Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = superior boars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1339 KiB  
Article
Comparative Analysis of Classic Semen Extenders for Frozen–Thawed Boar Semen
by Yuting Kong, Mengqian He, Jun Gao, Jiehuan Xu, Naisheng Lu, Caifeng Wu, Lingwei Sun and Jianjun Dai
Animals 2025, 15(13), 1885; https://doi.org/10.3390/ani15131885 - 26 Jun 2025
Viewed by 461
Abstract
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key [...] Read more.
The physiological functions of mammalian sperm, such as motility, hyperactivation, and capacitation, require substantial energy. This study investigates the effects of two classic cryopreservation extenders—TCG (tris-citrate-glucose) and LEY (lactose-egg yolk)—on the energy metabolism of frozen–thawed boar semen. By comparing the quality indicators, key metabolite levels, and the activities of critical enzymes involved in glycolysis and the tricarboxylic acid cycle, we aim to understand how these different semen extenders influence the spermatozoa vitality of frozen–thawed boar semen. Following thawing, the LEY-cryopreserved sperm demonstrated significantly elevated motility parameters (viability, VCL, VSL, and VAP) and enhanced plasma membrane and acrosomal integrity compared with the TCG group (p < 0.05), though both cryopreserved groups exhibited significantly reduced performance relative to fresh semen controls. Cryopreservation markedly reduced intracellular adenosine triphosphate (ATP), pyruvate, and acetyl coenzyme A (A-CoA) levels (fresh > LEY > TCG; p < 0.05). The LEY-preserved spermatozoa retained higher activities of glycolysis-related enzymes (phosphofructokinase, PFK; pyruvate kinase, PK) compared with the TCG group, which, in turn, showed elevated lactate dehydrogenase (LDH) activity. Critically, TCG-suppressed pyruvate dehydrogenase (PDH) activity (p < 0.05) coincided with diminished A-CoA, indicating impaired mitochondrial oxidative phosphorylation. These results demonstrate LEY’s superior preservation of motility and membrane stability but highlight cryodamage-induced energy metabolism dysregulation, particularly TCG’s disruption of the glycolysis–TCA cycle coordination essential for spermatozoa function. In conclusion, the choice of semen extender has a significant impact on the energy metabolism and overall quality of frozen–thawed semen, highlighting the importance of optimizing cryopreservation protocols for improved spermatozoa viability and functionality. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 2080 KiB  
Article
The Individual Variations in Sperm Quality of High-Fertility Boars Impact the Offspring Production and Early Physiological Functions
by Santa María Toledo-Guardiola, Chiara Luongo, Felipe Martínez-Pastor, Cristina Soriano-Úbeda and Carmen Matás
Vet. Sci. 2025, 12(6), 582; https://doi.org/10.3390/vetsci12060582 - 13 Jun 2025
Viewed by 1153
Abstract
Artificial insemination (AI) is essential in intensive pig production, which significantly depends on semen quality from boars selected for health, genetics, and fertility. While AI aims to improve productivity, larger litters often result in smaller and less resistant piglets. Beyond fertility and genetic [...] Read more.
Artificial insemination (AI) is essential in intensive pig production, which significantly depends on semen quality from boars selected for health, genetics, and fertility. While AI aims to improve productivity, larger litters often result in smaller and less resistant piglets. Beyond fertility and genetic traits, boars also influence offspring health. This study investigated the relationship between sperm parameters of highly fertile boars and both reproductive outcomes and piglet physiological indicators. Multivariate analysis revealed significant paternal effects on blood markers reflecting organ function, including those of the pancreas, liver, and kidneys, as well as on glucose homeostasis, lipid metabolism, oxidative stress, protein and carbohydrate metabolism, muscle contraction, and neural signaling. Notably, sperm velocity was correlated with mitochondrial function, which is crucial for sperm motility, capacitation, DNA integrity, and embryo development—factors likely linked to healthier, more resilient offspring. Boars transmitting superior sperm velocity, erythropoiesis efficiency, and oxygen transport capacities produced piglets with better glucose regulation, growth, and resistance to neonatal hypoglycemia. These findings underscore the broader impact of sperm quality on offspring vitality and suggest that advanced sperm analysis could improve boar selection and enable more effective, health-oriented breeding strategies. Full article
(This article belongs to the Special Issue Sperm Biotechnology in Animals Reproduction—2nd Edition)
Show Figures

Figure 1

15 pages, 2812 KiB  
Article
Statistical Analysis of Reproductive Traits in Jinwu Pig and Identification of Genome-Wide Association Loci
by Wenduo Chen, Ayong Zhao, Jianzhi Pan, Kai Tan, Zhiwei Zhu, Liang Zhang, Fuxian Yu, Renhu Liu, Liepeng Zhong and Jing Huang
Genes 2025, 16(5), 550; https://doi.org/10.3390/genes16050550 - 30 Apr 2025
Viewed by 574
Abstract
Background: The Jinwu pig is a novel breed created by crossbreeding Jinhua and Duroc pigs, displaying superior meat quality, strong adaptability to coarse feed, high production performance, and a rapid growth rate. However, research on its reproductive traits and genomic characteristics has not [...] Read more.
Background: The Jinwu pig is a novel breed created by crossbreeding Jinhua and Duroc pigs, displaying superior meat quality, strong adaptability to coarse feed, high production performance, and a rapid growth rate. However, research on its reproductive traits and genomic characteristics has not been systematically reported. Methods: In this study, we investigated the genetic basis of reproductive traits in Jinwu pigs us-ing a genome-wide association study. We analyzed 2831 breeding records from 516 Jinwu sows to evaluate the effects of fixed factors (farrowing season, parity, and mated boar) on six reproductive traits: the total number of births (TNB), number born alive (NBA), number of healthy offspring produced (NHOP), weak litter size (WLS), number of stillbirths (NS), and number of mummies (NM). Results: A total of 771 genome-wide significant single-nucleotide polymorphisms (SNPs) and ten potential candidate genes associated with pig reproductive traits were identified: VOPP1, PGAM2, TNS3, LRFN5, ORC1, CC2D1B, ZFYYE9, TUT4, DCN, and FEZF1. TT-genotype-carrier individuals of the pleiotropic SNP rs326174997 exhibited significantly higher TNB, NBA, and NHOP trait-related phenotypic values. Conclusions: These findings provide a foundation for the reproductive breeding of Jinwu pigs and offer new insights into molecular genetic breeding in pigs. Full article
(This article belongs to the Special Issue Advances in Pig Genetic and Genomic Breeding)
Show Figures

Figure 1

24 pages, 3112 KiB  
Article
Effect of Seminal Plasma on the Freezability of Boar Sperm
by Kuanfeng Zhu, Yukun Song, Zhi He, Peng Wang, Xuguang Wang and Guoshi Liu
Animals 2024, 14(24), 3656; https://doi.org/10.3390/ani14243656 - 18 Dec 2024
Cited by 1 | Viewed by 1334
Abstract
Background: Seminal plasma is an important component of semen and has a significant effect on sperm function. However, the relationship between seminal plasma and sperm freezing capacity has not been fully studied. Purpose: Exploring metabolites and proteins related to the boar sperm freezing [...] Read more.
Background: Seminal plasma is an important component of semen and has a significant effect on sperm function. However, the relationship between seminal plasma and sperm freezing capacity has not been fully studied. Purpose: Exploring metabolites and proteins related to the boar sperm freezing capacity in seminal plasma, by metabolomic and proteomic approaches, and directly verifying the protective effect of seminal plasma on the cryopreservation of boar sperm using high and low freezability seminal plasma as base freezing extender. Methods: Semen samples were collected from 30 different boars, 11 high and 11 low freezing-resistant boars were selected after freezing 2~4 times, and seminal plasma was selected at the same time. Sperm motility and movement parameters were analyzed using a CASA system. Reproductive hormones (Testosterone, progesterone, estradiol, prolactin, prostaglandin F2α, luteinoid hormone) in seminal plasma were detected by ELISA. Analysis of proteins and metabolites in high and low freezing-resistant seminal plasma by proteomics and metabolomics techniques. Results: The six reproductive hormones tested were not significantly associated with sperm freezing resistance. A total of 13 differentially expressed metabolites (DEMs) and 38 differentially expressed proteins (DEPs) were identified, while a total of 348 metabolites and 1000 proteins were identified. These DEMs were related to energy metabolism, drugs, or environmental pollutants, while the DEPs were mainly involved in the cytoskeletal dynamics and cell adhesion processes. There were 33 metabolites and 70 proteins significantly associated with mean progress motility (PM) at 10 min and 2 h after thawing. The 70 related proteins were associated with cell division and cycle regulation in gene ontology (GO) terms, as well as KEGG pathways, thermogeneration, and pyruvate metabolism. Using highly freezable boar SP as a base freezing extender made no difference from using lowly freezable boar SP, and both were not as good as the commercial control. Conclusion: There were significant differences in seminal plasma with different freezability, but the similarity was much greater than the difference. The protection effect of seminal plasma is not remarkable, and it does not exhibit superior cryoprotective properties compared to commercial semen cryoelongators. Significance: This study provides a deeper understanding of how seminal plasma composition affects sperm freezabilty. It provides potential biomarkers and targets for improving sperm cryopreservation techniques. Full article
(This article belongs to the Special Issue Advances in Animal Fertility Preservation—Second Edition)
Show Figures

Figure 1

18 pages, 3749 KiB  
Article
Crude Garden Cress Seed Oil (Lepidium sativum Linn.) Enhances Post-Thawed Boar Sperm Quality
by Vassakorn Khophloiklang, Panida Chanapiwat and Kampon Kaeoket
Animals 2024, 14(22), 3178; https://doi.org/10.3390/ani14223178 - 6 Nov 2024
Viewed by 1773
Abstract
This study aimed to examine the effects of crude garden cress seed oil (CGCSO) on frozen–thawed boar sperm qualities. Semen ejaculates (n = 12) were collected and further divided into six equal aliquots based on CGCSO concentrations (0, 0.5, 1, 1.5, 2, [...] Read more.
This study aimed to examine the effects of crude garden cress seed oil (CGCSO) on frozen–thawed boar sperm qualities. Semen ejaculates (n = 12) were collected and further divided into six equal aliquots based on CGCSO concentrations (0, 0.5, 1, 1.5, 2, and 2.5% v/v) in the freezing extender. Semen samples were processed and cryopreserved utilizing the traditional liquid nitrogen vapor technique. Subsequently, semen samples were thawed in a thermos with warm water at 50 °C for 12 s and evaluated for sperm morphology using scanning electron microscopy, sperm motility using a CASA, sperm viability, acrosome integrity, mitochondrial function, MDA level, total antioxidant capacity (TAC), glutathione peroxidase (GSH-Px), and catalase (CAT) activity. The results indicated that 1% CGCSO resulted in superior post-thaw sperm characteristics, including enhanced sperm morphology, motility, viability, acrosome integrity, and mitochondrial function. Particularly, the total motile sperm increased by 16.5%, progressive motile sperm increased by 13.0%, viability improved by 15.1%, acrosome integrity increased by 14%, and mitochondrial function improved by 14.1% compared to the control group. CGCSO treatment at 1% and 1.5% exhibited the lowest level of MDA (45.73 ± 11.2 and 45.73 ± 11.3 µmol/L, respectively) compared to the other groups. The CGCSO-supplemented groups showed higher values of TAC, GSH-Px, and CAT than the control group but not significantly. Full article
(This article belongs to the Special Issue Livestock Reproduction: Reproductive Technologies in Animal Science)
Show Figures

Figure 1

17 pages, 722 KiB  
Article
Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm
by Krittika Keeratikunakorn, Panida Chanapiwat, Ratchaneewan Aunpad, Natharin Ngamwongsatit and Kampon Kaeoket
Antibiotics 2024, 13(7), 579; https://doi.org/10.3390/antibiotics13070579 - 22 Jun 2024
Cited by 4 | Viewed by 2147
Abstract
The purpose of this study was to determine the impact of an antimicrobial peptide, BiF2_5K7K, on semen quality and bacterial contamination in boar semen doses used for artificial insemination. A key factor affecting semen quality and farm production is bacterial contamination in semen [...] Read more.
The purpose of this study was to determine the impact of an antimicrobial peptide, BiF2_5K7K, on semen quality and bacterial contamination in boar semen doses used for artificial insemination. A key factor affecting semen quality and farm production is bacterial contamination in semen doses. Using antibiotics in a semen extender seems to be the best solution for minimizing bacterial growth during semen preservation. However, concern regarding antibiotic-resistant microorganisms has grown globally. As a result, antimicrobial peptides have emerged as interesting alternative antimicrobial agents to replace the current antibiotics used in semen extenders. BiF2_5K7K is an antimicrobial peptide that can inhibit Gram-negative and Gram-positive bacteria isolated from boar semen and sow vaginal discharge. In this study, ten fresh boar semen samples were collected and diluted with one of two types of semen extender: with (positive control) or without (negative control) an antibiotic (i.e., gentamicin). The semen extender without an antibiotic contained antimicrobial peptide BiF2_5K7K at different concentrations (15.625, 31.25, 62.5, and 125 µg/mL). The samples were stored at 18 °C until use. Semen quality parameters were assessed on days 0, 1, 3, and 5, and the total bacterial count was also evaluated at 0, 24, 36, 48, and 72 h after storage. A fertility test on a pig farm was also performed via sow insemination with a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. No significant difference was found in terms of semen quality on days 0 or 1. On days 3 and 5, the total motility, progressive motility, and viability remained normal in the 15.625 and 31.25 µg/mL groups. However, the sperm parameters decreased starting on day 3 for the 125 µg/mL group and on day 5 for the 62.5 µg/mL group. For total bacterial count at 0, 24, 36, 48, and 72 h, the lowest bacterial count was found in the positive control group, and the highest bacterial count was found in the negative control group compared with the other groups. Comparing antimicrobial peptide groups from 0 to 48 h, the lowest bacterial count was found in the 125 µg/mL group, and the highest bacterial count was found in the 15.625 µg/mL group. For the fertility test, artificial insemination was conducted by using a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. The results showed a superior pregnancy rate, farrowing rate, and total number of piglets born compared with artificial insemination conducted using a commercial extender plus antibiotic. In conclusion, BiF2_5K7K can inhibit bacterial growth in extended boar semen for 24 h, and thereafter, the bacterial count slightly increases. However, the increase in the number of bacterial counts from days 0 to 3 had no negative effect on sperm quality in the positive control, 15.625, or 31.25 µg/mL groups. This indicates that BiF2_5K7K might be an antimicrobial peptide candidate with potential for use as an alternative antimicrobial agent to replace the conventional antibiotic used in boar semen extenders. Full article
Show Figures

Figure 1

11 pages, 4527 KiB  
Article
Genome-Wide Association Study Reveals Novel Candidate Genes Influencing Semen Traits in Landrace Pigs
by Zhanwei Zhuang, Kebiao Li, Kai Yang, Guangxiong Gao, Zhili Li, Xiaoping Zhu and Yunxiang Zhao
Animals 2024, 14(13), 1839; https://doi.org/10.3390/ani14131839 - 21 Jun 2024
Cited by 3 | Viewed by 1768
Abstract
Artificial insemination plays a crucial role in pig production, particularly in enhancing the genetic potential of elite boars. To accelerate genetic progress for semen traits in pigs, it is vital to understand and identify the underlying genetic markers associated with desirable traits. Herein, [...] Read more.
Artificial insemination plays a crucial role in pig production, particularly in enhancing the genetic potential of elite boars. To accelerate genetic progress for semen traits in pigs, it is vital to understand and identify the underlying genetic markers associated with desirable traits. Herein, we genotyped 1238 Landrace boars with GeneSeek Porcine SNP50 K Bead chip and conducted genome-wide association studies to identify genetic regions and candidate genes associated with 12 semen traits. Our study identified 38 SNPs associated with the analyzed 12 semen traits. Furthermore, we identified several promising candidate genes, including HIBADH, DLG1, MED1, APAF1, MGST3, MTG2, and ZP4. These candidate genes have the potential function to facilitate the breeding of boars with improved semen traits. By further investigating and understanding the roles of these genes, we can develop more effective breeding strategies that contribute to the overall enhancement of pig production. The results of our study provide valuable insights for the pig-breeding industry and support ongoing research efforts to optimize genetic selection for superior semen traits. Full article
(This article belongs to the Special Issue Genetic Improvement in Pigs)
Show Figures

Figure 1

20 pages, 6248 KiB  
Article
Single-Nucleus RNA-Seq Reveals Spermatogonial Stem Cell Developmental Pattern in Shaziling Pigs
by Xiangwei Tang, Chujie Chen, Saina Yan, Anqi Yang, Yanhong Deng, Bin Chen and Jingjing Gu
Biomolecules 2024, 14(6), 607; https://doi.org/10.3390/biom14060607 - 21 May 2024
Cited by 5 | Viewed by 2030
Abstract
Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs [...] Read more.
Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs are strictly regulated by the SSC niche. Therefore, understanding the developmental pattern of SSCs is crucial for spermatogenesis. The Shaziling pig is a medium-sized indigenous pig breed originating from central China. It is renowned for its superior meat quality and early male sexual maturity. The spermatogenic ability of the boars is of great economic importance to the pig industry. To investigate testicular development, particularly the pattern of SSC development in Shaziling pigs, we used single-cell transcriptomics to identify gene expression patterns in 82,027 individual cells from nine Shaziling pig testes at three key postnatal developmental stages. We generated an unbiased cell developmental atlas of Shaziling pig testicular tissues. We elucidated the complex processes involved in the development of SSCs within their niche in the Shaziling pig. Specifically, we identified potential marker genes and cellular signaling pathways that regulate SSC self-renewal and maintenance. Additionally, we proposed potential novel marker genes for SSCs that could be used for SSC isolation and sorting in Shaziling pigs. Furthermore, by immunofluorescence staining of testicular tissues of different developmental ages using marker proteins (UCHL1 and KIT), the developmental pattern of the spermatogonia of Shaziling pigs was intensively studied. Our research enhances the comprehension of the development of SSCs and provides a valuable reference for breeding Shaziling pigs. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

12 pages, 2362 KiB  
Article
Palm Kernel Meal Protein Hydrolysates Enhance Post-Thawed Boar Sperm Quality
by Vassakorn Khophloiklang, Panida Chanapiwat, Ratchaneewan Aunpad and Kampon Kaeoket
Animals 2023, 13(19), 3040; https://doi.org/10.3390/ani13193040 - 27 Sep 2023
Cited by 6 | Viewed by 2156
Abstract
Boar sperm is sensitive to particular conditions during cryopreservation, resulting in an extreme reduction in fertilizing ability due to damage to the sperm membranes. PKMPH contains bioactive peptides that have antioxidant and antimicrobial activities. There is no information on the use of palm-kernel-meal-derived [...] Read more.
Boar sperm is sensitive to particular conditions during cryopreservation, resulting in an extreme reduction in fertilizing ability due to damage to the sperm membranes. PKMPH contains bioactive peptides that have antioxidant and antimicrobial activities. There is no information on the use of palm-kernel-meal-derived bioactive peptides for boar semen cryopreservation. This study aimed to examine the effects of bioactive peptides from PKMPH on post-thawed boar sperm quality. Boar semen ejaculates (n = 17) were collected and divided into six equal aliquots based on PKMPH concentrations (0, 1.25, 2.5, 5, 10, and 15 µg/mL) in a freezing extender. Semen samples were processed and cryopreserved using the liquid nitrogen vapor method. Thereafter, the frozen semen samples were thawed at 50 °C for 12 s and evaluated for sperm motility using a computer-assisted sperm analyzer and for sperm viability, acrosome integrity, mitochondrial function, and lipid peroxidation by measuring the level of malondialdehyde (MDA). The results demonstrate that the supplementation of PKMPH with 2.5 µg/mL afforded superior post-thawed sperm qualities, such as increased total motility, viability, acrosome integrity, and mitochondrial function by 10.7%, 12.3%, 18.3%, and 12.7%, respectively, when compared to the control group. PKMPH at a concentration of 2.5 µg/mL showed the lowest level of MDA (40.6 ± 2.0 µMol/L) compared to the other groups. In conclusion, adding PKMPH peptides at 2.5 µg/mL to the freezing extender reduced the oxidative damage associated with cryopreservation and resulted in higher post-thawed sperm quality. Full article
Show Figures

Figure 1

11 pages, 1428 KiB  
Article
Comparison of Growth Performance and Plasma Metabolomics between Two Sire-Breeds of Pigs in China
by Zhongwei Xie, Mailin Gan, Junhua Du, Gao Du, Yi Luo, Bin Liu, Kangping Zhu, Wenqiang Cheng, Lei Chen, Ye Zhao, Lili Niu, Yan Wang, Jingyong Wang, Li Zhu and Linyuan Shen
Genes 2023, 14(9), 1706; https://doi.org/10.3390/genes14091706 - 27 Aug 2023
Cited by 3 | Viewed by 1969
Abstract
The Yorkshire pigs, renowned for their remarkable growth rate, low feed conversion ratio (FCR), and high meat production, emerge as a novel preference for paternal breeding. In this study, we found that purebred paternal Yorkshire pigs (PY) surpass the purebred Duroc breed in [...] Read more.
The Yorkshire pigs, renowned for their remarkable growth rate, low feed conversion ratio (FCR), and high meat production, emerge as a novel preference for paternal breeding. In this study, we found that purebred paternal Yorkshire pigs (PY) surpass the purebred Duroc breed in terms of growth rate. Specifically, purebred PY attain a weight of 100 kg at an earlier age compared to purebred Duroc (Male, 145.07 vs. 162.91; Female, 145.91 vs. 167.57; p-value < 0.01). Furthermore, different hybrid combinations suggest that offspring involving purebred PY exhibit superior growth performance. Compared with purebred Duroc, the offspring of purebred PY have an earlier age in days (173.23 vs. 183.54; p-value < 0.05) at the same slaughter weight. The changes of plasma metabolites of 60-day-old purebred boars in the two sire-breeds showed that 1335 metabolites in plasma were detected. Compared with Duroc, 28 metabolites were down-regulated and 49 metabolites were up-regulated in PY. Principal component analysis (PCA) discerned notable dissimilarities in plasma metabolites between the two sire-breeds of pigs. The levels of glycerol 3-phosphate choline, cytidine, guanine, and arachidonic acid increased significantly (p-value < 0.05), exerting an impact on their growth and development. According to our results, PY could be a new paternal option as a terminal sire in three-way cross system. Full article
(This article belongs to the Special Issue Advances in Pig Breeding and Genetics)
Show Figures

Figure 1

14 pages, 1170 KiB  
Article
Assessment of the Growth and Reproductive Performance of Cloned Pietrain Boars
by Junsong Shi, Baohua Tan, Lvhua Luo, Zicong Li, Linjun Hong, Jie Yang, Gengyuan Cai, Enqin Zheng, Zhenfang Wu and Ting Gu
Animals 2020, 10(11), 2053; https://doi.org/10.3390/ani10112053 - 6 Nov 2020
Cited by 7 | Viewed by 3343
Abstract
How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the [...] Read more.
How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the potential ways to answer the question, which can be applied to produce clones with genetic resources of superior boar for the production of commercial pigs. For practical application, it is essential to investigate whether the clones and their progeny keep behaving better than the “normal boars”, considering that in vitro culture and transfer manipulation would cause a series of harmful effects to the development of clones. In this study, 59,061 cloned embryos were transferred into 250 recipient sows to produce the clones of superior Pietrain boars. The growth performance of 12 clones and 36 non-clones and the semen quality of 19 clones and 28 non-clones were compared. The reproductive performance of 21 clones and 25 non-clones were also tested. Furthermore, we made a comparison in the growth performance between 466 progeny of the clones and 822 progeny of the non-clones. Our results showed that no significant difference in semen quality and reproductive performance was observed between the clones and the non-clones, although the clones grew slower and exhibited smaller body size than the non-clones. The F1 progeny of the clones showed a greater growth rate than the non-clones. Our results demonstrated through the large animal population showed that SCNT manipulation resulted in a low growth rate and small body size, but the clones could normally produce F1 progeny with excellent growth traits to bring more economic benefits. Therefore, SCNT could be effective in enlarging the merit genetics of the superior boars and increasing the economic benefits in pig reproduction and breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

9 pages, 561 KiB  
Article
Study on Hematological and Biochemical Characters of Cloned Duroc Pigs and Their Progeny
by Ting Gu, Junsong Shi, Lvhua Luo, Zicong Li, Jie Yang, Gengyuan Cai, Enqin Zheng, Linjun Hong and Zhenfang Wu
Animals 2019, 9(11), 912; https://doi.org/10.3390/ani9110912 - 2 Nov 2019
Cited by 12 | Viewed by 3496
Abstract
To increase public understanding in cloned animals produced by somatic cell nuclear transfer technology, our previous study investigated the carcass trait and meat quality of the clones (paper accepted), and this study we further evaluate differences by investigating the blood parameters in cloned [...] Read more.
To increase public understanding in cloned animals produced by somatic cell nuclear transfer technology, our previous study investigated the carcass trait and meat quality of the clones (paper accepted), and this study we further evaluate differences by investigating the blood parameters in cloned pigs and their progeny. We collected blood samples from the clones and conventionally bred non-clones and their progeny, and investigated their hematological and blood biochemical characters. Our results supported the hypothesis that there was no significant difference between clones and non-clones, or their progeny. Taken together, the data demonstrated that the clones or their progeny were similar with their controls in terms of blood parameters, although there were still other kinds of disorders, such as abnormal DNA methylation or histone modifications that needs further investigation. The data in this study agreed that cloning technique could be used to preserve and enlarge the genetics of the superior boars in pig breeding industry, especially in facing of the deadly threat of African Swine fever happened in China. Full article
Show Figures

Figure 1

Back to TopTop