13(6), 938; https://doi.org/10.3390/cryst13060938 - 11 Jun 2023
Cited by 3 | Viewed by 2260
Abstract
A multichannel microfluidic cell (MFC) obtained using 3D printing for studying the structure of complex solutions by small-angle X-ray scattering (SAXS) is described. MFC was tested at the BioMUR beamline of the Kurchatov synchrotron. A comparative analysis of SAXS signal from the standard [...] Read more.
A multichannel microfluidic cell (MFC) obtained using 3D printing for studying the structure of complex solutions by small-angle X-ray scattering (SAXS) is described. MFC was tested at the BioMUR beamline of the Kurchatov synchrotron. A comparative analysis of SAXS signal from the standard capillary and from the developed MFC was carried out, with MFC showing significant advantages. The dynamics of SAXS scattering curves for lysozyme solutions with NaCl precipitant were studied when the protein and precipitant concentrations changed. The obtained time series of data are well consistent with the known data for the lysozyme solution. Full article
(This article belongs to the Special Issue Macromolecular Crystallography: Progress and Prospects)
Show Figures

Figure 1

20 pages, 3340 KiB  
Article
Antimicrobial Activity and Crystallization Features in Bio-Based Composites of PLLA and MCM-41 Particles Either Pristine or Functionalized with Confined Ag Nanowires
by Tamara M. Díez-Rodríguez, Enrique Blázquez-Blázquez, Marta Fernández-García, Alexandra Muñoz-Bonilla, Ernesto Pérez and María L. Cerrada
Polymers 2023, 15(9), 2084; https://doi.org/10.3390/polym15092084 - 27 Apr 2023
Cited by 4 | Viewed by 1840
Abstract
Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its [...] Read more.
Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its antimicrobial character. In these composites, the PLLA thermal stability, nucleation efficiency, and mechanical response are dependent on the MCM-41 nature and, to a lesser extent, on its content. Thus, differences in transitions of the PLLA matrix are noticed during cooling at 10 °C/min and in the subsequent heating when composites with neat or modified MCM-41 are compared. A very remarkable nucleation effect is played by pristine MCM-41, being inferior when MCM-41@Ag is incorporated into the PLLA. Wide angle X-ray scattering (WAXS) measurements using synchrotron radiation and performed under variable-temperature conditions in the composites containing MCM-41@Ag indicate that during cold crystallization, the disordered α′ polymorph is initially formed, but it rapidly transforms into ordered α crystals. A long spacing peak, clearly seen in pure PLLA, appears as a small shoulder in PLLAMCM@Ag4 and is undetectable in PLLAMCM@Ag9 and PLLAMCM@Ag20. Furthermore, an increase in MH with the silica content is found in the two sets of composites, the higher MH values being observed in the family of PLLA and MCM-41@Ag. Finally, remarkable antimicrobial features are noticeable in the composites with MCM-41@Ag since this modified silica transfers its biocidal characteristics into the PLLA composites. Full article
(This article belongs to the Special Issue Advances in Hybrid Polymers)
Show Figures

Figure 1

15 pages, 1934 KiB  
Article
Influence of Lyophilization and Cryoprotection on the Stability and Morphology of Drug-Loaded Poly(ethylene glycol-b-ε-caprolactone) Micelles
by Md. Saddam Hussain, Khandokar Sadique Faisal, Andrew J. Clulow, Hugo Albrecht, Marta Krasowska and Anton Blencowe
Polymers 2023, 15(8), 1974; https://doi.org/10.3390/polym15081974 - 21 Apr 2023
Cited by 6 | Viewed by 3208
Abstract
Polymeric micelles are promising carriers for the delivery of poorly water-soluble drugs, providing enhanced drug solubility, blood circulation times, and bioavailability. Nevertheless, the storage and long-term stability of micelles in solution present challenges requiring the lyophilization and storage of formulations in the solid [...] Read more.
Polymeric micelles are promising carriers for the delivery of poorly water-soluble drugs, providing enhanced drug solubility, blood circulation times, and bioavailability. Nevertheless, the storage and long-term stability of micelles in solution present challenges requiring the lyophilization and storage of formulations in the solid state, with reconstitution immediately prior to application. Therefore, it is important to understand the effects of lyophilization/reconstitution on micelles, particularly their drug-loaded counterparts. Herein, we investigated the use of β-cyclodextrin (β-CD) as a cryoprotectant for the lyophilization/reconstitution of a library of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) copolymer micelles and their drug-loaded counterparts, as well as the effect of the physiochemical properties of different drugs (phloretin and gossypol). The critical aggregation concentration (CAC) of the copolymers decreased with increasing weight fraction of the PCL block (fPCL), plateauing at ~1 mg/L when the fPCL was >0.45. The blank (empty) and drug-loaded micelles were lyophilized/reconstituted in the absence and presence of β-CD (9% w/w) and analyzed via dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) to assess for changes in aggregate size (hydrodynamic diameter, Dh) and morphology, respectively. Regardless of the PEG-b-PCL copolymer or the use of β-CD, the blank micelles displayed poor redispersibility (<10% relative to the initial concentration), while the fraction that redispersed displayed similar Dh to the as-prepared micelles, increasing in Dh as the fPCL of the PEG-b-PCL copolymer increased. While most blank micelles displayed discrete morphologies, the addition of β-CD or lyophilization/reconstitution generally resulted in the formation of poorly defined aggregates. Similar results were also obtained for drug-loaded micelles, with the exception of several that retained their primary morphology following lyophilization/reconstitution, although no obvious trends were noted between the microstructure of the copolymers or the physicochemical properties of the drugs and their successful redispersion. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 14890 KiB  
Article
Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects
by Alexander Vasil’kov, Anastasiia Voronova, Tsvetelina Batsalova, Dzhemal Moten, Alexander Naumkin, Eleonora Shtykova, Vladimir Volkov, Ivanka Teneva and Balik Dzhambazov
Materials 2023, 16(8), 3238; https://doi.org/10.3390/ma16083238 - 19 Apr 2023
Cited by 13 | Viewed by 2674
Abstract
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal–vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using [...] Read more.
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal–vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state—from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20–50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Biomedicinal Applications)
Show Figures

Graphical abstract

13 pages, 4929 KiB  
Article
The Structural Evolution of β-to-α Phase Transition in the Annealing Process of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
by Jian Yang, Xianggui Liu, Jinxing Zhao, Xuelian Pu, Zetong Shen, Weiyi Xu and Yuejun Liu
Polymers 2023, 15(8), 1921; https://doi.org/10.3390/polym15081921 - 18 Apr 2023
Cited by 3 | Viewed by 2204
Abstract
In this study, the structural and property changes induced in the highly ordered structure of preoriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV films containing the β-form during annealing were investigated. The transformation of the β-form was investigated by means of in situ wide-angle X-ray diffraction [...] Read more.
In this study, the structural and property changes induced in the highly ordered structure of preoriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV films containing the β-form during annealing were investigated. The transformation of the β-form was investigated by means of in situ wide-angle X-ray diffraction (WAXD) using synchrotron X-rays. The comparison of PHBV films with the β-form before and after annealing was performed using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The evolution mechanism of β-crystal transformation was elucidated. It was revealed that most of the highly oriented β-form directly transforms into the highly oriented α-form, and there might be two kinds of transformations: (1) The β-crystalline bundles may be transformed one by one rather than one part by one part during annealing before a certain annealing time. (2) The β-crystalline bundles crack or the molecular chains of the β-form are separated from the lateral side after annealing after a certain annealing time. A model to describe the microstructural evolution of the ordered structure during annealing was established based on the results obtained. Full article
Show Figures

Graphical abstract

11 pages, 3543 KiB  
Article
Temperature Behavior of Precursor Clusters at the Pre-Crystallization Phase of K(H2PO4) Studied by SAXS
by Andrey E. Sukhanov, Kseniia B. Ilina, Petr V. Konarev, Georgy S. Peters, Yury V. Pisarevsky, Ekaterina S. Smirnova, Olga A. Alekseeva and Mikhail V. Kovalchuk
Crystals 2023, 13(1), 26; https://doi.org/10.3390/cryst13010026 - 23 Dec 2022
Cited by 3 | Viewed by 2116
Abstract
Elementary building blocks for the growth of KDP crystals were established. The solution of potassium dihydrogen phosphate (KH2PO4–KDP) has been experimentally studied by the small-angle X-ray scattering (SAXS) method. The analysis of SAXS data in the temperature range of 2.5–90 °C using a [...] Read more.
Elementary building blocks for the growth of KDP crystals were established. The solution of potassium dihydrogen phosphate (KH2PO4–KDP) has been experimentally studied by the small-angle X-ray scattering (SAXS) method. The analysis of SAXS data in the temperature range of 2.5–90 °C using a set of models of 3D fragments of the crystal structure showed that the saturated solution contains above K+, H2PO4 and KH2PO4 monomers, as well as mainly octamers. The 3D model of the octamer isolated from the crystal structure has dimensions of 17.443 Å along the [001] axis and 5.963 Å along the [100] and [010] axes. As the temperature is decreased, starting from the saturation temperature of the solution, the volume fraction of octamers sharply increases while the volume fraction of monomers decreases. The results indicate that the monomers and octamers represent major components in the solution with the presence of minor populations of other oligomers. The significant dominance of octamers in the supersaturated solution indicates that they are elementary building blocks for the growth of KDP crystals of tetragonal modification. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop