Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,477)

Search Parameters:
Keywords = sustainability of built environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1699 KiB  
Article
Knowledge Sharing: Key to Sustainable Building Construction Implementation
by Chijioke Emmanuel Emere, Clinton Ohis Aigbavboa and Olusegun Aanuoluwapo Oguntona
Eng 2025, 6(8), 190; https://doi.org/10.3390/eng6080190 - 6 Aug 2025
Abstract
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice [...] Read more.
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice globally has been emphasised by earlier research. Consequently, this study aims to investigate knowledge-sharing elements to enhance SBC in South Africa (SA). Utilising a questionnaire survey, this study elicited data from 281 professionals in the built environment. Data analysis was performed with “descriptive statistics”, the “Kruskal–Wallis H-test”, and “principal component analysis” to determine the principal knowledge-sharing features (KSFs). This study found that “creating public awareness of sustainable practices”, the “content of SBC training, raising awareness of green building products”, “SBC integration in professional certifications”, an “information hub or repository for sustainable construction”, and “mentoring younger professionals in sustainable practices” are the most critical KSFs for SBC deployment. These formed a central cluster, the Green Education Initiative and Eco-Awareness Alliance. The results achieved a reliability test value of 0.956. It was concluded that to embrace the full adoption of SBC, corporate involvement is critical, and all stakeholders must embrace the sustainability paradigm. It is recommended that the principal knowledge-sharing features revealed in this study should be carefully considered to help construction stakeholders in fostering knowledge sharing for a sustainable built environment. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

14 pages, 729 KiB  
Article
Smart Retirement Villages as Sustainable Housing Solutions: A TAM-Based Study of Elderly Intention to Relocate
by Booi Chen Tan, Teck Chai Lau, Clare D’Souza, Nasreen Khan, Wooi Haw Tan, Chee Pun Ooi and Suk Min Pang
Buildings 2025, 15(15), 2768; https://doi.org/10.3390/buildings15152768 - 6 Aug 2025
Abstract
Globally, technologically integrated housing solutions are increasingly relevant in addressing the challenges of aging populations and sustainable urban development. Drawing on the Technology Acceptance Model (TAM), this research investigates how perceptions of usefulness, ease of use, and attitudes influence relocation intention to smart [...] Read more.
Globally, technologically integrated housing solutions are increasingly relevant in addressing the challenges of aging populations and sustainable urban development. Drawing on the Technology Acceptance Model (TAM), this research investigates how perceptions of usefulness, ease of use, and attitudes influence relocation intention to smart retirement villages (SRVs), while also examining any significant differences between the socio-demographic variables and such intention. A total of 305 individuals aged 55 and above participated in an online survey, with data analyzed using IBM SPSS Statistics version 27 and AMOS-SEM version 25. The findings reveal that elderly individuals of Chinese ethnicity, those who are married, and those aged between 66 and 70 are more inclined to relocate to SRVs. Attitude and perceived usefulness significantly predict relocation intention, while perceived ease of use exerts an indirect effect through usefulness. These results highlight the importance of integrating user-centered technological design with socio-cultural and demographic considerations in the development of age-friendly built environments. The study offers insights for urban planners, policymakers, and developers seeking to create inclusive and sustainable smart housing solutions for aging populations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

18 pages, 1388 KiB  
Review
Simulation in the Built Environment: A Bibliometric Analysis
by Saman Jamshidi
Metrics 2025, 2(3), 13; https://doi.org/10.3390/metrics2030013 - 4 Aug 2025
Abstract
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes [...] Read more.
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes prior to construction. Applications span energy consumption, airflow, thermal comfort, lighting, structural behavior, and human interactions within buildings and urban contexts. This study maps the scientific landscape of simulation research in the built environment through a bibliometric analysis of 12,220 publications indexed in Scopus. Using VOSviewer 1.6.20, it conducted citation and keyword co-occurrence analyses to identify key research themes, leading countries and journals, and central publications in the field. The analysis revealed seven primary thematic clusters: (1) human-focused simulation, (2) building-scale energy performance simulation, (3) urban-scale energy performance simulation, (4) sustainable design and simulation, (5) indoor environmental quality simulation, (6) building aerodynamics simulation, and (7) computing in building simulation. By synthesizing these trends and domains, this study provides an overview of the field, facilitating greater accessibility to the simulation literature and informing future interdisciplinary research and practice in the built environment. Full article
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

37 pages, 5413 KiB  
Article
Can Green Building Science Support Systems Thinking for Energy Education?
by Laura B. Cole, Jessica Justice, Delaney O’Brien, Jayedi Aman, Jong Bum Kim, Aysegul Akturk and Laura Zangori
Sustainability 2025, 17(15), 7008; https://doi.org/10.3390/su17157008 - 1 Aug 2025
Viewed by 161
Abstract
Systems thinking (ST) is a foundational cognitive skillset to advance sustainability education but has not been well examined for learners prior to higher education. This case study research in rural middle schools in the Midwestern U.S. examines systems thinking outcomes of a place-based [...] Read more.
Systems thinking (ST) is a foundational cognitive skillset to advance sustainability education but has not been well examined for learners prior to higher education. This case study research in rural middle schools in the Midwestern U.S. examines systems thinking outcomes of a place-based energy literacy unit focused on energy-efficient building design. The unit employs the science of energy-efficient, green buildings to illuminate the ways in which energy flows between natural and built environments. The unit emphasized electrical, light, and thermal energy systems and the ways these systems interact to create functional and energy-efficient buildings. This study focuses on three case study classrooms where students across schools (n = 89 students) created systems models as part of pre- and post-unit tests (n = 162 models). The unit tests consisted of student drawings, annotations, and writings, culminating into student-developed systems models. Growth from pre- to post-test was observed in both the identification of system elements and the linkages between elements. System elements included in the models were common classroom features, such as windows, lights, and temperature control, suggesting that rooting the unit in place-based teaching may support ST skills. Full article
(This article belongs to the Special Issue Sustainability Education through Green Infrastructure)
Show Figures

Figure 1

21 pages, 16495 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 - 1 Aug 2025
Viewed by 160
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 195
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

18 pages, 2894 KiB  
Article
Technology Roadmap Methodology and Tool Upgrades to Support Strategic Decision in Space Exploration
by Giuseppe Narducci, Roberta Fusaro and Nicole Viola
Aerospace 2025, 12(8), 682; https://doi.org/10.3390/aerospace12080682 - 30 Jul 2025
Viewed by 116
Abstract
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available [...] Read more.
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available methodologies are mostly built on experts’ opinions and in just few cases, methodologies and tools have been developed to support the decision makers with a rational approach. In any case, all the available approaches are meant to draw “ideal” maturation plans. Therefore, it is deemed essential to develop an integrate new algorithms able to decision guidelines on “non-nominal” scenarios. In this context, Politecnico di Torino, in collaboration with the European Space Agency (ESA) and Thales Alenia Space–Italia, developed the Technology Roadmapping Strategy (TRIS), a multi-step process designed to create robust and data-driven roadmaps. However, one of the main concerns with its initial implementation was that TRIS did not account for time and budget estimates specific to the space exploration environment, nor was it capable of generating alternative development paths under constrained conditions. This paper discloses two main significant updates to TRIS methodology: (1) improved time and budget estimation to better reflect the specific challenges of space exploration scenarios and (2) the capability of generating alternative roadmaps, i.e., alternative technological maturation paths in resource-constrained scenarios, balancing financial and temporal limitations. The application of the developed routines to available case studies confirms the tool’s ability to provide consistent planning outputs across multiple scenarios without exceeding 20% deviation from expert-based judgements available as reference. The results demonstrate the potential of the enhanced methodology in supporting strategic decision making in early-phase mission planning, ensuring adaptability to changing conditions, optimized use of time and financial resources, as well as guaranteeing an improved flexibility of the tool. By integrating data-driven prioritization, uncertainty modeling, and resource-constrained planning, TRIS equips mission planners with reliable tools to navigate the complexities of space exploration projects. This methodology ensures that roadmaps remain adaptable to changing conditions and optimized for real-world challenges, supporting the sustainable advancement of space exploration initiatives. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 1250 KiB  
Review
Integrating Sustainability in Engineering: A Global Review
by Faisal Alhassani, Muhammad Rakeh Saleem and John Messner
Sustainability 2025, 17(15), 6930; https://doi.org/10.3390/su17156930 - 30 Jul 2025
Viewed by 500
Abstract
Sustainability has emerged as a prominent concern globally, extending its influence into various domains, including education. It is recognized as of utmost importance to address global environmental challenges. However, there is a critical gap in the perception of innovative teaching strategies, i.e., interdisciplinary [...] Read more.
Sustainability has emerged as a prominent concern globally, extending its influence into various domains, including education. It is recognized as of utmost importance to address global environmental challenges. However, there is a critical gap in the perception of innovative teaching strategies, i.e., interdisciplinary collaboration, experiential learning, and targeted approaches, to improve sustainability literacy and its applications. This review analyzes existing environmental and sustainability education frameworks and approaches to determine desired learning outcomes and challenges associated with sustainability education. Also, it explores and identifies concepts, theories, and assumptions found within the literature review, promoting sustainability integration within engineering education. The review was conducted to facilitate the development and improvement of sustainability education within the Architectural Engineering discipline, a field known for emphasizing educational innovation and technical excellence. By synthesizing existing ideas related to sustainability and sustainable development, this work aims to guide curriculum designers and educators in fostering sustainability competencies among engineering students within the built environment. Full article
Show Figures

Figure 1

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 631
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

24 pages, 4858 KiB  
Article
Exploring the Spatial Coupling Characteristics and Influence Mechanisms of Built Environment and Green Space Pattern: The Case of Shanghai
by Rongxiang Chen, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Kaida Chen and Shunhe Chen
Sustainability 2025, 17(15), 6828; https://doi.org/10.3390/su17156828 - 27 Jul 2025
Viewed by 569
Abstract
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep [...] Read more.
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep neural network combined with an attention mechanism model measures the comprehensive level of the built environment and green space pattern of urbanization and quantitatively analyzes the coordinated relationship between the two using the coupled degree of coordination model. Subsequently, the K-Means clustering model was used for spatial clustering to determine the governance and construction directions for different spatial areas and was, finally, combined with the LightGBM model plus SHAP to analyze the importance and threshold effect of the indicators on the degree of coupled coordination. The results of the study show that (1) the core area of the city shows a high state of coordination, indicating that Shanghai has a better green space construction in the central city, but the periphery shows different imbalances; (2) three different kinds of areas are identified, and different governance measures as well as the direction of urbanization are proposed according to the characteristics of the different areas; and (3) this study finds that the structural indicators of the built environment, such as Average Compactness, Weighted Average Height, and Land Use Diversity, have a significant influence on the coupling coordination degree and have different response thresholds. The results of the study provide theoretical support for regional governance and suggestions for the direction of urban expansion for sustainable urbanization. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

27 pages, 792 KiB  
Review
Double-Edged Sword: Urbanization and Response of Amniote Gut Microbiome in the Anthropocene
by Yi Peng, Mengyuan Huang, Xiaoli Sun, Wenqing Ling, Xiaoye Hao, Guangping Huang, Xiangdong Wu, Zheng Chen and Xiaoli Tang
Microorganisms 2025, 13(8), 1736; https://doi.org/10.3390/microorganisms13081736 - 25 Jul 2025
Viewed by 422
Abstract
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These [...] Read more.
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These changes contribute to local species extinction, leading to biodiversity loss and profoundly impacting ecological processes and regional sustainable development. However, within urban settings, certain ‘generalist’ species demonstrate survival capabilities contingent upon phenotypic plasticity. The co-evolution of gut microbiota with their hosts emerges as a key driver of this phenotypic plasticity. The presence of diverse gut microbiota constitutes a crucial adaptive mechanism essential for enabling hosts to adjust to rapid environmental shifts. This review comprehensively explores amniote gut microbial changes in the context of urbanization, examining potential drivers of these changes (including diet and environmental pollutants) and their potential consequences for host health (such as physiology, metabolism, immune function, and susceptibility to infectious and non-infectious diseases). Ultimately, the implications of the gut microbiome are highlighted for elucidating key issues in ecology and evolution. This understanding is expected to enhance our comprehension of species adaptation in the Anthropocene. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

24 pages, 3365 KiB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Viewed by 287
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

28 pages, 3632 KiB  
Article
Life-Centered City: Interspecies Spaces in Contemporary Resilient City Design—The Case of Gliwice
by Paulina Konsek and Alina Pancewicz
Sustainability 2025, 17(15), 6713; https://doi.org/10.3390/su17156713 - 23 Jul 2025
Viewed by 400
Abstract
The subject of this research is the original project concept of the life-centered city, which focuses on the planning and design of sustainable solutions for urban landscape transformation. This concept prioritizes the well-being and needs of all life on Earth, including not only [...] Read more.
The subject of this research is the original project concept of the life-centered city, which focuses on the planning and design of sustainable solutions for urban landscape transformation. This concept prioritizes the well-being and needs of all life on Earth, including not only humans but also animals and their natural habitats. The aim of this article is to propose ways to implement the life-centered city concept into the strategic development policies of cities and identify sustainable urban landscape solutions that foster the creation of interspecies spaces. The research employs a comparative analysis of selected European cities, neighborhoods, and urban microspaces that are progressively adapting to climate change, addressing the needs of various users, and prioritizing the development of interspecies spaces. A detailed study focuses on the Polish city of Gliwice, which serves as a pilot example of applying the life-centered city model to local landscapes. Our findings suggest that the life-centered city concept, when effectively integrated into city development strategies and implemented within the urban fabric, can act as a proactive tool for transforming urban landscapes to better accommodate both people and nature. It supports the creation of a sustainable built environment that is inclusive, resilient, and adaptable to change. Full article
Show Figures

Figure 1

Back to TopTop