Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm
Abstract
:1. Introduction
2. Results
2.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assay
2.2. Total Bacterial Count
2.3. Sperm Quality Parameter Analysis
2.4. Scanning Electron Microscopy
2.5. Fertility Test on the Pig Farm
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis
4.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Test
4.3. Boar Semen Collection and Preparation
4.4. Total Bacterial Count
4.5. Sperm Parameter Analysis
4.5.1. Sperm Motility
4.5.2. Sperm Viability
4.5.3. Sperm Acrosomal Integrity
4.5.4. Sperm with High Mitochondrial Membrane Potential (MMP)
4.6. Scanning Electron Microscopy (SEM)
4.7. Fertility Test on the Pig Farm
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezo, F.; Romero, F.; Zambrano, F.; Sanchez, R.S. Preservation of boar semen: An update. Reprod. Domest. Anim. 2019, 54, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.J.; Núñez-Montero, K.; Bruna, P.; García, M.; Leal, K.; Barrientos, L.; Weber, H. Bacteria and boar semen storage: Progress and challenges. Antibiotics 2022, 11, 1796. [Google Scholar] [CrossRef] [PubMed]
- Maes, D.; Nauwynck, H.; Rijsselaere, T.; Mateusen, B.; Vyt, P.; de Kruif, A.; VanSoom, V. Diseases in swine transmitted by artificial insemination: An overview. Theriogenology 2008, 70, 1337–13345. [Google Scholar] [CrossRef] [PubMed]
- Vickram, A.; Dhama, K.; Archana, K.; Parameswari, R.; Rameshpathy, M.; Iqbal, H.; Sridharan, T.B. Antimicrobial peptides in semen extenders: A valuable replacement option for antibiotics in cryopreservation- A prospective review. J. Exp. Biol. Agric. Sci. 2017, 5, 578–588. [Google Scholar]
- Gączarzewicz, D.; Udała, J.; Piasecka, M.; Błaszczyk, B.; Stankiewicz, T. Bacterial contamination of boar semen and its relationship to sperm quality preserved in commercial extender containing gentamicin sulfate. Pol. J. Vet. Sci. 2016, 19, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.L.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Bennemann, P.E.; Machado, S.A.; Girardini, L.K.; Sonalio, K.; Tonin, A.A. Bacterial contaminants and antimicrobial susceptibility profile of boar semen in Southern Brazil studs. Rev. Mvz. Cordoba. 2018, 23, 6637–6648. [Google Scholar]
- Keeratikunakorn, K.; Kaewchomphunuch, T.; Kaeoket, K.; Ngamwongsatit, N. Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. Sci. Rep. 2023, 13, 5995. [Google Scholar] [CrossRef]
- Schulze, M.; Dathe, M.; Waberski, D.; Muller, K. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology 2016, 85, 39–46. [Google Scholar] [CrossRef]
- Nguyet, L.T.Y.; Keeratikunakorn, K.; Kaeoket, K.; Ngamwongsatit, N. Antibiotic resistant Escherichia coli from diarrheic piglets from pig farms in Thailand that harbor colistin-resistant mcr genes. Sci. Rep. 2022, 12, 9083. [Google Scholar] [CrossRef]
- Kumar, R.; Ali, S.A.; Singh, S.K.; Bhushan, V.; Mathur, M.; Jamwal, S.; Mohanty, A.K.; Kaushik, K.J.; Kumar, S. Antimicrobial peptides in farm animals: An updated review on its diversity, function, modes of action and therapeutic prospects. Vet. Sci. 2020, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Grobbel, M.; Riesenbeck, A.; Brüning, S.; Schaefer, J.; Jung, M.; Grossfeld, R. Dose rates of antimicrobial substances in boar semen preservation-time to establish new protocols. Reprod. Domest. Anim. 2017, 52, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Gadea, J. Review: Semen extenders used in the artificial insemination of swine. Span. J. Agric. Res. 2003, 1, 17–27. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Silva, A.R. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim. Reprod. 2020, 17, e20190111. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Trzcińska, M. Quality and fertilizing capacity of boar spermatozoa during liquid storage in extender supplemented with different antibiotics. Anim. Reprod. Sci. 2015, 163, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Alaoui Mdarhri, H.; Benmessaoud, R.; Yacoubi, H.; Seffar, L.; Guennouni Assimi, H.; Hamam, M.; Boussettine, R.; Filali-Ansari, N.; Lahlou, F.A.; Diawara, I.; et al. Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics 2022, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef]
- Schulze, M.; Grobbel, M.; Muller, K.; Junkes, C.; Dathe, M.; Rudiger, K.; Jung, M. Challenges and limits using antimicrobial peptides in boar semen preservation. Reprod. Domest. Anim. 2015, 50 (Suppl. S2), 5–10. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, Y.X.; Shao, G.; Ma, J.J.; Cheng, X.R.; Lui, J.; Kang, J.; FU, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.F.; Yang, Q.; Qiao, S.Y. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 2016, 17, 630. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Sultana, A.; Luo, H.; Ramakrishna, S. Antimicrobial peptides and their applications in biomedical sector. Antibiotics 2021, 10, 1094. [Google Scholar] [CrossRef]
- Björn, C.; Noppa, L.; Näslund Salomonsson, E.; Johansson, A.L.; Nilsson, E.; Mahlapuu, M.; Håkansson, J. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int. J. Antimicrob. Agents. 2015, 45, 519–524. [Google Scholar] [CrossRef]
- Xu, B.C.; Fu, J.; Zhu, L.Y.; Li, Z.; Wang, Y.Z.; Jin, M.L. Overall assessment of antimicrobial peptides in piglets: A set of meta-analyses. Animal 2020, 14, 2463–2471. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Okazaki, T.; Mihara, T.; Fujita, Y.; Yoshida, S.; Teshima, H.; Shimada, M. Polymyxin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. Theriogenology 2010, 74, 1691–1700. [Google Scholar] [CrossRef]
- Dalmutt, A.C.; Moreno, L.Z.; Gomes, V.T.M.; Cunha, M.P.V.; Barbsa, M.R.F.; Sato, M.I.Z.; Knöbl, T.; Pedroso, C.A.; Morenoet, A.M. Characterization of bacterial contaminants of boar semen: Identification by MALDI-TOF mass spectrometry and antimicrobial susceptibility profiling. J. Appl. Anim. Res. 2020, 48, 559–565. [Google Scholar] [CrossRef]
- Kaewchomphunuch, T.; Charoenpichitnunt, T.; Thongbaiyai, V.; Ngamwongsatit, N.; Kaeoket, K. Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC Vet. Res. 2022, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Ngo, C.; Suwimonteerabutr, J.; Prapasarakul, N.; Morrell, M.J.; Tummaruk, P. Bacteriospermia and its antimicrobial resistance in relation to boar sperm quality during short-term storage with or without antibiotics in a tropical environment. Porc. Health Manag. 2023, 9, 21. [Google Scholar] [CrossRef]
- Grahofer, A.; Björkman, S.; Peltoniemi, O. Diagnosis of endometritis and cystitis in sows: Use of biomarkers. J. Anim. Sci. 2020, 98 (Suppl. S1), S107–S116. [Google Scholar] [CrossRef]
- de Winter, P.; Verdoncka, M.; de Kruif, A.; Devriese, L.; Haesebrouck, F. Bacterial endometritis and vaginal discharge in the sow: Prevalence of different bacterial species and experimental reproduction of the syndrome. Anim. Reprod. Sci. 1995, 37, 325–335. [Google Scholar] [CrossRef]
- Pluchino, N.; Freschi, L.; Wenger, J.M.; Streuli, I. Innovations in classical hormonal targets for endometriosis. Expert Rev. Clin. Pharmacol. 2016, 9, 317–327. [Google Scholar] [CrossRef]
- Maroto Martín, L.O.; Muñoz, E.C.; De Cupere, F.; Van Driessche, E.; Echemendia-Blanco, D.; Rodríguez, J.M.; Beeckmans, S. Bacterial contamination of boar semen affects the litter size. Anim. Reprod. Sci. 2010, 120, 95–104. [Google Scholar] [CrossRef]
- Burch, D.G.S.; Sperling, D. Amoxicillin-current use in swine medicine. J. Vet. Pharmacol. Ther. 2018, 41, 356–368. [Google Scholar] [CrossRef]
- Speck, S.; Courtiol, A.; Junkes, C.; Dathe, M.; Muller, K.; Schulze, M. Cationic Synthetic Peptides: Assessment of their antimicrobial potency in liquid preserved boar semen. PLoS ONE 2014, 9, e105949. [Google Scholar] [CrossRef]
- Ciornei, Ş.; Drugociu, D.; Ciornei, L.M.; Mareş, M.; Roşca, P. Total aseptization of boar semen, to increase the biosecurity of reproduction in swine. Molecules 2021, 26, 6183. [Google Scholar] [CrossRef]
- Bussalleu, E.; Yeste, M.; Sepúlveda, L.; Torner, E.; Pinart, E.; Bonet, S. Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim. Reprod Sci. 2011, 127, 176–182. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Bonet, S. Effect of Pseudomonas aeruginosa on sperm capacitation and protein phosphorylation of boar spermatozoa. Theriogenology 2016, 85, 1421–1431. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Torner, E.; Bonet, S. How do different concentrations of Clostridium perfringens affect the quality of extended boar spermatozoa? Anim. Reprod. Sci. 2013, 140, 83–91. [Google Scholar] [CrossRef]
- Bonet, S.; Delgado-Bermúdez, A.; Yeste, M.; Pinart, E. Study of boar sperm interaction with Escherichia coli and Clostridium perfringens in refrigerated semen. Anim. Reprod. Sci. 2018, 197, 134–144. [Google Scholar] [CrossRef]
- Li, Z.; Hu, Y.H.; Yang, Y.Y.; Lu, Z.Q.; Wang, Y.Z. Antimicrobial resistance in livestock: Antimicrobial peptides provide a new solution for a growing challenge. Anim. Front. 2018, 8, 21–29. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef]
- Fazly Bazzaz, B.S.; Seyedi, S.; Hoseini Goki, N.; Khameneh, B. Human antimicrobial peptides: Spectrum, mode of action and resistance mechanisms. Int. J. Pept. Res. 2021, 27, 801–816. [Google Scholar] [CrossRef]
- Magdanz, V.; Gebauer, J.; Sharan, P.; Eltoukhy, S.; Voigt, D.; Simmchen, J. Sperm-particle interactions and their prospects for charge mapping. Adv. Biosyst. 2019, 3, e1900061. [Google Scholar] [CrossRef]
- Keeratikunakorn, K.; Aunpad, R.; Ngamwongsatit, N.; Kaeoket, K. The effect of antimicrobial peptide (PA-13) on Escherichia coli carrying antibiotic-resistant genes isolated from boar semen. Antibiotics 2024, 13, 138. [Google Scholar] [CrossRef]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept. 2013, 2013, 675391. [Google Scholar] [CrossRef] [PubMed]
- Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Aranha, C.; Gupta, S.; Reddy, K.V. Contraceptive efficacy of antimicrobial peptide Nisin: In vitro and in vivo studies. Contraception 2004, 69, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Sancho, S.; Briz, M.; Yeste, M.; Bonet, S.; Bussalleu, E. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses. Reprod. Domest. Anim. 2017, 52 (Suppl. S4), 69–71. [Google Scholar] [CrossRef]
- Shaoyong, W.; Li, Q.; Ren, Z.Q.; Wei, C.S.; Chu, G.Y.; Dong, W.Z.; Yang, G.S.; Pang, W.J. Evaluation of ε-polylysine as antimicrobial alternative for liquid-stored boar semen. Theriogenology 2019, 130, 146–156. [Google Scholar] [CrossRef]
- Santos, C.; Rodrigues, G.R.; Lima, L.F.; dos Reis, M.C.G.; Cunha, N.B.; Dias, S.C.; Franco, O.L. Advances and perspectives for antimicrobial peptide and combinatory therapies. Front. bioeng. biotechnol. 2022, 1, 1051456. [Google Scholar]
- Chanapiwat, P.; Buranasinsup, S.; Kaeoket, K. Transformation of a short-term boar semen extender into a long-term boar semen extender by using penicillamine. Czech J. Anim. Sci. 2022, 67, 407–415. [Google Scholar] [CrossRef]
- Waterhouse, K.E.; De Angelis, P.M.; Haugan, T.; Paulenz, H.; Hofmo, P.O.; Farstad, W. Effects of in vitro storage time and semen-extender on membrane quality of boar sperm assessed by flow cytometry. Theriogenology 2004, 62, 1638–1651. [Google Scholar] [CrossRef]
- Balogun, K.B.; Stewart, K.R. Effects of air exposure and agitation on quality of stored boar semen samples. Reprod. Domest. Anim. 2021, 56, 1200–1208. [Google Scholar] [CrossRef]
- Fernandez-Fuertes, B.; Narciandi, F.; O’Farrelly, C.; Kelly, A.K.; Fair, S.; Meade, K.G.; Lonergan, P. Cauda epididymis-specific Beta-defensin 126 promotes sperm motility but not fertilizing ability in cattle. Biol. Reprod. 2016, 95, 122. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health. Manag. 2017, 3, 1. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, I.; Han, J.; Ka, H. Antimicrobial peptides cathelicidin, PMAP23, and PMAP37: Expression in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy and regulation by steroid hormones and calcitriol in pigs. Theriogenology 2021, 160, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yoo, I.; Cheon, Y.; Hong, M.; Jeon, B.Y.; Ka, H. Antimicrobial peptides β defensin family: Expression and regulation in the endometrium during the estrous cycle and pregnancy in pigs. Dev. Comp. Immunol. 2023, 139, 104596. [Google Scholar] [CrossRef] [PubMed]
- Wongchai, M.; Wongkaewkhiaw, S.; Kanthawong, S.; Roytrakul, S.; Aunpad, R. Dual-function antimicrobial-antibiofilm peptide hybrid to tackle biofilm-forming Staphylococcus epidermidis. Ann. clin. microbiol. antimicrob. 2024, 23, 44. [Google Scholar] [CrossRef]
- Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W.; Somsri, S.; Aunpad, R. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci. Rep. 2020, 10, 9117. [Google Scholar] [CrossRef] [PubMed]
- Kaeoket, K.; Chanapiwat, P. The beneficial effect of resveratrol on the quality of frozen-thawed boar sperm. Animals 2023, 13, 2829. [Google Scholar] [CrossRef]
- Henning, H.; Luther, A.M.; Höfner-Schmiing, L.; Waberski, D. Compensability of an enhanced incidence of spermatozoa with cytoplasmic droplets in boar semen for use in artificial insemination: A single cell approach. Sci. Rep. 2022, 12, 21833. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. L-cysteine prolonged fresh boar semen qualities, but not for docosahexaenoic acid. Czech J. Anim. Sci. 2021, 66, 21–28. [Google Scholar] [CrossRef]
- Huo, L.J.; Ma, X.H.; Yang, Z.M. Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 2002, 58, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Kaeoket, K.; Tantasuparuk, W.; Kunavongkrit, A. The effect of post-ovulatory insemination on the subsequent embryonic loss, oestrous cycle length and vaginal discharge in sows. Reprod. Domest. Anim. 2005, 40, 492–494. [Google Scholar] [CrossRef] [PubMed]
Gram | ID | Sample | Bacteria | BiF2_5K7K | |
---|---|---|---|---|---|
MIC (µg/mL) | MBC (µg/mL) | ||||
Negative | S1LLF | Boar semen | Citrobacter koseri | 15.625 | 31.25 |
S8-6LF | Boar semen | Enterobacter hormaechei | 250 | 250 | |
S5LF3 | Boar semen | Escherichia coli | 15.625 | 15.625 | |
MI912-2LF/62 | Sow vaginal discharge | Klebsiella pneumoniae | >250 | >250 | |
V5-6 | Sow vaginal discharge | Morganella morganii | >250 | >250 | |
S6-4 | Boar semen | Providencia alcalifaciens | 15.625 | 62.5 | |
S3 | Boar semen | Proteus mirabilis | >250 | >250 | |
V2-5 | Sow vaginal discharge | Providencia rettgeri | >250 | >250 | |
S2NLF | Boar semen | Pseudomonas aeruginosa | 31.25 | 125 | |
V4-3 | Sow vaginal discharge | Pasteurella aerogenes | 125 | 125 | |
Positive | S7-5W | Boar semen | Staphylococcus sciuri | 15.625 | 15.625 |
V2-3 | Sow vaginal discharge | Staphylococcus hyicus | 125 | >250 |
Semen Parameters | Mean ± S.D. | Range |
---|---|---|
Concentration (×106 spz/mL) | 211.50 ± 71.10 | 146–345 |
Osmolality (mOsm/kg) | 304.80 ± 8.50 | 288–315 |
Total motility (%) | 94.40 ± 3.90 | 86.60–99.40 |
Progressive motility (%) | 90.90 ± 5.80 | 80.00–98.50 |
Sperm viability (%) | 88.3 0± 2.80 | 85–93 |
Intact acrosome (%) | 85.40 ± 2.90 | 80–91 |
MMP (%) | 82.50 ± 2.70 | 80–89 |
Total bacterial count (CFU/mL) | log1.81 ± 0.80 | log1.81–log2.98 |
Group | Concentration (µg/mL) | Total Bacterial Count (log) (CFU/mL) | ||||
---|---|---|---|---|---|---|
Incubation Time | ||||||
0 h | 24 h | 36 h | 48 h | 72 h | ||
BTS | - | 1.79 ± 0.23 | 2.35 ± 0.26 b | 3.47 ± 0.58 b | 3.98 ± 0.76 b | 6.25 ± 1.75 b |
BTS + ABO | - | 1.22 ± 0.52 | 0.67 ± 0.33 a | 0.85 ± 0.15 a | 1.12 ± 0.42 a | 0.00 ± 0.00 a |
BiF2_5K7K * | 125 | 1.33 ± 0.30 | 1.78 ± 0.31 b | 2.58 ± 1.06 b | 3.55 ± 0.97 b | 6.14 ± 2.79 b |
BiF2_5K7K * | 62.5 | 1.42 ± 0.34 | 1.53 ± 0.31 a | 3.36 ± 0.75 b | 3.72 ± 0.83 b | 6.23 ± 2.68 b |
BiF2_5K7K * | 31.25 | 1.39 ± 0.27 | 1.51 ± 0.29 a | 3.21 ± 0.89 b | 4.32 ± 1.15 b | 6.59 ± 2.82 b |
BiF2_5K7K * | 15.625 | 1.47 ± 0.19 | 1.84 ± 0.33 b | 3.82 ± 0.94 b | 3.02 ± 1.03 b | 7.09 ± 2.16 b |
Sperm Parameters | Group | |||||
---|---|---|---|---|---|---|
BTS | BTS + ABO | BiF2_5K7K 125 µg/mL * | BiF2_5K7K 62.50 µg/mL * | BiF2_5K7K 31.25 µg/mL * | BiF2_5K7K 15.625 µg/mL * | |
MOT (%) | 90.5 ± 1.6 | 90.7 ± 1.5 | 90.3 ± 1.3 | 92.3 ± 1.0 | 92.6 ± 1.0 | 90.5 ± 1.1 |
PMOT (%) | 81.8 ± 2.6 | 81.23 ± 2.8 | 81.3 ± 2.0 | 84.1 ± 2.0 | 83.8 ± 1.9 | 81.6 ± 2.2 |
VCL (µm/s) | 120.4 ± 9.4 | 125.4 ± 8.2 | 188.1 ± 6.9 | 116.1 ± 6.3 | 113.8 ± 6.9 | 110.6 ± 5.6 |
VSL (µm/s) | 37.4 ± 3.1 | 38.8 ± 3.7 | 37.2 ± 3.4 | 37.7 ± 3.1 | 37.3 ± 3.1 | 36.8 ± 2.4 |
VAP (µm/s) | 51.4 ± 3.6 | 53.9 ± 3.9 | 50.9 ± 3.6 | 50.8 ± 3.3 | 49.9 ± 3.3 | 48.6 ± 2.5 |
ALH (µm) | 1.18 ± 0.09 | 1.21 ± 0.67 | 1.14 ± 0.05 | 1.11 ± 0.04 | 1.08 ± 0.04 | 1.06 ± 0.04 |
STR (%) | 72.1 ± 1.7 a | 71.2 ± 1.8 a | 72.2 ± 1.7 a | 73.89 ± 1.5 a | 74.0 ± 1.3 a | 75.2 ± 1.3 b |
LIN (%) | 31.1 ± 1.2 a | 30.7 ± 1.4 a | 31.1 ± 1.3 a | 32.2 ± 1.1 a | 32.6 ± 1.0 a | 33.3 ± 0.8 b |
Viability (%) | 85.4 ± 0.9 | 86.3 ± 0.8 | 84.0 ± 0.7 | 85.5 ± 0.5 | 86.3 ± 0.8 | 84.8 ± 0.5 |
Intact acrosome (%) | 83.5 ± 0.8 | 83.8 ± 0.7 | 82.4 ± 0.9 | 82.4 ± 0.8 | 82.5 ± 1.0 | 82.7 ± 0.9 |
MMP (%) | 77.2 ± 1.6 | 78.3 ± 1.2 | 77.7 ± 1.0 | 77.9 ± 1.2 | 79.9 ± 1.4 | 78.7 ± 0.9 |
Sperm Parameters | Group | |||||
---|---|---|---|---|---|---|
BTS | BTS + ABO | BiF2_5K7K 125 µg/mL * | BiF2_5K7K 62.50 µg/mL * | BiF2_5K7K 31.25 µg/mL * | BiF2_5K7K 15.625 µg/mL * | |
MOT (%) | 85.9 ± 2.7 | 86.1 ± 2.6 | 73.3 ± 6.9 | 85.5 ± 3.4 | 87.5 ± 2.9 | 86.3 ± 2.9 |
PMOT (%) | 73.3 ± 3.9 a | 73.4 ± 4.1 a | 60.8 ± 7.3 b | 73.6 ± 4.6 a | 76.4 ± 3.9 a | 75.1 ± 4.2 a |
VCL (µm/s) | 106.3 ± 10.9 a | 109.9 ± 12.1 a | 89.8 ± 13.9 b | 107.1 ± 11.9 a | 102.2 ± 11.7 a,b | 100.4 ± 11.5 a,b |
VSL (µm/s) | 33.0 ± 3.5 a | 34.1 ± 4.1 a | 27.8 ± 4.7 b | 35.0 ± 4.5 a | 33.6 ± 4.2 a | 33.4 ± 4.3 a |
VAP (µm/s) | 45.3 ± 4.7 a | 47.4 ± 5.4 a | 38.2 ± 5.9 b | 46.0 ± 5.5 a | 44.3 ± 5.3 a,b | 44.0 ± 5.1 a,b |
ALH (µm) | 1.09 ± 0.09 a | 1.09 ± 0.10 a | 0.94 ± 0.12 b | 1.05 ± 0.09 a,b | 1.01 ± 0.09 a,b | 0.99 ± 0.09 a,b |
STR (%) | 72.9 ± 1.0 a | 71.8 ± 1.3 a | 72.1 ± 1.5 a | 75.0 ± 1.4 a,b | 75.8 ± 1.7 b | 75.4 ± 1.2 b |
LIN (%) | 31.2 ± 0.0 a,b | 31.0 ± 0.9 a,b | 30.8 ± 0.8 a | 32.7 ± 1.1 a,b | 32.9 ± 1.1 a,b | 33.1 ± 1.0 b |
Viability (%) | 81.6 ± 1.5 | 82.1 ± 1.4 | 77.6 ± 2.3 | 80.3 ± 1.7 | 82.8 ± 1.1 | 81.3 ± 1.1 |
Intact acrosome (%) | 80.0 ± 1.5 | 80.3 ± 0.9 | 75.3 ± 0.3 | 78.6 ± 1.5 | 79.4 ± 1.2 | 78.6 ± 1.2 |
MMP (%) | 71.3 ± 1.8 | 72.0 ± 2.3 | 66.4 ± 3.8 | 72.4 ± 2.3 | 73.9 ± 2.5 | 74.1 ± 2.0 |
Sperm Parameters | Group | |||||
---|---|---|---|---|---|---|
BTS | BTS + ABO | BiF2_5K7K 125 µg/mL * | BiF2_5K7K 62.50 µg/mL * | BiF2_5K7K 31.25 µg/mL * | BiF2_5K7K 15.625 µg/mL * | |
MOT (%) | 72.6 ± 7.2 a,b | 79.3 ± 4.7 a | 57.3 ± 10.1 b | 75.5 ± 6.5 a,b | 80.0 ± 5.6 a | 80.3 ± 4.8 a |
PMOT (%) | 60.2 ± 7.6 a,b | 66.0 ± 5.3 a,b | 45.9 ± 10.1 b | 63.9 ± 7.7 a,b | 69.8 ± 6.5 a | 71.1 ± 6.0 a |
VCL (µm/s) | 79.7 ± 11.8 a | 94.9 ± 10.7 a | 71.2 ± 16.3 b | 90.6 ± 14.1 b | 95.2 ± 14.4 b | 94.4 ± 12.5 b |
VSL (µm/s) | 24.4 ± 3.9 a | 29.9 ± 3.7 b | 23.5 ± 6.1 a | 28.1 ± 5.2 a,b | 30.3 ± 5.5 a,b | 29.8 ± 4.9 a,b |
VAP (µm/s) | 33.6 ± 5.1 a | 41.0 ± 4.7 b | 30.9 ± 7.4 c | 38.0 ± 6.4 a,b | 40.7 ± 6.8 a,b | 39.6 ± 5.9 a,b |
ALH (µm) | 0.86 ± 0.11 a | 0.98 ± 0.09 a | 0.76 ± 0.13 b | 0.93 ± 0.12 a | 0.96 ± 0.11 a | 0.95 ± 0.09 a |
STR (%) | 71.4 ± 1.3 | 72.4 ± 1.7 | 72.9 ± 2.0 | 72.8 ± 1.3 | 73.0 ± 1.5 | 73.6 ± 1.6 |
LIN (%) | 30.0 ± 0.6 | 31.4 ± 1.1 | 31.1 ± 1.3 | 30.0 ± 1.1 | 30.8 ± 1.5 | 30.4 ± 1.3 |
Viability (%) | 79.2 ± 2.0 | 79.6 ± 1.0 | 73.1 ± 3.3 | 78.9 ± 1.2 | 79.6 ± 1.8 | 79.6 ± 1.4 |
Intact acrosome (%) | 74.8 ± 1.4 | 77.1 ± 0.9 | 73.0 ± 3.0 | 77.1 ± 0.8 | 77.8 ± 1.5 | 78.1 ± 1.3 |
MMP (%) | 64.4 ± 2.5 a | 66.0 ± 2.7 a | 51.0 ± 6.7 b | 64.2 ± 3.5 a | 64.6 ± 3.0 a | 67.9 ± 1.7 a |
Parameters | Groups | |
---|---|---|
Control (n = 20) | Treatment (n = 20) | |
Average parity | 3.7 ± 0.4 | 3.7 ± 0.5 |
Pregnancy rate (%) | 90.0 ± 0.3 | 100.0 ± 0.0 |
Farrowing rate (%) | 80.0 ± 0.4 | 85.0 ± 0.4 |
Total number of piglets born | 12.6 ± 3.0 | 14.1 ± 2.6 |
Number of piglets born alive | 10.8 ± 3.1 a | 13.1 ± 2.4 b |
Stillborn piglets (%) | 0.06 ± 0.25 | 0.17 ± 0.52 |
Mummified fetuses (%) | 0.0 ± 0.0 | 0.0 ± 0.0 |
Litter birthweight (kg) | 15.5 ± 4.9 a | 18.8 ± 3.9 b |
Peptide | Amino acid Sequence | Number of Amino Acids | Molecular Weight (g/mol) | Net Charge | Hydrophobicity | Percentage of Hydrophobic Residues |
---|---|---|---|---|---|---|
BiF2_5K7K | FLVKKIKKILRR | 12 | 1541.07 | +6 | 0.336 | 50% |
Group | Antimicrobial Peptide | Concentration (µg/mL) |
---|---|---|
Group 1 | Negative control (BTS) | - |
Group 2 | Positive control (BTS with gentamicin) | - |
Group 3 | BiF2_5K7K * | 125 |
Group 4 | BiF2_5K7K * | 62.50 |
Group 5 | BiF2_5K7K * | 31.25 |
Group 6 | BiF2_5K7K * | 15.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keeratikunakorn, K.; Chanapiwat, P.; Aunpad, R.; Ngamwongsatit, N.; Kaeoket, K. Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm. Antibiotics 2024, 13, 579. https://doi.org/10.3390/antibiotics13070579
Keeratikunakorn K, Chanapiwat P, Aunpad R, Ngamwongsatit N, Kaeoket K. Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm. Antibiotics. 2024; 13(7):579. https://doi.org/10.3390/antibiotics13070579
Chicago/Turabian StyleKeeratikunakorn, Krittika, Panida Chanapiwat, Ratchaneewan Aunpad, Natharin Ngamwongsatit, and Kampon Kaeoket. 2024. "Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm" Antibiotics 13, no. 7: 579. https://doi.org/10.3390/antibiotics13070579
APA StyleKeeratikunakorn, K., Chanapiwat, P., Aunpad, R., Ngamwongsatit, N., & Kaeoket, K. (2024). Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm. Antibiotics, 13(7), 579. https://doi.org/10.3390/antibiotics13070579