Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = supported lipid bilayer (SLB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8654 KiB  
Article
Formation of a Neuronal Membrane Model: A Quartz Crystal Microbalance with Dissipation Monitoring Study
by Elaheh Kamaloo, Terri A. Camesano and Ramanathan Nagarajan
Biomolecules 2025, 15(3), 362; https://doi.org/10.3390/biom15030362 - 2 Mar 2025
Viewed by 913
Abstract
Supported lipid bilayers (SLBs) that model neuronal membranes are needed to explore the role of membrane lipids in the misfolding and aggregation of amyloid proteins associated with neurodegenerative diseases, including Parkinson’s and Alzheimer’s disease. The neuronal membranes include not only phospholipids, but also [...] Read more.
Supported lipid bilayers (SLBs) that model neuronal membranes are needed to explore the role of membrane lipids in the misfolding and aggregation of amyloid proteins associated with neurodegenerative diseases, including Parkinson’s and Alzheimer’s disease. The neuronal membranes include not only phospholipids, but also significant amounts of cholesterol, sphingomyelin, and gangliosides, which are critical to its biological function. In this study, we explored the conditions for the formation of an SLB, for the five-component lipid mixture composed of zwitterionic 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic 1,2-dioleoyl- sn-glycero-3-phospho-L-serine (DOPS), nonionic cholesterol (Chol), zwitterionic sphingomyelin (SM), and anionic ganglioside (GM), using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, by varying experimental parameters such as pH, buffer type, temperature, vesicle size, and osmotic stress. SLB formation from this multicomponent lipid system was found challenging because the vesicles adsorbed intact on the quartz crystal and failed to rupture. For most of the variables tested, other than osmotic stress, we found no or only partial vesicle rupture leading to either a supported layer of vesicles or a partial SLB that included unruptured vesicles. When osmotic stress was applied to the vesicles already adsorbed on the surface, by having a different salt concentration in the rinse buffer that follows vesicle flow compared to that of the dilution buffer during vesicle flow and adsorption, vesicle rupture increased, but it remained incomplete. In contrast, when osmotic stress was applied during vesicle flow and adsorption on the surface, by having different salt concentrations in the dilution buffer in which vesicles flowed compared to the hydration buffer in which vesicles were prepared, complete vesicle rupture and successful formation of a rigid SLB was demonstrated. The robustness of this approach to form SLBs by applying osmotic stress during vesicle adsorption was found to be independent of the number of lipid components, as shown by SLB formation from the 1-, 2-, 3-, 4-, and 5-component lipid systems. Full article
Show Figures

Figure 1

17 pages, 3637 KiB  
Article
Mobile and Immobile Obstacles in Supported Lipid Bilayer Systems and Their Effect on Lipid Mobility
by Luisa Coen, Daniel Alexander Kuckla, Andreas Neusch and Cornelia Monzel
Colloids Interfaces 2024, 8(5), 54; https://doi.org/10.3390/colloids8050054 - 24 Sep 2024
Cited by 2 | Viewed by 2395
Abstract
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and [...] Read more.
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and membrane coupled proteins to study the influence of lipid–lipid and lipid–protein interactions on membrane mobility. To characterize the diffusion of lipids or proteins, the continuous photobleaching technique is used. Either Neutravidin coupled to DOPE-cap-Biotin lipids or GFP coupled to DOGS-NTA lipids is studied at 0.005–0.5 mol% concentration of the linker lipid. Neutravidin creates mobile obstacles in the membrane, while GFP coupling results in immobile obstacles. By actin filament coupling to Neutravidin-lipid complexes, obstacles are crosslinked, resulting in lipid mobility reduction along with the appearance of a membrane texture. Theoretical considerations accurately describe lipid diffusion changes at high obstacle concentration as a function of obstacle size and viscous effects. The mobility of membrane lipids depends on the concentration of protein-binding lipids and on the concentration and charge of the coupled protein. Next to diffusion and friction coefficients, we determine the effective obstacle size as well as a charge-dependent effect that dominates the decrease in lipid mobility. Full article
Show Figures

Graphical abstract

15 pages, 5252 KiB  
Article
Assessing the Quality of Solvent-Assisted Lipid Bilayers Formed at Different Phases and Aqueous Buffer Media: A QCM-D Study
by Marta Lavrič, Laure Bar, Martin E. Villanueva, Patricia Losada-Pérez, Aleš Iglič, Nikola Novak and George Cordoyiannis
Sensors 2024, 24(18), 6093; https://doi.org/10.3390/s24186093 - 20 Sep 2024
Cited by 1 | Viewed by 1652
Abstract
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence [...] Read more.
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence of several parameters on the quality of SLBs formed on Au- and SiO2-coated sensors. The influence of the aqueous medium (i.e., buffer type) and the adsorption temperature, above and below the lipid melting point, is neatly explored for SLBs of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine formed by a solvent exchange. Below the lipid melting temperature, quality variations are observed upon the formation on Au and SiO2 surfaces, with the SLBs being more homogeneous for the latter. We further investigate how the buffer affects the detection of lipid melting in SLBs, a transition that necessitates high-sensitivity and time-consuming surface-sensitive techniques to be detected. Full article
Show Figures

Figure 1

18 pages, 2713 KiB  
Article
Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles
by Jake McDonough, Trevor A. Paratore, Hannah M. Ketelhohn, Bella C. DeCilio, Alonzo H. Ross and Arne Gericke
Membranes 2024, 14(9), 181; https://doi.org/10.3390/membranes14090181 - 23 Aug 2024
Cited by 2 | Viewed by 1966
Abstract
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the [...] Read more.
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the fabrication of large or giant unilamellar vesicles (GUVs) with an asymmetric lipid composition. Investigating the physicochemical properties of PS in such asymmetric lipid bilayers and studying its interactions with proteins necessitates the reliable fabrication of asymmetric GUVs (aGUVs) with a high degree of asymmetry that exhibit PS in the outer leaflet so that the interaction with peptides and proteins can be studied. Despite progress, achieving aGUVs with well-defined PS asymmetry remains challenging. Recently, a Ca2+-initiated hemifusion method has been introduced, utilizing the fusion of symmetric GUVs (sGUVs) with a supported lipid bilayer (SLB) for the fabrication of aGUVs. We extend this approach to create aGUVs with PS in the outer bilayer leaflet. Comparing the degree of asymmetry between aGUVs obtained via Ca2+ or Mg2+ initiated hemifusion of a phosphatidylcholine (PC) sGUVwith a PC/PS-supported lipid bilayer, we observe for both bivalent cations a significant number of aGUVs with near-complete asymmetry. The degree of asymmetry distribution is narrower for physiological salt conditions than at lower ionic strengths. While Ca2+ clusters PS in the SLB, macroscopic domain formation is absent in the presence of Mg2+. However, the clustering of PS upon the addition of Ca2+ is apparently too slow to have a negative effect on the quality of the obtained aGUVs. We introduce a data filtering method to select aGUVs that are best suited for further investigation. Full article
(This article belongs to the Special Issue Advances in Symmetric and Asymmetric Lipid Membranes)
Show Figures

Figure 1

14 pages, 2337 KiB  
Article
Development of an Aptamer-Based QCM-D Biosensor for the Detection of Thrombin Using Supported Lipid Bilayers as Surface Functionalization
by Anne Görner, Leyla Franz, Tuba Çanak-Ipek, Meltem Avci-Adali and Anna-Kristina Marel
Biosensors 2024, 14(6), 270; https://doi.org/10.3390/bios14060270 - 25 May 2024
Viewed by 2248
Abstract
Biosensors play an important role in numerous research fields. Quartz crystal microbalances with dissipation monitoring (QCM-Ds) are sensitive devices, and binding events can be observed in real-time. In combination with aptamers, they have great potential for selective and label-free detection of various targets. [...] Read more.
Biosensors play an important role in numerous research fields. Quartz crystal microbalances with dissipation monitoring (QCM-Ds) are sensitive devices, and binding events can be observed in real-time. In combination with aptamers, they have great potential for selective and label-free detection of various targets. In this study, an alternative surface functionalization for a QCM-D-based aptasensor was developed, which mimics an artificial cell membrane and thus creates a physiologically close environment for the binding of the target to the sensor. Vesicle spreading was used to form a supported lipid bilayer (SLB) of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphethanolamine-N-(cap biotinyl) (biotin-PE). The SLB was then coated with streptavidin followed by applying a biotinylated aptamer against thrombin. SLB formation was investigated in terms of temperature and composition. Temperatures of 25 °C and below led to incomplete SLB formation, whereas a full bilayer was built at higher temperatures. We observed only a small influence of the content of biotinylated lipids in the mixture on the further binding of streptavidin. The functionalization of the sensor surface with the thrombin aptamer and the subsequent thrombin binding were investigated at different concentrations. The sensor could be reconstituted by incubation with a 5 M urea solution, which resulted in the release of the thrombin from the sensor surface. Thereafter, it was possible to rebind thrombin. Thrombin in spiked samples of human serum was successfully detected. The developed system can be easily applied to other target analytes using the desired aptamers. Full article
Show Figures

Figure 1

11 pages, 2816 KiB  
Article
Assembly of Cell-Free Synthesized Ion Channel Molecules in Artificial Lipid Bilayer Observed by Atomic Force Microscopy
by Melvin Wei Shern Goh, Yuzuru Tozawa and Ryugo Tero
Membranes 2023, 13(11), 854; https://doi.org/10.3390/membranes13110854 - 25 Oct 2023
Cited by 1 | Viewed by 2604
Abstract
Artificial lipid bilayer systems, such as vesicles, black membranes, and supported lipid bilayers (SLBs), are valuable platforms for studying ion channels at the molecular level. The reconstitution of the ion channels in an active form is a crucial process in studies using artificial [...] Read more.
Artificial lipid bilayer systems, such as vesicles, black membranes, and supported lipid bilayers (SLBs), are valuable platforms for studying ion channels at the molecular level. The reconstitution of the ion channels in an active form is a crucial process in studies using artificial lipid bilayer systems. In this study, we investigated the assembly of the human ether-a-go-go-related gene (hERG) channel prepared in a cell-free synthesis system. AFM topographies revealed the presence of protrusions with a uniform size in the entire SLB that was prepared with the proteoliposomes (PLs) incorporating the cell-free-synthesized hERG channel. We attributed the protrusions to hERG channel monomers, taking into consideration the AFM tip size, and identified assembled structures of the monomer that exhibited dimeric, trimeric, and tetrameric-like arrangements. We observed molecular images of the functional hERG channel reconstituted in a lipid bilayer membrane using AFM and quantitatively evaluated the association state of the cell-free synthesized hERG channel. Full article
(This article belongs to the Collection Feature Papers in Biological Membrane Composition and Structures)
Show Figures

Figure 1

12 pages, 3097 KiB  
Article
Using the Water Absorption Ability of Dried Hydrogels to Form Hydrogel-Supported Lipid Bilayers
by Che-Lun Chin, Lu-Jan Huang, Zheng-Xian Lu, Wei-Chun Weng and Ling Chao
Gels 2023, 9(9), 751; https://doi.org/10.3390/gels9090751 - 15 Sep 2023
Viewed by 2710
Abstract
The formation of supported lipid bilayers (SLBs) on hydrogels can act as a biocompatible anti-fouling interface. However, generating continuous and mobile SLBs on materials other than conventional glass or mica remains a significant challenge. The interaction between lipid membrane vesicles and a typical [...] Read more.
The formation of supported lipid bilayers (SLBs) on hydrogels can act as a biocompatible anti-fouling interface. However, generating continuous and mobile SLBs on materials other than conventional glass or mica remains a significant challenge. The interaction between lipid membrane vesicles and a typical hydrogel is usually insufficient to induce membrane vesicle rupture and form a planar lipid membrane. In this study, we demonstrate that the water absorption ability of a dried polyacrylamide (PAAm) hydrogel could serve as a driving force to facilitate the formation of the hydrogel–SLBs. The absorption driving force vanishes after the hydrogels are fully hydrated, leaving no extra interaction hindering lipid lateral mobility in the formed SLBs. Our fluorescence recovery after photobleaching (FRAP) results show that SLBs only form on hydrogels with adequate absorption abilities. Moreover, we discovered that exposure to oxygen during drying could lead to the formation of an oxidized crust on the PAAm hydrogel surface, impeding SLB formation. Therefore, minimizing oxygen exposure during drying is crucial to achieving high-quality hydrogel surfaces for SLB formation. This water absorption method enables the straightforward fabrication of hydrogel–SLBs without the need for additional substrates or charges, thereby expanding their potential applications. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

16 pages, 8098 KiB  
Article
Lipid Membrane Remodeling by the Micellar Aggregation of Long-Chain Unsaturated Fatty Acids for Sustainable Antimicrobial Strategies
by Sungmin Shin, Hyunhyuk Tae, Soohyun Park and Nam-Joon Cho
Int. J. Mol. Sci. 2023, 24(11), 9639; https://doi.org/10.3390/ijms24119639 - 1 Jun 2023
Cited by 6 | Viewed by 2841
Abstract
Antimicrobial fatty acids derived from natural sources and renewable feedstocks are promising surface-active substances with a wide range of applications. Their ability to target bacterial membrane in multiple mechanisms offers a promising antimicrobial approach for combating bacterial infections and preventing the development of [...] Read more.
Antimicrobial fatty acids derived from natural sources and renewable feedstocks are promising surface-active substances with a wide range of applications. Their ability to target bacterial membrane in multiple mechanisms offers a promising antimicrobial approach for combating bacterial infections and preventing the development of drug-resistant strains, and it provides a sustainable strategy that aligns with growing environmental awareness compared to their synthetic counterparts. However, the interaction and destabilization of bacterial cell membranes by these amphiphilic compounds are not yet fully understood. Here, we investigated the concentration-dependent and time-dependent membrane interaction between long-chain unsaturated fatty acids—linolenic acid (LNA, C18:3), linoleic (LLA, C18:2), and oleic acid (OA, C18:1)—and the supported lipid bilayers (SLBs) using quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy. We first determined the critical micelle concentration (CMC) of each compound using a fluorescence spectrophotometer and monitored the membrane interaction in real time following fatty acid treatment, whereby all micellar fatty acids elicited membrane-active behavior primarily above their respective CMC values. Specifically, LNA and LLA, which have higher degrees of unsaturation and CMC values of 160 µM and 60 µM, respectively, caused significant changes in the membrane with net |Δf| shifts of 23.2 ± 0.8 Hz and 21.4 ± 0.6 Hz and ΔD shifts of 5.2 ± 0.5 × 10−6 and 7.4 ± 0.5 × 10−6. On the other hand, OA, with the lowest unsaturation degree and CMC value of 20 µM, produced relatively less membrane change with a net |Δf| shift of 14.6 ± 2.2 Hz and ΔD shift of 8.8 ± 0.2 × 10−6. Both LNA and LLA required higher concentrations than OA to initiate membrane remodeling as their CMC values increased with the degree of unsaturation. Upon incubating with fluorescence-labeled model membranes, the fatty acids induced tubular morphological changes at concentrations above CMC. Taken together, our findings highlight the critical role of self-aggregation properties and the degree of unsaturated bonds in unsaturated long-chain fatty acids upon modulating membrane destabilization, suggesting potential applications in developing sustainable and effective antimicrobial strategies. Full article
(This article belongs to the Special Issue Microbial Lipids: Production, Characterization and Applications)
Show Figures

Figure 1

18 pages, 3966 KiB  
Article
Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study
by Negin Gooran, Sue Woon Tan, Bo Kyeong Yoon and Joshua A. Jackman
Int. J. Mol. Sci. 2023, 24(11), 9283; https://doi.org/10.3390/ijms24119283 - 25 May 2023
Cited by 5 | Viewed by 2938
Abstract
Membrane-disrupting lactylates are an important class of surfactant molecules that are esterified adducts of fatty acid and lactic acid and possess industrially attractive properties, such as high antimicrobial potency and hydrophilicity. Compared with antimicrobial lipids such as free fatty acids and monoglycerides, the [...] Read more.
Membrane-disrupting lactylates are an important class of surfactant molecules that are esterified adducts of fatty acid and lactic acid and possess industrially attractive properties, such as high antimicrobial potency and hydrophilicity. Compared with antimicrobial lipids such as free fatty acids and monoglycerides, the membrane-disruptive properties of lactylates have been scarcely investigated from a biophysical perspective, and addressing this gap is important to build a molecular-level understanding of how lactylates work. Herein, using the quartz crystal microbalance–dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques, we investigated the real-time, membrane-disruptive interactions between sodium lauroyl lactylate (SLL)—a promising lactylate with a 12-carbon-long, saturated hydrocarbon chain—and supported lipid bilayer (SLB) and tethered bilayer lipid membrane (tBLM) platforms. For comparison, hydrolytic products of SLL that may be generated in biological environments, i.e., lauric acid (LA) and lactic acid (LacA), were also tested individually and as a mixture, along with a structurally related surfactant (sodium dodecyl sulfate, SDS). While SLL, LA, and SDS all had equivalent chain properties and critical micelle concentration (CMC) values, our findings reveal that SLL exhibits distinct membrane-disruptive properties that lie in between the rapid, complete solubilizing activity of SDS and the more modest disruptive properties of LA. Interestingly, the hydrolytic products of SLL, i.e., the LA + LacA mixture, induced a greater degree of transient, reversible membrane morphological changes but ultimately less permanent membrane disruption than SLL. These molecular-level insights support that careful tuning of antimicrobial lipid headgroup properties can modulate the spectrum of membrane-disruptive interactions, offering a pathway to design surfactants with tailored biodegradation profiles and reinforcing that SLL has attractive biophysical merits as a membrane-disrupting antimicrobial drug candidate. Full article
(This article belongs to the Special Issue Advances in Molecular Activity of Potential Drugs 3.0)
Show Figures

Figure 1

19 pages, 5084 KiB  
Article
Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models
by Alice Foti, Luana Calì, Salvatore Petralia and Cristina Satriano
Nanomaterials 2023, 13(10), 1624; https://doi.org/10.3390/nano13101624 - 12 May 2023
Cited by 8 | Viewed by 2690
Abstract
Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and [...] Read more.
Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively. Biophysical studies with model cell membranes were carried out by using laser scanning confocal microscopy (LSM) with fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) techniques. To this purpose, artificial cell membranes of supported lipid bilayers (SLBs) made with 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) dye-labeled with 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD, FRET donor) and/or lissamine rhodamine B sulfonyl (Rh, FRET acceptor) were prepared. Proof-of-work in vitro cellular experiments were carried out with prostate cancer cells (PC-3 line) in terms of cytotoxicity, cell migration (wound scratch assay), NP cellular uptake, and cytoskeleton actin perturbation. Full article
(This article belongs to the Special Issue Prospects of Bioinspired and Biomimetic Materials)
Show Figures

Figure 1

21 pages, 5993 KiB  
Article
Bioinspired Nanoplatforms Based on Graphene Oxide and Neurotrophin-Mimicking Peptides
by Luigi Redigolo, Vanessa Sanfilippo, Diego La Mendola, Giuseppe Forte and Cristina Satriano
Membranes 2023, 13(5), 489; https://doi.org/10.3390/membranes13050489 - 30 Apr 2023
Cited by 5 | Viewed by 2754
Abstract
Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano–biointerface between the [...] Read more.
Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano–biointerface between the cell membrane and hybrids made of neurotrophin-mimicking peptides and graphene oxide (GO) assemblies (pep−GO), to exploit their potential in theranostics (i.e., therapy and imaging/diagnostics) for targeting neurodegenerative diseases (ND) as well as angiogenesis. The pep−GO systems were assembled via spontaneous physisorption onto GO nanosheets of the peptide sequences BDNF(1-12), NT3(1-13), and NGF(1-14), mimicking the brain-derived neurotrophic factor (BDNF), the neurotrophin 3 (NT3), and the nerve growth factor (NGF), respectively. The interaction of pep−GO nanoplatforms at the biointerface with artificial cell membranes was scrutinized both in 3D and 2D by utilizing model phospholipids self-assembled as small unilamellar vesicles (SUVs) or planar-supported lipid bilayers (SLBs), respectively. The experimental studies were paralleled via molecular dynamics (MD) computational analyses. Proof-of-work in vitro cellular experiments with undifferentiated neuroblastoma (SH-SY5Y), neuron-like, differentiated neuroblastoma (dSH-SY5Y), and human umbilical vein endothelial cells (HUVECs) were carried out to shed light on the capability of the pep−GO nanoplatforms to stimulate the neurite outgrowth as well as tubulogenesis and cell migration. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanoparticles Interaction with Bio-Membranes)
Show Figures

Figure 1

11 pages, 3891 KiB  
Article
Domain Localization by Graphene Oxide in Supported Lipid Bilayers
by Ryugo Tero, Yoshi Hagiwara and Shun Saito
Int. J. Mol. Sci. 2023, 24(9), 7999; https://doi.org/10.3390/ijms24097999 - 28 Apr 2023
Cited by 4 | Viewed by 2846
Abstract
The gel-phase domains in a binary supported lipid bilayer (SLB) comprising dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) were localized on graphene oxide (GO) deposited on a SiO2/Si substrate. We investigated the distribution of the gel-phase domains and the liquid crystalline (Lα [...] Read more.
The gel-phase domains in a binary supported lipid bilayer (SLB) comprising dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) were localized on graphene oxide (GO) deposited on a SiO2/Si substrate. We investigated the distribution of the gel-phase domains and the liquid crystalline (Lα) phase regions in DOPC+DPPC-SLB on thermally oxidized SiO2/Si substrates with GO flakes to understand the mechanism of the domain localization on GO. Fluorescence microscopy and atomic force microscopy revealed that the gel-phase domains preferably distributed on GO flakes, whereas the fraction of the Lα-phase increased on the bare SiO2 surface which was not covered with the GO flakes. The gel-phase domain was condensed on GO more effectively at the lower cooling rate. We propose that nucleation of the gel-phase domain preferentially occurred on GO, whose surface has amphiphilic property, during the gel-phase domain formation. The domains of the liquid ordered (Lo) phase were also condensed on GO in a ternary bilayer containing cholesterol that was phase-separated to the Lo phase and the liquid disordered phase. Rigid domains segregates on GO during their formation process, leaving fluid components to the surrounding region of GO. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

21 pages, 3841 KiB  
Review
Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains
by Ivan Mardešić, Zvonimir Boban, Witold Karol Subczynski and Marija Raguz
Membranes 2023, 13(3), 320; https://doi.org/10.3390/membranes13030320 - 10 Mar 2023
Cited by 8 | Viewed by 4913
Abstract
Cholesterol (Chol) is an essential component of animal cell membranes and is most abundant in plasma membranes (PMs) where its concentration typically ranges from 10 to 30 mol%. However, in red blood cells and Schwann cells, PMs Chol content is as high as [...] Read more.
Cholesterol (Chol) is an essential component of animal cell membranes and is most abundant in plasma membranes (PMs) where its concentration typically ranges from 10 to 30 mol%. However, in red blood cells and Schwann cells, PMs Chol content is as high as 50 mol%, and in the PMs of the eye lens fiber cells, it can reach up to 66 mol%. Being amphiphilic, Chol molecules are easily incorporated into the lipid bilayer where they affect the membrane lateral organization and transmembrane physical properties. In the aqueous phase, Chol cannot form free bilayers by itself. However, pure Chol bilayer domains (CBDs) can form in lipid bilayer membranes with the Chol content exceeding 50 mol%. The range of Chol concentrations surpassing 50 mol% is less frequent in biological membranes and is consequently less investigated. Nevertheless, it is significant for the normal functioning of the eye lens and understanding how Chol plaques form in atherosclerosis. The most commonly used membrane models are unilamellar and multilamellar vesicles (MLVs) and supported lipid bilayers (SLBs). CBDs have been observed directly using confocal microscopy, X-ray reflectometry and saturation recovery electron paramagnetic resonance (SR EPR). Indirect evidence of CBDs has also been reported by using atomic force microscopy (AFM) and fluorescence recovery after photobleaching (FRAP) experiments. The overall goal of this review is to demonstrate the advantages and limitations of the various membrane models and experimental techniques suitable for the detection and investigation of the lateral organization, function and physical properties of CBDs. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes)
Show Figures

Figure 1

19 pages, 3308 KiB  
Article
Enzymatic Glyco-Modification of Synthetic Membrane Systems
by Dylan Jabeguero, Lina Siukstaite, Chunyue Wang, Anna Mitrovic, Serge Pérez, Olga Makshakova, Ralf P. Richter, Winfried Römer and Christelle Breton
Biomolecules 2023, 13(2), 335; https://doi.org/10.3390/biom13020335 - 9 Feb 2023
Viewed by 2787
Abstract
The present report assesses the capability of a soluble glycosyltransferase to modify glycolipids organized in two synthetic membrane systems that are attractive models to mimic cell membranes: giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs). The objective was to synthesize the Gb3 [...] Read more.
The present report assesses the capability of a soluble glycosyltransferase to modify glycolipids organized in two synthetic membrane systems that are attractive models to mimic cell membranes: giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs). The objective was to synthesize the Gb3 antigen (Galα1,4Galβ1,4Glcβ-Cer), a cancer biomarker, at the surface of these membrane models. A soluble form of LgtC that adds a galactose residue from UDP-Gal to lactose-containing acceptors was selected. Although less efficient than with lactose, the ability of LgtC to utilize lactosyl–ceramide as an acceptor was demonstrated on GUVs and SLBs. The reaction was monitored using the B-subunit of Shiga toxin as Gb3-binding lectin. Quartz crystal microbalance with dissipation analysis showed that transient binding of LgtC at the membrane surface was sufficient for a productive conversion of LacCer to Gb3. Molecular dynamics simulations provided structural elements to help rationalize experimental data. Full article
(This article belongs to the Special Issue Chemistry and Biochemistry of Glycosylation)
Show Figures

Figure 1

15 pages, 5172 KiB  
Article
Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization
by Tun Naw Sut, Hyeonjin Park, Dong Jun Koo, Bo Kyeong Yoon and Joshua A. Jackman
Sensors 2022, 22(14), 5185; https://doi.org/10.3390/s22145185 - 11 Jul 2022
Cited by 14 | Viewed by 5827
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and [...] Read more.
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2022)
Show Figures

Figure 1

Back to TopTop