Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,517)

Search Parameters:
Keywords = sustainability of agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7127 KB  
Article
Spatiotemporal Dynamics and Evaluation of Groundwater and Salt in the Karamay Irrigation District
by Gang Chen, Feihu Yin, Zhenhua Wang, Yungang Bai, Shijie Cai, Zhaotong Shen, Ming Zheng, Biao Cao, Zhenlin Lu and Meng Li
Agriculture 2026, 16(3), 310; https://doi.org/10.3390/agriculture16030310 (registering DOI) - 26 Jan 2026
Abstract
Inland depression irrigation districts in the arid regions of Xinjiang, owing to the absence of natural drainage conditions, exhibit unique groundwater-salt dynamics and face prominent risks of soil salinization, thus necessitating clarification of their water-salt transport mechanisms to ensure sustainable agricultural development. This [...] Read more.
Inland depression irrigation districts in the arid regions of Xinjiang, owing to the absence of natural drainage conditions, exhibit unique groundwater-salt dynamics and face prominent risks of soil salinization, thus necessitating clarification of their water-salt transport mechanisms to ensure sustainable agricultural development. This study takes the Karamay Agricultural Comprehensive Development Zone as the research subject. The study examines the distribution characteristics of soil salinity, groundwater depth, and Total Dissolved Solids (TDS) of groundwater across diverse soil textures, elucidates the correlative relationships between groundwater dynamics and soil salinity, and forecasts the evolutionary trajectory of groundwater levels within the irrigation district. The findings reveal that groundwater depth in silty soil regions (3.24–3.11 m) substantially exceeds that in silty clay regions (2.43–2.61 m), whereas TDS of groundwater demonstrates marginally elevated concentrations in silty clay areas (19.05–16.78 g L−1) compared to silty soil zones (18.18–16.29 g L−1). Soil salinity exhibits pronounced surface accumulation phenomena and considerable inter-annual seasonal variations: manifesting a “spring-peak, summer-trough” pattern in 2023, which inversely transitioned to a “summer-peak, spring-trough” configuration in 2024, with salinity hotspots predominantly concentrated in silty clay distribution zones. A significant sigmoid functional relationship emerges between soil salinity and groundwater depth (R2 = 0.73–0.77), establishing critical depth thresholds of 2.44 m for silty soil and 2.72 m for silty clay, beneath which the risk of secondary salinization escalates dramatically. The XGBoost model demonstrates robust predictive capability for groundwater levels (R2 = 0.8545, MAE = 0.4428, RMSE = 0.5174), with feature importance analysis identifying agricultural irrigation as the predominant influencing factor. Model projections indicate that mean groundwater depths across the irrigation district will decline to 2.91 m, 2.76 m, 2.62 m, and 2.36 m over the ensuing 1, 3, 5, and 10 years, respectively. Within a decade, 73.33% of silty soil regions and 92.31% of silty clay regions will experience groundwater levels below critical thresholds, subjecting the irrigation district to severe secondary salinization threats. Consequently, comprehensive mitigation strategies encompassing precision irrigation management and enhanced drainage infrastructure are imperative. Full article
(This article belongs to the Section Agricultural Water Management)
32 pages, 2032 KB  
Article
Utilizing AIoT to Achieve Sustainable Agricultural Systems in a Climate-Change-Affected Environment
by Mohamed Naeem, Mohamed A. El-Khoreby, Hussein M. ELAttar and Mohamed Aboul-Dahab
Future Internet 2026, 18(2), 68; https://doi.org/10.3390/fi18020068 - 26 Jan 2026
Abstract
Smart agricultural systems are continually evolving to provide high-quality planting and defend against threats such as climate change, which necessitate improved adaptation and resource allocation. IoT technology offers a cost-effective approach to monitoring and managing system performance. However, this approach faces challenges, including [...] Read more.
Smart agricultural systems are continually evolving to provide high-quality planting and defend against threats such as climate change, which necessitate improved adaptation and resource allocation. IoT technology offers a cost-effective approach to monitoring and managing system performance. However, this approach faces challenges, including connectivity issues and complex decision-making. While researchers have studied these problems individually, no fully automated solution has addressed them simultaneously. There is still a need for an offline solution that manages multiple processes and reduces human error. This paper introduces an AI-powered edge computing system that serves as an early-warning solution for climate impacts. This system enables autonomous management through an Agentic AI model that observes, predicts, decides, and adapts. It provides a low-cost AIoT platform for data forecasting, classification, and decision-making, converting sensor data into actionable insights. The system integrates forecast evaluation with real-time data comparisons to optimize scheduling, efficiency, sustainability, and yields. Moreover, this solution is totally autonomous and independent of internet connectivity. Demonstrating its superior performance, it reduced errors by 50% and achieved an R-squared value of 0.985. Full article
(This article belongs to the Topic Smart Edge Devices: Design and Applications)
23 pages, 3151 KB  
Article
Nanoformulations of the Piper auritum Kunth (Piperales: Piperaceae) Essential Oil for the Control of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
by Josefina Barrera-Cortés, Jocelyn Sosa-Trejo, Isabel M. Sánchez-Barrera, Laura P. Lina-García, Fabiola D. León Navarrete and María E. Mancera-López
Agriculture 2026, 16(3), 308; https://doi.org/10.3390/agriculture16030308 - 26 Jan 2026
Abstract
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three [...] Read more.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three nanoformulations (NFs) based on the essential oil (70% safrole) of Piper auritum Kunth (Piperales: Piperaceae), nanoemulsion (NE), microemulsion (ME), and silver nanoparticles (AgNPs), against second-instar larvae of S. frugiperda. The NFs were prepared using a combination of low- and high-energy methods, using Tween 80 and Span 80 as stabilizing agents. The droplet sizes of the NFs ranged from 19 to 48 nm. Stability analysis of the formulations maintained for 60 days in open systems at room temperature allowed the identification of remaining oxidized sesquiterpenes and phenylpropanoids. In in vitro bioassays, the NE demonstrated the highest larvicidal activity, with an LD50 of 0.97 µg cm−2, outperforming the other formulations by a factor of ten. Observations of morphological damage to larval and pupal tissues, along with deformation of adult specimens, confirming the toxicity of the NFs. These findings highlight the potential of essential oil-based NFs derived from P. auritum as sustainable biopesticides for integrated pest management. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

19 pages, 1456 KB  
Article
Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region
by Júlia Resende Oliveira Silva, Décio Karam and Kassio Ferreira Mendes
Ecologies 2026, 7(1), 12; https://doi.org/10.3390/ecologies7010012 - 26 Jan 2026
Abstract
Knowledge of weed community structure in agricultural systems is important for sustainable management, especially for evaluating the effects of different herbicides on soybean–corn succession crops. This study evaluated, over two crop seasons, weed community structure in response to chemical weed management strategies for [...] Read more.
Knowledge of weed community structure in agricultural systems is important for sustainable management, especially for evaluating the effects of different herbicides on soybean–corn succession crops. This study evaluated, over two crop seasons, weed community structure in response to chemical weed management strategies for soybean–corn succession in Brazil’s Triângulo Mineiro region. Phytosociological surveys of the weed community were conducted during harvest periods throughout the experimental phase, with referenced data for generating spatial distribution maps of biomass and density of the main present species. The survey identified 33 weed species, predominantly from the Poaceae and Asteraceae families. Regardless of the management system, the total weed biomass was lower in corn crops compared to soybean crops. In management systems using six different herbicides, the IVI of Commelina benghalensis was the lowest due to greater diversification of herbicide mechanisms of action. The results demonstrate that chemical weed management strategies strongly influence weed community structure, with significant effects on weed community structure and evenness in intensive agricultural regions. These changes also have implications for resistance management. Full article
Show Figures

Figure 1

23 pages, 2787 KB  
Article
Participatory Geographic Information Systems and the CFS-RAI: Experience from the FBC-UPM-FESBAL
by Mayerly Roncancio-Burgos, Irely Joelia Farías Estrada, Cristina Velilla-Lucini and Carmen Marín-Ferrer
Sustainability 2026, 18(3), 1232; https://doi.org/10.3390/su18031232 - 26 Jan 2026
Abstract
This paper analyzes the implementation of the Geoportal SIG FESBAL–UPM, a Participatory Geographic Information System (PGIS) developed within the Master’s and Doctorate programs in Rural Development Project Planning and Sustainable Management at UPM. The study introduces a model integrated with Project-Based Learning (PBL), [...] Read more.
This paper analyzes the implementation of the Geoportal SIG FESBAL–UPM, a Participatory Geographic Information System (PGIS) developed within the Master’s and Doctorate programs in Rural Development Project Planning and Sustainable Management at UPM. The study introduces a model integrated with Project-Based Learning (PBL), the Working With People (WWP) framework, and the CFS-RAI principles to address challenges in responsible food systems. The geoportal designed to be applied at the Food Bank–UPM Chair–FESBAL, acts as an innovative instrument for participation among the different stakeholders enabling the spatialization and analysis of data across social, environmental, and governance dimensions. Functionally, it offers a robust foundation for evidence-based decision-making, systematizes geographic information, and visualizes data via the web, supporting research, training, and community engagement actions. Furthermore, this study details the specific projects and activities developed under the three involved action lines: research, training, and community engagement, identifying strengths and weaknesses in each. The findings affirm that this participatory approach ensures that the proposed solutions are aligned with local needs and priorities, increasing the sustainability and long-term success of the projects implemented through the geoportal. Full article
Show Figures

Figure 1

14 pages, 1515 KB  
Article
Live Fences, Pastures and Riparian Forest: How Agricultural Lands Contribute to Bird Diversity in Northern Costa Rica
by María A. Maglianesi, Corina García Hernández, Anthony Gamboa Valenciano, Carlos Reyes Rugama, L. Felipe Sancho Jiménez and Sonia Beatriz Canavelli
Diversity 2026, 18(2), 63; https://doi.org/10.3390/d18020063 - 26 Jan 2026
Abstract
Agricultural expansion is a major driver of biodiversity loss in tropical regions, yet human-dominated landscapes also hold potential for biodiversity conservation when managed as multifunctional mosaics that retain patches of native vegetation. We assessed how natural and semi-natural habitats contribute to avian diversity [...] Read more.
Agricultural expansion is a major driver of biodiversity loss in tropical regions, yet human-dominated landscapes also hold potential for biodiversity conservation when managed as multifunctional mosaics that retain patches of native vegetation. We assessed how natural and semi-natural habitats contribute to avian diversity in a tropical livestock farm in northern Costa Rica. Over one year, bird assemblages were sampled across three habitat types (live fences, pastures and riparian forest) at La Balsa farm. Using point counts surveyed every month during the year, we recorded 165 bird species, including 20 migratory and 6 species of global conservation concern, and 4 regionally endemic species. Species richness and overall abundance were lower in the riparian forest compared to live fences and pastures, and bird assemblage composition differed markedly among habitats, with the community in the riparian forest exhibiting a distinct assemblage structure. These results indicate that though the riparian forest hosts fewer species and individuals, it harbors a characteristic bird assemblage, highlighting its irreplaceable ecological role in providing habitat to forest-dependent species. Overall, the findings underscore that structurally diverse agricultural mosaics can sustain remarkably high bird diversity when complemented by habitats including native vegetation. Full article
Show Figures

Graphical abstract

21 pages, 2101 KB  
Review
Organic Pig Farming in Europe: Pathways, Performance, and the United Nations Sustainable Development Goals (SDGs) Agenda
by Vasileios G. Papatsiros, Konstantina Kamvysi, Lampros Fotos, Nikolaos Tsekouras, Eleftherios Meletis, Maria Spilioti, Dimitrios Gougoulis, Terpsichori Trachalaki, Anastasia Tsatsa and Georgios I. Papakonstantinou
Animals 2026, 16(3), 384; https://doi.org/10.3390/ani16030384 - 26 Jan 2026
Abstract
Organic pig farming in Europe is endorsed as a promising route to more sustainable livestock production, but its ultimate contribution to the United Nations (UN) Sustainable Development Goals (SDGs) is a contested matter. This study takes a critical perspective on the potential of [...] Read more.
Organic pig farming in Europe is endorsed as a promising route to more sustainable livestock production, but its ultimate contribution to the United Nations (UN) Sustainable Development Goals (SDGs) is a contested matter. This study takes a critical perspective on the potential of organic pig farming to contribute to SDGs that may include SDG 2 (Zero Hunger), SDG 3 (Good Health and Well-being), SDG 8 (Decent Work and Economic Growth), SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action), and SDG 15 (Life on Land). Organic farming systems delivered better animal welfare outcomes and positive benefits for biodiversity, soil health, and rural employment. Continued improvements in sourcing feed, greenhouse gas emissions per unit of product, animal health, and market could improve their contributions to agricultural sustainability. This study concludes that organic pig farming does not represent a guarantee of sustainable livestock production, but it could represent credible sources of sustainable livestock innovation if sufficient policy, practice, cost accounting, and sustainable metrics are organized together to support organic systems. Organic pig farming focused on innovation and policy support can make it a role model for the transition of European livestock sector towards the 2030 Agenda. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

23 pages, 7455 KB  
Article
Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach
by Shuya Li, Huan Shuai, Hong Yu, Yongqian Liu, Yingli Jing, Yizhi Kong, Yaqian Liu and Di Wu
Sustainability 2026, 18(3), 1225; https://doi.org/10.3390/su18031225 - 26 Jan 2026
Abstract
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming [...] Read more.
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming to systematically unravel the spatial patterns, source contributions, and associated health risks of heavy metals in local groundwater. Based on 717 spring and well water samples collected in 2024, we determined pH and seven heavy metals (As, Cd, Pb, Zn, Fe, Mn, and Tl). By integrating hydrogeological zoning, lithology, topography, and river networks, the study area was divided into 11 assessment units, clearly revealing the spatial heterogeneity of heavy metals. The results demonstrate that exceedances of Cd, Pb, and Zn were sporadic and point-source-influenced, whereas As, Fe, Mn, and Tl showed regional exceedance patterns (e.g., Mn exceeded the standard in 9.76% of samples), identifying them as priority control elements. The spatial distribution of heavy metals was governed the synergistic effects of lithology, water–rock interactions, and hydrological structure, showing a distinct “acidic in the northeast, alkaline in the southwest” pH gradient. Combined application of the APCS-MLR and PMF models resolved five principal pollution sources: an acid-reducing-environment-driven release source (contributing 76.1% of Fe and 58.3% of Pb); a geogenic–anthropogenic composite source (contributing 81.0% of Tl and 62.4% of Cd); a human-perturbation-triggered natural Mn release source (contributing 94.8% of Mn); an agricultural-activity-related input source (contributing 60.1% of Zn); and a primary geological source (contributing 89.9% of As). Monte Carlo simulation-based health risk assessment indicated that the average hazard index (HI) and total carcinogenic risk (TCR) for all heavy metals were below acceptable thresholds, suggesting generally manageable risk. However, As was the dominant contributor to both non-carcinogenic and carcinogenic risks, with its carcinogenic risk exceeding the threshold in up to 3.84% of the simulated adult exposures under extreme scenarios. Sensitivity analysis identified exposure duration (ED) as the most influential parameter governing risk outcomes. In conclusion, we recommend implementing spatially differentiated management strategies: prioritizing As control in red-bed and granite–metamorphic zones; enhancing Tl monitoring in the northern and northeastern granite-rich areas, particularly downstream of the Mishui River; and regulating land use in brick-factory-dense riparian zones to mitigate disturbance-induced Mn release—for instance, through the enforcement of setback requirements and targeted groundwater monitoring programs. This study provides a scientific foundation for the sustainable management and safety assurance of groundwater resources in regions with similar geological and anthropogenic settings. Full article
Show Figures

Figure 1

25 pages, 8880 KB  
Article
On the Peculiar Hydrological Behavior of Sediments Trapped Behind the Terraces of Petra, Jordan
by Catreena Hamarneh and Nizar Abu-Jaber
Land 2026, 15(2), 212; https://doi.org/10.3390/land15020212 - 26 Jan 2026
Abstract
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates [...] Read more.
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates the hydrological behavior of terrace-trapped sediments through detailed soil texture, aggregate stability, salinity, and chemical analyses across eight representative sites in and around Petra. Grain-size distributions derived from dry and wet sieving, supplemented by laser diffraction, reveal that dry sieving substantially overestimates sand content due to aggregation of fine particles into unstable peds. Wet analyses demonstrate that many terrace soils are clay- or sandy-clay-dominated yet remain highly permeable. Chemical indicators (nitrate, phosphate, potassium, pH, and salinity) further suggest that terracing enhances downward water movement and salt leaching irrespective of clay content. The nature of the terrace settings and their sediment structure (especially the coarse-grained framework) exerts a stronger control on hydrological functioning than texture alone. The results have direct implications for understanding ancient land management in Petra and for informing sustainable terracing practices in modern arid and semi-arid landscapes, as they are effective both in harvesting water and reducing sediment mobilization. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement (Third Edition))
Show Figures

Figure 1

25 pages, 2127 KB  
Systematic Review
Drone-Based Data Acquisition for Digital Agriculture: A Survey of Wireless Network Applications
by Rogerio Ballestrin, Jean Schmith, Felipe Arnhold, Ivan Müller and Carlos Eduardo Pereira
AgriEngineering 2026, 8(2), 41; https://doi.org/10.3390/agriengineering8020041 - 26 Jan 2026
Abstract
The increasing deployment of Internet of Things (IoT) sensors in precision agriculture has created critical challenges related to wireless communication range, energy efficiency, and data transmission latency, particularly in large-scale rural operations. This systematic survey, conducted following the PRISMA 2020 guidelines, investigates how [...] Read more.
The increasing deployment of Internet of Things (IoT) sensors in precision agriculture has created critical challenges related to wireless communication range, energy efficiency, and data transmission latency, particularly in large-scale rural operations. This systematic survey, conducted following the PRISMA 2020 guidelines, investigates how drones, acting as mobile data collectors and communication gateways, can enhance the performance of agricultural wireless sensor networks (WSNs). The literature search was carried out in the Scopus and IEEE Xplore databases, considering peer-reviewed studies published in English between 2014 and 2025. After duplicate removal, 985 unique articles were screened based on predefined inclusion and exclusion criteria related to relevance, agricultural application, and communication technologies. Following full-text evaluation, 64 studies were included in this review. The survey analyzes how drones can be efficiently integrated with WSNs to improve data collection, addressing technical and operational challenges such as energy constraints, communication range limitations, propagation losses, and data latency. It further examines the primary applications of drone-based data acquisition supporting efficiency and sustainability in agriculture, identifies the most relevant wireless communication protocols and Technologies and discusses their trade-offs and suitability. Finally, it considers how drone-assisted data collection contributes to improved prediction models and real-time analytics in digital agriculture. The findings reveal persistent challenges in energy management, coverage optimization, and system scalability, but also highlight opportunities for hybrid architectures and the use of intelligent reflecting surfaces (IRSs) to improve connectivity. This work provides a structured overview of current research and future directions in drone-assisted agricultural communication systems. Full article
Show Figures

Figure 1

13 pages, 1314 KB  
Article
Comparative Evaluation of Plant-Derived Protein Hydrolysates as Biostimulants for Enhancing Growth and Mitigating Fe-Deficiency Stress in Tomato
by Eleonora Coppa, Francesco Caddeu, Mariateresa Cardarelli, Giuseppe Colla and Stefania Astolfi
Agronomy 2026, 16(3), 304; https://doi.org/10.3390/agronomy16030304 - 25 Jan 2026
Abstract
Sustainable agriculture increasingly relies on biostimulants like protein hydrolysates (PHs) to enhance crop resilience. This study characterized and compared three plant-derived PHs (PH1, PH2, and PH3) from the Malvaceae, Brassicaceae, and Fabaceae families, respectively, under optimal (40 µM Fe3+-EDTA) [...] Read more.
Sustainable agriculture increasingly relies on biostimulants like protein hydrolysates (PHs) to enhance crop resilience. This study characterized and compared three plant-derived PHs (PH1, PH2, and PH3) from the Malvaceae, Brassicaceae, and Fabaceae families, respectively, under optimal (40 µM Fe3+-EDTA) and iron (Fe)-deficient (4 µM Fe3+-EDTA) conditions. Initial assays demonstrated that the PHs possessed significant antioxidant capacity and influenced biological activity: PH2 and PH3 promoted pollen germination, while PH1 exhibited a weaker stimulatory effect. In vivo experiments on tomato plants revealed that PH application effectively modulated root architecture and biomass accumulation. Moreover, PH2 and PH3 significantly mitigated Fe deficiency’s impact, by maintaining biomass and preventing chlorosis. Interestingly, while Fe deficiency typically triggers massive root Fe3+-chelate reductase activity, PH treatments, particularly PH2, significantly down-regulated this response. This suggests that PHs may improve internal Fe use efficiency or facilitate alternative uptake pathways. Overall, these findings establish a link between the intrinsic bioactive properties of PHs and their biostimulant action, highlighting their potential as innovative tools for improving nutrient use efficiency and crop resilience in sustainable farming systems. Full article
(This article belongs to the Special Issue Plant Nutrient Dynamics: From Soil to Harvest and Beyond)
14 pages, 1230 KB  
Article
Optimization of Feed Formulation, Feeding Rate, and Plant-Based Supplements for Efficient Rearing of the Superworm Zophobas morio (Fabricius) Under Tropical Conditions
by Jarongsak Pumnuan, Noratat Prachom and Somsak Kramchote
Insects 2026, 17(2), 138; https://doi.org/10.3390/insects17020138 - 25 Jan 2026
Abstract
Insects are increasingly recognized as sustainable protein sources due to their high feed conversion efficiency and low environmental impact. Among them, the superworm, Zophobas morio (Fabricius) (Coleoptera: Tenebrionidae), has strong potential for large-scale production; however, optimized feeding strategies under tropical conditions remain limited. [...] Read more.
Insects are increasingly recognized as sustainable protein sources due to their high feed conversion efficiency and low environmental impact. Among them, the superworm, Zophobas morio (Fabricius) (Coleoptera: Tenebrionidae), has strong potential for large-scale production; however, optimized feeding strategies under tropical conditions remain limited. This study aimed (1) to determine the optimal feed formulations and feeding rate using wheat bran supplemented with the KMITL Protein Innovation source (a protein feed ingredient developed by the School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, KMITL), and (2) evaluate the influence of plant-based supplementary foods on larval performance. In Phase I, larvae were reared on 13 formulations with three protein levels (CP00, CP21, and CP24) and five feeding rates (A–E). Diets CP21–21 and CP24–21 (21 and 24% CP; wheat bran/protein = 2:1) resulted in the highest survival (83.4–84.1%) and the lowest feed conversion ratios (FCR = 2.29–2.34). Moderate feeding rates (C–D; 925–1110 g feed per tray for 50 days) produced the greatest larval weights (700–760 mg), whereas ad libitum feeding provided no additional benefit. In Phase II, larvae reared on CP21–21 with a restricted rate of 1100 g per tray and supplemented with ten plant-derived foods achieved comparable final weights (716–760 mg), but survival varied significantly among treatments. Mulberry leaf yielded the highest survival (95.3%), followed by banana, watermelon rind, winter melon, and jicama (>90%). Pumpkin and jicama accelerated pupation and adult emergence, showing a female-biased sex ratio among emerged adults (59.2–65.5%), suggesting enhanced developmental rates. These results establish a practical framework for cost-effective and sustainable Z. morio production under tropical conditions, contributing to circular bioeconomy strategies and supporting insect-protein innovation. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

20 pages, 6100 KB  
Article
Application of Sustainable Crab-Waste-Derived Nanochitosan as a Soil Amendment for Tomato Cultivation in Loam Soil
by Divya Shanmugavel and Omar Solorza-Feria
Sustainability 2026, 18(3), 1213; https://doi.org/10.3390/su18031213 - 25 Jan 2026
Abstract
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner [...] Read more.
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner for tomato (Solanum lycopersicum) grown in loam soil without mineral fertilizer. Our results showed that nanochitosan application as a soil supplement by drench improved the soil moisture content (39% vs. 22%), water-holding capacity (84% vs. 70%), total nitrogen (3.8 vs. 1.4 gm N kg−1), and organic carbon content (48.4 vs. 34.1 gm C kg−1) in nanochitosan-amended soil compared with the non-amended soil. This was accompanied by higher biomass, better root/shoot development and synthesis of phytohormones leading to increased shoot length, early flowering, and increased total soluble solids of fruits in nanochitosan-amended soil compared with control, suggesting that nanochitosan can act both as a beneficial soil conditioner and as a plant biostimulant. The results further show that nanochitosan-based formulations may be used not only as fertilizer-saving bio-inputs but also as bio-based nanochitosan plant biostimulants, which can partly substitute mineral fertilizer application for sustainable production of tomato. Moreover, generic fabrication of such nanochitosan from marine biowaste would support the circular-bioeconomy model to further improve sustainability of agroecosystems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

25 pages, 4936 KB  
Article
Drone-Enabled Non-Invasive Ultrasound Method for Rodent Deterrence
by Marija Ratković, Vasilije Kovačević, Matija Marijan, Maksim Kostadinov, Tatjana Miljković and Miloš Bjelić
Drones 2026, 10(2), 84; https://doi.org/10.3390/drones10020084 - 25 Jan 2026
Abstract
Unmanned aerial vehicles open new possibilities for developing technologies that support more sustainable and efficient agriculture. This paper presents a non-invasive method for repelling rodents from crop fields using ultrasound. The proposed system is implemented as a spherical-cap ultrasound loudspeaker array consisting of [...] Read more.
Unmanned aerial vehicles open new possibilities for developing technologies that support more sustainable and efficient agriculture. This paper presents a non-invasive method for repelling rodents from crop fields using ultrasound. The proposed system is implemented as a spherical-cap ultrasound loudspeaker array consisting of eight transducers, mounted on a drone that overflies the field while emitting sound in the 20–70 kHz range. The hardware design includes both the loudspeaker array and a custom printed circuit board hosting power amplifiers and a signal generator tailored to drive multiple ultrasonic transducers. In parallel, a genetic algorithm is used to compute flight paths that maximize coverage and increase the probability of driving rodents away from the protected area. As part of the validation phase, artificial intelligence models for rodent detection using a thermal camera are developed to provide quantitative feedback on system performance. The complete prototype is evaluated through a series of experiments conducted both in controlled laboratory conditions and in the field. Field trials highlight which parts of the concept are already effective and identify open challenges that need to be addressed in future work to move from a research prototype toward a deployable product. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

27 pages, 4135 KB  
Article
The Model and Burner Development for Crude Glycerol and Used Vegetable Mixing: Cube Mushroom Steaming Oven
by Anumut Siricharoenpanich, Paramust Juntarakod and Paisarn Naphon
Eng 2026, 7(2), 56; https://doi.org/10.3390/eng7020056 - 25 Jan 2026
Abstract
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable [...] Read more.
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable oil as low-cost alternative energy sources. The experimental investigation assessed boiler thermal efficiency, combustion efficiency, exhaust-gas composition, temperature distribution, steam generation, and combustion-gas dispersion within the furnace. In parallel, analytical modeling of pressure, temperature, and gas-flow behavior was performed to validate the experimental observations. Five fuel compositions were examined, including 100% used vegetable oil, 100% crude glycerol, and blended ratios of 50/50, 25/75, and 10/90 (glycerol/vegetable oil), with all tests conducted in accordance with DIN EN 203-1 standards. The results demonstrate that blending used vegetable oil with glycerol significantly improves flame stability, increases peak combustion temperatures, and suppresses incomplete-combustion byproducts compared with pure glycerol operation. Combustion efficiencies of 90–99% and boiler thermal efficiencies of 72–73% were achieved. Among the tested fuels, the optimal balance between combustion stability, efficiency, and cost was achieved with a 25% glycerol and 75% used vegetable oil mixture. Economic analysis revealed that the proposed mixed-fuel system offers superior viability compared with LPG, reducing annual fuel costs by approximately 50%, shortening steaming time by 2 h per batch, and achieving a payback period of only 3.26 months. These findings confirm the feasibility of the proposed waste-to-energy system for small- and medium-scale agricultural applications. To further enhance sustainability and renewable fuel utilization, future work should focus on improving air–fuel mixing for higher glycerol fractions, scaling the system for larger farms, and extending its application to other agricultural thermal processes. Full article
Back to TopTop