Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = surface and bulk molecular geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5781 KB  
Article
Mechanistic Insights into 5-Fluorouracil Adsorption on Clinoptilolite Surfaces: Optimizing DFT Parameters for Natural Zeolites, Part II
by Lobna Saeed and Michael Fischer
Appl. Sci. 2025, 15(17), 9535; https://doi.org/10.3390/app15179535 - 29 Aug 2025
Viewed by 1132
Abstract
Even though clinoptilolite mineral is the most important natural zeolite for technical applications, the molecular-level insights and detailed knowledge of their true local structures and adsorption behavior are largely lacking. An experimental determination of their surface structures, in particular, could be very challenging [...] Read more.
Even though clinoptilolite mineral is the most important natural zeolite for technical applications, the molecular-level insights and detailed knowledge of their true local structures and adsorption behavior are largely lacking. An experimental determination of their surface structures, in particular, could be very challenging due to the sensitivity of some facets to temperature and impurities. In this study, we present a robust multiscale modeling framework to investigate the adsorption of 5-fluorouracil, an anticancer drug, on dispersion-corrected density functional theory (DFT-D3)-optimized Na-clinoptilolite surfaces. Using a combination of interface force field and polymer consistent force field-based molecular dynamics with simulated annealing and parallel replica sampling, followed by DFT-D3 optimizations, we explore a wide configurational space of surface–molecule interactions. Our results show that Na-clinoptilolite surfaces support very strong adsorption, with adsorption energies ranging from −430.0 to −174.4 kJ/mol. Surface models with exposed Na cations consistently exhibit stronger binding, in contrast to their known steric hindrance effects in bulk environments. Furthermore, cation-free surfaces displayed relatively weaker interactions, yet configurations exposing the 8-membered rings (8 MR) demonstrated more favorable adsorption than those exposing 10 MR channels due to enhanced hydrogen bonding and spatial and entropic confinement effects. These findings reveal the importance of surface composition, local geometry, and configurational sampling in determining adsorption performance and lay the groundwork for future studies on cation-specific and multicationic clinoptilolite systems. Full article
(This article belongs to the Special Issue Development and Application of Computational Chemistry Methods)
Show Figures

Figure 1

37 pages, 8085 KB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Cited by 5 | Viewed by 2617
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

17 pages, 2533 KB  
Article
Unveiling the Dynamics of NO3 at the Air–Water Interface and in Bulk Water: A Comparative Study with Cl and ClO
by Yongxia Hu, Ying Zhou, Mohammad Hassan Hadizadeh and Fei Xu
Molecules 2025, 30(8), 1724; https://doi.org/10.3390/molecules30081724 - 11 Apr 2025
Cited by 4 | Viewed by 1228
Abstract
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at [...] Read more.
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at the air–water interface and in bulk water environments through ab initio molecular dynamics simulations, directly comparing them with Cl and ClO radicals. Three distinct configurations of NO3 in water droplets were analyzed: surface-parallel, surface-perpendicular, and bulk-phase. The results reveal environment-dependent dynamics, with surface-localized NO3 radicals exhibiting fewer but more flexible hydrogen bonds compared to bulk-solvated radicals. Analysis of radial distribution functions, coordination numbers, and population distributions demonstrates that NO3 radicals maintain distinct interfacial and bulk-phase preferences, with rapid equilibration in both environments. Electronic structure analysis shows significant modulation of spin density and molecular orbital distributions between surface and bulk environments. The comparative analysis with Cl and ClO radicals highlights how the unique planar geometry and delocalized π-system of NO3 influence its hydration patterns and interfacial activity. These results offer fundamental molecular-level insights into NO3 radical behavior at the air–water interface and in aqueous environments, enhancing our understanding of their role in heterogeneous atmospheric processes and nocturnal chemistry. Full article
Show Figures

Figure 1

63 pages, 14545 KB  
Review
Sum-Frequency Generation Spectroscopy at Aqueous Electrochemical Interfaces
by Ba Lich Pham, Alireza Ranjbari, Abderrahmane Tadjeddine, Laetitia Dalstein and Christophe Humbert
Symmetry 2024, 16(12), 1699; https://doi.org/10.3390/sym16121699 - 21 Dec 2024
Cited by 3 | Viewed by 6158
Abstract
The electrochemical interface (EI) is the determining factor in the yield and mechanism of sustainable energy storage and conversion systems due to its intrinsic functionality as a dynamic junction with the symmetry breaking of the molecular arrangement for complex reaction fields of mass [...] Read more.
The electrochemical interface (EI) is the determining factor in the yield and mechanism of sustainable energy storage and conversion systems due to its intrinsic functionality as a dynamic junction with the symmetry breaking of the molecular arrangement for complex reaction fields of mass transport and heterogeneous electron transfer. At the EI, the externally applied potential stimulus drives the formation of the electrical double layer (EDL) and governs the adsorption of interfacial adsorbate species in aqueous electrolyte solutions. Water and its aqueous electrolyte systems are integral and quintessential elements in the technological innovation of various fields such as environmental sciences, electrocatalysis, photocatalysis, and biochemistry. Although deciphering the structure and orientation of water molecules at the electrode–electrolyte interface in a quantitative analysis is of utmost importance, assessing chemical phenomena at the buried EI was rather challenging due to the intricacy of selecting interface-specific methodologies. Based on the non-centrosymmetry of the interfaces’ electronic properties, sum-frequency generation (SFG) spectroscopy has been manifested to be specifically well suited for probing the EI with detailed and comprehensive characteristics of adsorbates’ chemical structures and electrochemical events. In this review, we holistically engage in a methodical and scrupulous assessment of the fundamental EDL models and navigate towards the connection of the renowned Stark effect and potential dependence of SFG spectra at heterogeneous electrode–electrolyte interfaces. We dissect the development, advantages, and available geometrical configurations of in situ SFG spectroscopy in harnessing the EI. A broad spectrum of applications in unraveling the water orientations and rationalizing the convoluted mechanism of fuel-generated electrocatalytic reactions with particular encumbrances and potential resolutions is underscored by leveraging SFG spectroscopy. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

16 pages, 7911 KB  
Article
First-Principles Density Functional Theory Characterisation of the Adsorption Complexes of H3AsO3 on Cobalt Ferrite (Fe2CoO4) Surfaces
by Eloise C. Lewis and Nelson Y. Dzade
Minerals 2021, 11(2), 195; https://doi.org/10.3390/min11020195 - 12 Feb 2021
Cited by 6 | Viewed by 4100
Abstract
The mobility of arsenic in aqueous systems can be controlled by its adsorption onto the surfaces of iron oxide minerals such as cobalt ferrite (Fe2CoO4). In this work, the adsorption energies, geometries, and vibrational properties of the most common [...] Read more.
The mobility of arsenic in aqueous systems can be controlled by its adsorption onto the surfaces of iron oxide minerals such as cobalt ferrite (Fe2CoO4). In this work, the adsorption energies, geometries, and vibrational properties of the most common form of As(III), arsenous acid (H3AsO3), onto the low-index (001), (110), and (111) surfaces of Fe2CoO4 have been investigated under dry and aqueous conditions using periodic density functional theory (DFT) calculations. The dry and hydroxylated surfaces of Fe2CoO4 steadily followed an order of increasing surface energy, and thus decreasing stability, of (001) < (111) < (110). Consequently, the favourability of H3AsO3 adsorption increased in the same order, favouring the least stable (110) surface. However, by analysis of the equilibrium crystal morphologies, this surface is unlikely to occur naturally. The surfaces were demonstrated to be further stabilised by the introduction of H2O/OH species, which coordinate the surface cations, providing a closer match to the bulk coordination of the surface species. The adsorption complexes of H3AsO3 on the hydroxylated Fe2CoO4 surfaces with the inclusion of explicit solvation molecules are found to be generally more stable than on the dry surfaces, demonstrating the importance of hydrogen-bonded interactions. Inner-sphere complexes involving bonds between the surface cations and molecular O atoms were strongly favoured over outer-sphere complexes. On the dry surfaces, deprotonated bidentate binuclear configurations were most thermodynamically favoured, whereas monodentate mononuclear configurations were typically more prevalent on the hydroxylated surfaces. Vibrational frequencies were analysed to ascertain the stabilities of the different adsorption complexes and to assign the As-O and O-H stretching modes of the adsorbed arsenic species. Our results highlight the importance of cobalt as a potential adsorbent for arsenic contaminated water treatment. Full article
(This article belongs to the Special Issue First Principles Calculations of Minerals and Related Materials)
Show Figures

Graphical abstract

14 pages, 3724 KB  
Article
Effect of Pore Connectivity on the Behavior of Fluids Confined in Sub-Nanometer Pores: Ethane and CO2 Confined in ZSM-22
by Mohammed Musthafa Kummali, David Cole and Siddharth Gautam
Membranes 2021, 11(2), 113; https://doi.org/10.3390/membranes11020113 - 5 Feb 2021
Cited by 11 | Viewed by 5554
Abstract
The behavior of fluids under nano-confinement varies from that in bulk due to an interplay of several factors including pore connectivity. In this work, we use molecular dynamics simulations to study the behavior of two fluids—ethane and CO2 confined in ZSM-22, a [...] Read more.
The behavior of fluids under nano-confinement varies from that in bulk due to an interplay of several factors including pore connectivity. In this work, we use molecular dynamics simulations to study the behavior of two fluids—ethane and CO2 confined in ZSM-22, a zeolite with channel-like pores of diameter 0.55 nm isolated from each other. By comparing the behavior of the two fluids in ZSM-22 with that reported earlier in ZSM-5, a zeolite with pores of similar shape and size connected to each other via sinusoidal pores running perpendicular to them, we reveal the important role of pore connectivity. Further, by artificially imposing pore connectivity in ZSM-22 via inserting a 2-dimensional slab-like inter-crystalline space of thickness 0.5 nm, we also studied the effect of the dimensionality and geometry of pore connectivity. While the translational motion of both ethane and CO2 in ZSM-22 is suppressed as a result of connecting the pores by perpendicular quasi-one-dimensional pores of similar dimensions, the effect of connecting the pores by inserting the inter-crystalline space is different on the translational motion of the two fluids. For ethane, pores connected via inter-crystalline space facilitate translational motion but suppress rotational motion, whereas in the case of CO2, both types of motion are suppressed by pore connection due to the strong interaction of CO2 with the surface of the substrate. Full article
(This article belongs to the Special Issue Zeolite Membrane: From Microstructure to Separation Performance)
Show Figures

Graphical abstract

33 pages, 99480 KB  
Article
Time Dependent Lyotropic Chromonic Textures in Microfluidic Confinements
by Anshul Sharma, Irvine Lian Hao Ong and Anupam Sengupta
Crystals 2021, 11(1), 35; https://doi.org/10.3390/cryst11010035 - 30 Dec 2020
Cited by 16 | Viewed by 5176
Abstract
Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to [...] Read more.
Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to highly sensitive concentration and temperature dependent properties. Yet, microscale insights into confined LCLCs, specifically in the context of confinement geometry and surface properties, are lacking. Here, we report the emergence of time dependent textures in static disodium cromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use a combination of soft lithography, surface characterization, and polarized optical imaging to generate and analyze the confinement-induced LCLC textures and demonstrate that over time, herringbone and spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition, propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinement geometry, anchoring conditions, and the initial DSCG concentration, we can systematically tune the temporal dynamics of the N- to M-phase transition and textural behavior of the confined LCLC. Overall, the time taken to change from nematic to the characteristic M-phase textures decreased as the confinement aspect ratio (width/depth) increased. For a given aspect ratio, the transition to the M-phase was generally faster in degenerate planar confinements, relative to the transition in homeotropic confinements. Since the static molecular states register the initial conditions for LC flows, the time dependent textures reported here suggest that the surface and confinement effects—even under static conditions—could be central in understanding the flow behavior of LCLCs and the associated transport properties of this versatile material. Full article
(This article belongs to the Special Issue Early Career Stars of the Decade)
Show Figures

Figure 1

11 pages, 3287 KB  
Article
Preparation and Study of Sulfonated Co-Polynaphthoyleneimide Proton-Exchange Membrane for a H2/Air Fuel Cell
by Ulyana M. Zavorotnaya, Igor I. Ponomarev, Yulia A. Volkova, Alexander D. Modestov, Vladimir N. Andreev, Alexei F. Privalov, Michael Vogel and Vitaly V. Sinitsyn
Materials 2020, 13(22), 5297; https://doi.org/10.3390/ma13225297 - 23 Nov 2020
Cited by 9 | Viewed by 3221
Abstract
The sulfonated polynaphthoyleneimide polymer (co-PNIS70/30) was prepared by copolymerization of 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODAS) and 4,4’-methylenebisanthranilic acid (MDAC) with ODAS/MDAC molar ratio 0.7/0.3. High molecular weight co-PNIS70/30 polymers were synthesized either in phenol or in DMSO by catalytic polyheterocyclization in the presence [...] Read more.
The sulfonated polynaphthoyleneimide polymer (co-PNIS70/30) was prepared by copolymerization of 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODAS) and 4,4’-methylenebisanthranilic acid (MDAC) with ODAS/MDAC molar ratio 0.7/0.3. High molecular weight co-PNIS70/30 polymers were synthesized either in phenol or in DMSO by catalytic polyheterocyclization in the presence of benzoic acid and triethylamine. The titration reveals the ion-exchange capacity of the polymer equal to 2.13 meq/g. The membrane films were prepared by casting polymer solution. Conductivities of the polymer films were determined using both in- and through-plane geometries and reached ~96 and ~60 mS/cm, respectively. The anisotropy of the conductivity is ascribed to high hydration of the surface layer compared to the bulk. SFG NMR diffusometry shows that, in the temperature range from 213 to 353 K, the 1H self-diffusion coefficient of the co-PNIS70/30 membrane is about one third of the diffusion coefficient of Nafion® at the same humidity. However, temperature dependences of proton conductivities of Nafion® and of co-PNIS70/30 membranes are nearly identical. Membrane–electrode assemblies (MEAs) based on co-PNIS70/30 were fabricated by different procedures. The optimal MEAs with co-PNIS70/30 membranes are characterized by maximum output power of ~370 mW/cm2 at 80 °C. It allows considering sulfonated co-PNIS70/30 polynaphthoyleneimides membrane attractive for practical applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 9462 KB  
Article
Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes
by Pablo F. Garrido, Martín Calvelo, Rebeca Garcia-Fandiño and Ángel Piñeiro
Biomolecules 2020, 10(3), 431; https://doi.org/10.3390/biom10030431 - 10 Mar 2020
Cited by 17 | Viewed by 5457
Abstract
The basket-like geometry of cyclodextrins (CDs), with a cavity able to host hydrophobic groups, makes these molecules well suited for a large number of fundamental and industrial applications. Most of the established CD-based applications rely on trial and error studies, often ignoring key [...] Read more.
The basket-like geometry of cyclodextrins (CDs), with a cavity able to host hydrophobic groups, makes these molecules well suited for a large number of fundamental and industrial applications. Most of the established CD-based applications rely on trial and error studies, often ignoring key information at the atomic level that could be employed to design new products and to optimize their use. Computational simulations are well suited to fill this gap, especially in the case of CD systems due to their low number of degrees of freedom compared with typical macromolecular systems. Thus, the design and validation of solid and efficient methods to simulate and analyze CD-based systems is key to contribute to this field. The behavior of supramolecular complexes critically depends on the media where they are embedded, so the detailed characterization of the solvent is required to fully understand these systems. In the present work, we use the inclusion complex formed by two α-CDs and one sodium dodecyl sulfate molecule to test eight different parameterizations of the GROMOS and AMBER force fields, including several methods aimed to increase the conformational sampling in computational molecular dynamics simulation trajectories. The system proved to be extremely sensitive to the employed force field, as well as to the presence of a water/air interface. In agreement with previous experiments and in contrast to the results obtained with AMBER, the analysis of the simulations using GROMOS showed a quick adsorption of the complex to the interface as well as an extremely exotic behavior of the water molecules surrounding the structure both in the bulk aqueous solution and at the water surface. The chirality of the CD molecule seems to play an important role in this behavior. All together, these results are expected to be useful to better understand the behavior of CD-based supramolecular complexes such as adsorption or aggregation driving forces, as well as to introduce new methods able to speed up general MD simulations. Full article
(This article belongs to the Special Issue Perspectives of Cyclodextrins)
Show Figures

Figure 1

21 pages, 4314 KB  
Review
Geometric Effect for Biological Reactors and Biological Fluids
by Kazusa Beppu, Ziane Izri, Yusuke T. Maeda and Ryota Sakamoto
Bioengineering 2018, 5(4), 110; https://doi.org/10.3390/bioengineering5040110 - 13 Dec 2018
Cited by 3 | Viewed by 7425
Abstract
As expressed “God made the bulk; the surface was invented by the devil” by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional [...] Read more.
As expressed “God made the bulk; the surface was invented by the devil” by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects. Full article
(This article belongs to the Special Issue Frontiers of Microfluidics in Biology)
Show Figures

Figure 1

15 pages, 3463 KB  
Article
Edge Structure of Montmorillonite from Atomistic Simulations
by Aric G. Newton, Kideok D. Kwon and Dae-Kyo Cheong
Minerals 2016, 6(2), 25; https://doi.org/10.3390/min6020025 - 25 Mar 2016
Cited by 36 | Viewed by 9645
Abstract
Classical molecular dynamics (MD) simulations have been performed to investigate the effects of substitutions in the octahedral sheet (Mg for Al) and layer charge on an atomistic model of the montmorillonite edge. The edge models considered substitutions in both the solvent accessible and [...] Read more.
Classical molecular dynamics (MD) simulations have been performed to investigate the effects of substitutions in the octahedral sheet (Mg for Al) and layer charge on an atomistic model of the montmorillonite edge. The edge models considered substitutions in both the solvent accessible and inaccessible octahedral positions of the edge bond chain for a representative edge surface. The MD simulations based on CLAYFF, a fully-flexible forcefield widely used in the MD simulations of bulk clay minerals, predicted Mg–O bond distances at the edge and in bulk that agreed with those of the density functional theory (DFT) geometry optimizations and available experimental data. The DFT results for the edge surfaces indicated that substitutions in the solvent inaccessible positions of the edge bond chain are energetically favorable and an increase in layer charge and local substitution density coincided with the occurrence of five-coordinate, square pyramidal Mg and Al edge structures. Both computational methods predicted these square pyramidal structures, which are stabilized by water bridging H-bonds between the unsaturated bridging oxygen [(Al or Mg)–O–Si] and other surface O atoms. The MD simulations predict that the presence of Mg substitutions in the edge bond chain results in increased disorder of the edge Al polyhedra relative to the unsubstituted edge. In addition to the square pyramidal Al, these disordered structures include trigonal bipyramidal and tetrahedral Al at the edge and inverted Si tetrahedra. These simulation results represent the first test of the fully-flexible CLAYFF forcefield for classical MD simulations of the Na-monmorillonite edge and demonstrate the potential of combined classical MD simulations and DFT geometry-optimizations to elucidate the edge structure of 2:1 phyllosilicate minerals. Full article
(This article belongs to the Special Issue Mineral Surface Science and Nanogeoscience)
Show Figures

Graphical abstract

26 pages, 1113 KB  
Review
Nanotribology of Symmetric and Asymmetric Liquid Lubricants
by Shinji Yamada
Symmetry 2010, 2(1), 320-345; https://doi.org/10.3390/sym2010320 - 15 Mar 2010
Cited by 10 | Viewed by 6733
Abstract
When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very [...] Read more.
When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape) of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale. Full article
(This article belongs to the Special Issue Feature Papers: Symmetry Concepts and Applications)
Show Figures

Graphical abstract

Back to TopTop