Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,770)

Search Parameters:
Keywords = sustainable development technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2230 KiB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 (registering DOI) - 24 Jul 2025
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

24 pages, 3111 KiB  
Article
Does ICT Exacerbate the Consumption-Based Material Footprint? A Re-Examination of SDG12 Challenges in the Digital Era Across G20 Countries
by Qinghua Pang, Huilin Zhai, Jingyi Liu and Luoqi Yang
Sustainability 2025, 17(15), 6733; https://doi.org/10.3390/su17156733 (registering DOI) - 24 Jul 2025
Abstract
Global resource depletion has intensified scrutiny on Sustainable Development Goal 12 (SDG12), where consumption-based material footprint serves as a critical sustainability metric. Despite its transformative potential, the paradoxical role of Information and Communication Technology (ICT) in resource conservation remains underexplored. This study adopts [...] Read more.
Global resource depletion has intensified scrutiny on Sustainable Development Goal 12 (SDG12), where consumption-based material footprint serves as a critical sustainability metric. Despite its transformative potential, the paradoxical role of Information and Communication Technology (ICT) in resource conservation remains underexplored. This study adopts an extended STIRPAT model as the analytical framework. It employs the Method of Moments Quantile Regression to evaluate the non-linear effects of digitalization-related indicators and other influencing factors on material footprint. The analysis is conducted across different quantiles for G20 countries from 2000 to 2020. The results show that (1) ICT exhibits a substantial positive effect on consumption-based material footprint under all quantiles. This leads to an increase in the material footprint, hindering the G20’s progress toward achieving SDG12. (2) The impact of ICT varies notably, with a more pronounced adverse effect on SDG12 in countries with higher resource consumption. (3) ICT goods export trade, technological innovation, and globalization significantly mitigate ICT’s adverse impact on resource consumption. This study provides targeted recommendations for G20 countries on how to leverage ICT to achieve SDG12 more effectively. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Shaping Goose Meat Quality: The Role of Genotype and Soy-Free Diets
by Patrycja Dobrzyńska, Łukasz Tomczyk, Jerzy Stangierski, Marcin Hejdysz and Tomasz Szwaczkowski
Appl. Sci. 2025, 15(15), 8230; https://doi.org/10.3390/app15158230 (registering DOI) - 24 Jul 2025
Abstract
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed [...] Read more.
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed a standard soybean-based diet and an LPS diet group fed a yellow lupin-based diet. Birds were reared under identical management conditions and slaughtered at 17 weeks of age. The following traits were recorded: meat colour (CIELab), pH24, cooking loss, breast and thigh muscle texture (shear force and energy), and sensory traits. The results showed a significant effect of both genotype and diet on meat quality. The LPS diet lowered shear force and energy (by ~11%, p < 0.001), reduced cooking loss in breast muscles (by ~5%, p < 0.001), and improved the juiciness and flavour of thigh muscles. The ET genotype positively influenced the meat colour intensity (lower L*, higher a*), while the lupin-based diet improved technological parameters, especially the water-holding capacity. The results confirm that replacing soybean meal with yellow lupin protein is an effective nutritional strategy that can improve goose meat quality and sustainability without compromising the sensory quality. These outcomes support developing soy-free feeding strategies in goose production to meet consumer expectations and reduce reliance on imported feed. Full article
(This article belongs to the Section Food Science and Technology)
20 pages, 4403 KiB  
Review
Digital Twins’ Application for Geotechnical Engineering: A Review of Current Status and Future Directions in China
by Wenhui Tan, Siying Wu, Yan Li and Qifeng Guo
Appl. Sci. 2025, 15(15), 8229; https://doi.org/10.3390/app15158229 (registering DOI) - 24 Jul 2025
Abstract
The digital wave, represented by new technologies such as big data, IoT, and artificial intelligence, is sweeping the globe, driving all industries toward digitalization and intelligent transformation. Digital twins are becoming an indispensable opportunity for new infrastructure initiatives. As geotechnical engineering constitutes a [...] Read more.
The digital wave, represented by new technologies such as big data, IoT, and artificial intelligence, is sweeping the globe, driving all industries toward digitalization and intelligent transformation. Digital twins are becoming an indispensable opportunity for new infrastructure initiatives. As geotechnical engineering constitutes a critical component of new infrastructure, its corresponding digital transformation is essential to align with these initiatives. However, due to the difficulty of modeling, the demand for computing resources, interdisciplinary integration, and other issues, current digital twin applications in geotechnical engineering remain in their nascent stage. This paper delineates the developmental status of geotechnical digital twin technology in China, and it focuses on the advantages and disadvantages of digital twins in five application fields, identifying key challenges, including intelligent sensing and interconnectivity of multi-source heterogeneous physical entities, integrated sharing of 3D geological models and structural models, unified platforms for lifecycle information management, standardization of digital twin data protocols, and theoretical frameworks for digital twin modeling. Furthermore, this study systematically expounds future research priorities across four dimensions: intelligent sensing and interoperability technologies for geotechnical engineering; knowledge graph development and model-based systems engineering; integrated digital twin entity technologies combining 3D geological bodies with engineering structures; and precision enhancement, temporal extension, and spatial expansion of geotechnical digital twins. This paper systematically reviews the application status of digital twin technology in geotechnical engineering for the first time, reveals the common technical challenges in cross-domain implementation, and proposes a theoretical framework for digital twin accuracy improvement and spatiotemporal expansion for geotechnical engineering characteristics, which fills the knowledge gap in the adaptability of existing research in professional fields. These insights aim to provide references for advancing digitalization, intelligent transformation, and sustainable development of geotechnical engineering. Full article
Show Figures

Figure 1

20 pages, 5366 KiB  
Review
Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis
by Dorila E. Grandez-Yoplac, Miguel Pachas-Caycho, Josseph Cristobal, Sandy Chapa-Gonza, Roberto Carlos Mori-Zabarburú and Grobert A. Guadalupe
Sustainability 2025, 17(15), 6729; https://doi.org/10.3390/su17156729 (registering DOI) - 24 Jul 2025
Abstract
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of [...] Read more.
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of 387 articles published between 1941 and 2025 in the Scopus database was carried out. Since 2011, there has been a sustained growth in scientific production, with the United States, Denmark, Finland, and Germany standing out as the main contributors. The journals with the highest number of publications were Aquacultural Engineering, Aquaculture, and Aquaculture Research. The conceptual analysis revealed the following three thematic clusters: experimental studies on physiology and metabolism; research focused on nutrition, growth, and yield; and technological developments for water treatment in RAS. This evolution reflects a transition from basic approaches to applied technologies oriented towards sustainability. There was also evidence of a thematic transition toward molecular tools such as proteomics, transcriptomics, and real-time PCR. However, there is still limited integration of smart technologies such as the IoT. It is recommended to incorporate self-calibrating multi-parametric sensors, machine learning models, and autonomous systems for environmental regulation in real time. Full article
(This article belongs to the Special Issue Sustainability in Aquaculture)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chinwei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

16 pages, 722 KiB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

12 pages, 6938 KiB  
Article
Development of Water-Based Inks with Bio-Based Pigments for Digital Textile Printing Using Valve-Jet Printhead Technology
by Jéssica Antunes, Marisa Lopes, Beatriz Marques, Augusta Silva, Helena Vilaça and Carla J. Silva
Colorants 2025, 4(3), 24; https://doi.org/10.3390/colorants4030024 - 24 Jul 2025
Abstract
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and [...] Read more.
The textile industry is progressively shifting towards more sustainable solutions, particularly in the field of printing technologies. This study reports the development and evaluation of water-based pigment inks formulated with bio-based pigments derived from intermediates produced via bacterial fermentation. Two pigments—indigo (blue) and quinacridone (red)—were incorporated into ink formulations and applied on cotton and polyester fabrics through valve-jet inkjet printing (ChromoJet). The physical properties of the inks were analyzed to ensure compatibility with the equipment, and printed fabrics were assessed as to their color fastness to washing, rubbing, artificial weathering, and artificial light. The results highlight the good performance of the bio-based inks, with excellent light and weathering fastness and satisfactory wash and rub resistance. The effect of different pre-treatments, including a biopolymer and a synthetic binder, was also investigated. Notably, the biopolymer pre-treatment enhanced pigment fixation on cotton, while the synthetic binder improved wash fastness on polyester. These findings support the integration of biotechnologically sourced pigments into eco-friendly textile digital printing workflows. Full article
Show Figures

Figure 1

14 pages, 214 KiB  
Article
Instructional Practices in K-12 Climate Change Education Across Disciplines: A Study of Early Adopters from New Jersey
by Lauren Madden and Jillian Baden Bershtein
Sustainability 2025, 17(15), 6722; https://doi.org/10.3390/su17156722 - 24 Jul 2025
Abstract
The United Nations’ 2030 Agenda for Sustainable DeveTablelopment centers on the 17 Sustainable Development Goals (SDGs). Among these goals, two address climate change education: Goal 13, Climate Action, and Goal 4, Quality Education. In order to build a more sustainable future, climate change [...] Read more.
The United Nations’ 2030 Agenda for Sustainable DeveTablelopment centers on the 17 Sustainable Development Goals (SDGs). Among these goals, two address climate change education: Goal 13, Climate Action, and Goal 4, Quality Education. In order to build a more sustainable future, climate change education is critical. In 2022, New Jersey became the first state in the US to integrate climate change into learning standards across subjects and grade levels K-12. In an effort to better understand the way in which teachers began to include climate change in their instruction, 50 teachers were observed implementing a lesson of their choosing that included climate change throughout the 2023–2024 academic year. Though most of the observed lessons featured science, many subject areas were included in the dataset, such as art, technology, history, and physical education. Teachers engaging in climate change instruction tended to use a variety of instructional practices. In nearly all cases, a multitude of methodologies were used in each lesson. However, small group instruction was featured in nearly all observed lessons. Quantitative descriptions of the findings are followed by three vignettes of exemplar instruction to provide a clearer understanding of the context of this work. These findings provide a scope for how climate change can be integrated in instructional settings at scale and suggestions for leveraging the experiences of early adopters of this innovation to support widespread implementation. Full article
29 pages, 2105 KiB  
Article
The Impact of Rural Digital Economy Development on Agricultural Carbon Emission Efficiency: A Study of the N-Shaped Relationship
by Yong Feng, Shuokai Wang and Fangping Cao
Agriculture 2025, 15(15), 1583; https://doi.org/10.3390/agriculture15151583 - 23 Jul 2025
Abstract
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based [...] Read more.
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based on provincial-level panel data from China spanning 2011 to 2022, this study examines the relationship between the rural digital economy and agricultural carbon emission efficiency, along with its underlying mechanisms, using bidirectional fixed effects models, mediation effect analysis, and Spatial Durbin Models. The results indicate the following: (1) A significant N-shaped-curve relationship exists between rural digital economy development and agricultural carbon emission efficiency. Specifically, agricultural carbon emission efficiency exhibits a three-phase trajectory of “increase, decrease, and renewed increase” as the rural digital economy advances, ultimately driving a sustained improvement in efficiency. (2) Industrial integration acts as a critical mediating mechanism. Rural digital economy development accelerates the formation of the N-shaped curve by promoting the integration between agriculture and other sectors. (3) Spatial spillover effects significantly influence agricultural carbon emission efficiency. Due to geographical proximity, regional diffusion, learning, and demonstration effects, local agricultural carbon emission efficiency fluctuates with changes in neighboring regions’ digital economy development levels. (4) The relationship between rural digital economy development and agricultural carbon emission efficiency exhibits a significant inverted N-shaped pattern in regions with higher marketization levels, planting-dominated areas of southeast China, and digital economy demonstration zones. Further analysis reveals that within rural digital economy development, production digitalization and circulation digitalization demonstrate a more pronounced inverted N-shaped relationship with agricultural carbon emission efficiency. This study proposes strategic recommendations to maximize the positive impact of the rural digital economy on agricultural carbon emission efficiency, unlock its spatially differentiated contribution potential, identify and leverage inflection points of the N-shaped relationship between digital economy development and emission efficiency, and implement tailored policy portfolios—ultimately facilitating agriculture’s green and low-carbon transition. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

32 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

18 pages, 454 KiB  
Article
How Knowledge Management Capability Drives Sustainable Business Model Innovation: A Combination of Symmetric and Asymmetric Approaches
by Shuting Chen, Liping Huang and Aojie Zhou
Sustainability 2025, 17(15), 6714; https://doi.org/10.3390/su17156714 - 23 Jul 2025
Abstract
In a business environment with rapidly growing digital technologies, knowledge management (KM) capability is an indispensable source for enterprise innovation activities. Nevertheless, there is limited understanding of the specific KM capability that leads to sustainable business model innovation (SBMI). This study therefore aimed [...] Read more.
In a business environment with rapidly growing digital technologies, knowledge management (KM) capability is an indispensable source for enterprise innovation activities. Nevertheless, there is limited understanding of the specific KM capability that leads to sustainable business model innovation (SBMI). This study therefore aimed to investigate the internal relationship between KM capability and SBMI by leveraging dynamic capability theory. A hierarchical regression analysis (HRA) and a fuzzy set qualitative comparative analysis (fsQCA) are used to analyze a sample of 115 Chinese innovative enterprises. The results indicate that organizational structure promotes information technology by improving human capital, and that information technology then stimulates collaboration depth by expanding collaboration breadth, thereby driving SBMI. Specifically, human capital, information technology, collaboration breadth, and collaboration depth play significant chain-mediating roles in the relationship between organizational structure and SBMI. This study contributes to the literature on KM and innovation management, extends the use of low-order and high-order dynamic capabilities in DCT, and assists managers in developing SBMI effectively. Full article
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

30 pages, 470 KiB  
Article
Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience
by Jing-Yan Ma and Tae-Won Kang
Sustainability 2025, 17(15), 6706; https://doi.org/10.3390/su17156706 - 23 Jul 2025
Abstract
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare [...] Read more.
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare supply chains. Drawing on the Resource-Based View and Dynamic Capabilities Theory, we develop a chain-mediated model, defined as the multistage indirect path whereby digital intelligence first bolsters innovation capability, which then activates supply chain resilience (absorptive, response, and restorative capability), to improve decision optimization. Data were collected from 360 managerial-level respondents working in healthcare supply chain organizations in China, and the proposed model was tested using structural equation modeling. The results indicate that digital intelligence enhances innovation capability, which in turn activates all three dimensions of resilience, producing a synergistic effect that promotes sustained decision optimization. However, the direct effect of digital intelligence on decision optimization was not statistically significant, suggesting that its impact is primarily mediated through organizational capabilities, particularly supply chain resilience. Practically, the findings suggest that in the process of deploying digital intelligence systems and platforms, healthcare organizations should embed technological advantages into organizational processes, emergency response mechanisms, and collaborative operations, so that digitalization moves beyond the technical system level and is truly internalized as organizational innovation capability and resilience, thereby leading to sustained improvement in decision-making performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

41 pages, 4318 KiB  
Review
A Review of Pretreatment Strategies for Anaerobic Digestion: Unlocking the Biogas Generation Potential of Wastes in Ghana
by James Darmey, Satyanarayana Narra, Osei-Wusu Achaw, Walter Stinner, Julius Cudjoe Ahiekpor, Herbert Fiifi Ansah, Berah Aurelie N’guessan, Theophilus Ofori Agyekum and Emmanuel Mawuli Koku Nutakor
Waste 2025, 3(3), 24; https://doi.org/10.3390/waste3030024 - 23 Jul 2025
Abstract
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in [...] Read more.
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in developing countries like Ghana, where organic waste remains underutilized. A narrative synthesis of the literature between 2010 and 2024 was conducted through ScienceDirect and Scopus, categorizing pretreatment types as mechanical, thermal, chemical, biological, enzymatic, and hybrid. A bibliometric examination using VOSviewer also demonstrated global trends in research and co-authorship networks. Mechanical and thermal pretreatments increased biogas production by rendering the substrate more available, while chemical treatment degraded lignin and hemicellulose, sometimes more than 100% in methane yield. Biological and enzymatic pretreatments were energy-consuming and effective, with certain enzymatic blends achieving 485% methane yield increases. The study highlights the synergistic benefits of hybrid approaches and growing global interest, as revealed by bibliometric analysis; hence, the need to explore their potential in Ghana. In Ghana, this study concludes that low-cost, biologically driven pretreatments are practical pathways for advancing anaerobic digestion systems toward sustainable waste management and energy goals, despite infrastructure and policy challenges. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

Back to TopTop