Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = super-junction (SJ)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3638 KiB  
Article
Simulation Study on 6.5 kV SiC Trench Gate p-Channel Superjunction Insulated Gate Bipolar Transistor
by Kuan-Min Kang, Jia-Wei Hu and Chih-Fang Huang
Micromachines 2025, 16(7), 758; https://doi.org/10.3390/mi16070758 - 27 Jun 2025
Viewed by 277
Abstract
This paper investigates 6.5 kV SiC trench gate p-channel IGBTs using Sentaurus TCAD simulations. The proposed superjunction structure is compared to conventional designs to highlight its advantages. The p-IGBT, fabricated on an n-type substrate, offers notable commercial advantages over n-IGBTs on p-type substrates. [...] Read more.
This paper investigates 6.5 kV SiC trench gate p-channel IGBTs using Sentaurus TCAD simulations. The proposed superjunction structure is compared to conventional designs to highlight its advantages. The p-IGBT, fabricated on an n-type substrate, offers notable commercial advantages over n-IGBTs on p-type substrates. The n-shield can effectively protect the trench gate oxide in the corners of SiC. The n-shield and n-pillar can be either floating or grounded, with the floating shield condition significantly enhancing injection and improving forward conduction performance. The superjunction floating shield p-IGBT (SJFS-p-IGBT) improves forward conduction voltage (VF) by 47% and 15% compared to conventional planar gate p-IGBT (CP-p-IGBT) and grounded shield p-IGBT (CGS-p-IGBT), respectively. For switching characteristics, the superjunction grounded shield p-IGBT (SJGS-p-IGBT) improves turn-off time (toff) by 15% compared to the conventional floating shield p-IGBT (CFS-p-IGBT). The trade-off between VF and turn-off energy (Eoff) is analyzed, showing that the SJFS-p-IGBT offers a better trade-off. A negative temperature coefficient is observed at high buffer layer doping concentration and elevated temperatures, leading to an increase in VF. This provides design guidance for devices operating in parallel at high temperatures. These results demonstrate the SJ’s potential to enhance efficiency and performance for ultra-high voltage applications. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

29 pages, 7562 KiB  
Review
COSS Losses in Resonant Converters
by Giuseppe Samperi, Antonio Laudani, Nunzio Salerno, Alfio Scuto, Marco Ventimiglia and Santi Agatino Rizzo
Energies 2025, 18(13), 3312; https://doi.org/10.3390/en18133312 - 24 Jun 2025
Viewed by 257
Abstract
High efficiency and high power density are key targets in modern power conversion. Operating power converters at high switching frequencies enables the use of smaller passive components, which, in turn, facilitate achieving high power density. However, the concurrent increase in switching frequency and [...] Read more.
High efficiency and high power density are key targets in modern power conversion. Operating power converters at high switching frequencies enables the use of smaller passive components, which, in turn, facilitate achieving high power density. However, the concurrent increase in switching frequency and power density leads to efficiency and overheating issues. Soft switching techniques are typically employed to minimize switching losses and significantly improve efficiency by reducing power losses. However, the hysteresis behavior of the power electronics devices’ output capacitance, COSS, is the cause of regrettable losses in Super-Junction (SJ) MOSFETs, SiC MOSFETs, and GaN HEMTs, which are usually adopted in soft switching-based conversion schemes. This paper reviews the techniques for measuring hysteresis traces and power losses, as well as the understanding of the phenomenon to identify current research trends and open problems. A few studies have reported that GaN HEMTs tend to exhibit the lowest hysteresis losses, while Si superjunction (SJ) MOSFETs often show the highest. However, this conclusion cannot be generalized by comparing the results from different works because they are typically made across devices with different (when the information is reported) breakdown voltages, on-state resistances, die sizes, and test conditions. Moreover, some recent investigations using advanced TCAD simulations have demonstrated that newer Si-SJ MOSFETs employing trench-filling epitaxial growth can achieve significantly reduced hysteresis losses. Similarly, while multiple studies confirm that hysteresis losses increase with increasing dv/dt and decreasing temperature, the extent of this dependence varies significantly with device structure and test methodology. This difficulty in obtaining a general conclusion is due to the lack of proper figures of merit that account for hysteresis losses, making it problematic to evaluate the suitability of different devices in resonant converters. This problem highlights the primary current challenge, which is the development of a standard and automated method for characterizing COSS hysteresis. Consequently, significant research effort must be invested in addressing this main challenge and the other challenges described in this study to enable power electronics researchers and practitioners to develop resonant converters properly. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

15 pages, 6026 KiB  
Article
A 3.3 kV SiC Semi-Superjunction MOSFET with Trench Sidewall Implantations
by Marco Boccarossa, Kyrylo Melnyk, Arne Benjamin Renz, Peter Michael Gammon, Viren Kotagama, Vishal Ajit Shah, Luca Maresca, Andrea Irace and Marina Antoniou
Micromachines 2025, 16(2), 188; https://doi.org/10.3390/mi16020188 - 6 Feb 2025
Viewed by 1523
Abstract
Superjunction (SJ) technology offers a promising solution to the challenges faced by silicon carbide (SiC) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) operating at high voltages (>3 kV). However, the fabrication of SJ devices presents significant challenges due to fabrication complexity. This paper presents [...] Read more.
Superjunction (SJ) technology offers a promising solution to the challenges faced by silicon carbide (SiC) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) operating at high voltages (>3 kV). However, the fabrication of SJ devices presents significant challenges due to fabrication complexity. This paper presents a comprehensive analysis of a feasible and easy-to-fabricate semi-superjunction (SSJ) design for 3.3 kV SiC MOSFETs. The proposed approach utilizes trench etching and sidewall implantation, with a tilted trench to facilitate the implantation process. Through Technology Computer-Aided Design (TCAD) simulations, we investigate the effects of the p-type sidewall on the charge balance and how it affects key performance characteristics, such as breakdown voltage (BV) and on-state resistance (RDS-ON). In particular, both planar gate (PSSJ) and trench gate (TSSJ) designs are simulated to evaluate their performance improvements over conventional planar MOSFETs. The PSSJ design achieves a 2.5% increase in BV and a 48.7% reduction in RDS-ON, while the TSSJ design further optimizes these trade-offs, with a 3.1% improvement in BV and a significant 64.8% reduction in RDS-ON compared to the benchmark. These results underscore the potential of tilted trench SSJ designs to significantly enhance the performance of SiC SSJ MOSFETs for high-voltage power electronics while simplifying fabrication and lowering costs. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

12 pages, 11779 KiB  
Communication
Normally-Off Trench-Gated AlGaN/GaN Current Aperture Vertical Electron Transistor with Double Superjunction
by Jong-Uk Kim, Do-Yeon Park, Byeong-Jun Park and Sung-Ho Hahm
Technologies 2024, 12(12), 262; https://doi.org/10.3390/technologies12120262 - 16 Dec 2024
Viewed by 2106
Abstract
This study proposes an AlGaN/GaN current aperture vertical electron transistor (CAVET) featuring a double superjunction (SJ) to enhance breakdown voltage (BV) and investigates its electrical characteristics via technology computer-aided design (TCAD) Silvaco Atlas simulation. An additional p-pillar was formed beneath the gate [...] Read more.
This study proposes an AlGaN/GaN current aperture vertical electron transistor (CAVET) featuring a double superjunction (SJ) to enhance breakdown voltage (BV) and investigates its electrical characteristics via technology computer-aided design (TCAD) Silvaco Atlas simulation. An additional p-pillar was formed beneath the gate current blocking layer to create a lateral depletion region that provided a high off-state breakdown voltage. To address the tradeoff between the drain current and off-state breakdown voltage, the key design parameters were carefully optimized. The proposed device exhibited a higher off-state breakdown voltage (2933 V) than the device with a single SJ (2786 V), although the specific on-resistance of the proposed method (1.29 mΩ·cm−2) was slightly higher than that of the single SJ device (1.17 mΩ·cm−2). In addition, the reverse transfer capacitance was improved by 15.6% in the proposed device. Full article
Show Figures

Figure 1

19 pages, 10443 KiB  
Article
Optimized High-Voltage Analog Switch and Its Control Circuit Based on Silicon-on-Insulator Technology
by Zhuze Li, Xinquan Lai, Chentao Ding, Dinghai Jin, Jiabao Wang and Chen Liu
Electronics 2024, 13(23), 4601; https://doi.org/10.3390/electronics13234601 - 22 Nov 2024
Viewed by 1252
Abstract
In recent years, high-voltage analog switches have been widely used in various fields. To handle complex use scenarios, high-voltage analog switches need to achieve the goals of low on-resistance, high isolation performance, high response speed, and high voltage withstand range. Traditional high-voltage analog [...] Read more.
In recent years, high-voltage analog switches have been widely used in various fields. To handle complex use scenarios, high-voltage analog switches need to achieve the goals of low on-resistance, high isolation performance, high response speed, and high voltage withstand range. Traditional high-voltage analog switches have issues such as low integration, large area, and slow response speed. This paper uses a super junction MOSFET (SJ-MOS) with a 0.18 μm SOI process and a solid-state relay (SSR) structure to implement a high-voltage analog switch. A gate drive circuit suitable for low gate-source breakdown voltage is proposed to maintain the gate-source voltage, achieving a low on-resistance of 24 Ω and high isolation. Compared with traditional high-voltage analog switches, it achieves higher performance with a smaller area. Full article
Show Figures

Figure 1

12 pages, 3850 KiB  
Article
A Novel Deep-Trench Super-Junction SiC MOSFET with Improved Specific On-Resistance
by Rongyao Ma, Ruoyu Wang, Hao Fang, Ping Li, Longjie Zhao, Hao Wu, Zhiyong Huang, Jingyu Tao and Shengdong Hu
Micromachines 2024, 15(6), 684; https://doi.org/10.3390/mi15060684 - 23 May 2024
Cited by 2 | Viewed by 3341
Abstract
In this paper, a novel 4H-SiC deep-trench super-junction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a split-gate is proposed and theoretically verified by Sentaurus TCAD simulations. A deep trench filled with P-poly-Si combined with the P-SiC region leads to a charge balance effect. Instead of [...] Read more.
In this paper, a novel 4H-SiC deep-trench super-junction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a split-gate is proposed and theoretically verified by Sentaurus TCAD simulations. A deep trench filled with P-poly-Si combined with the P-SiC region leads to a charge balance effect. Instead of a full-SiC P region in conventional super-junction MOSFET, this new structure reduces the P region in a super-junction MOSFET, thus helping to lower the specific on-resistance. As a result, the figure of merit (FoM, BV2/Ron,sp) of the proposed new structure is 642% and 39.65% higher than the C-MOS and the SJ-MOS, respectively. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 3372 KiB  
Article
Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET
by Zhen Cao, Qi Sun, Chuanfeng Ma, Biao Hou and Licheng Jiao
Micromachines 2024, 15(3), 411; https://doi.org/10.3390/mi15030411 - 19 Mar 2024
Cited by 1 | Viewed by 1465
Abstract
This paper presents a machine learning-based figure of merit model for superjunction (SJ) U-MOSFET (SSJ-UMOS) with a modulated drift region utilizing semi-insulating poly-crystalline silicon (SIPOS) pillars. This SJ drift region modulation is achieved through SIPOS pillars beneath the trench gate, focusing on optimizing [...] Read more.
This paper presents a machine learning-based figure of merit model for superjunction (SJ) U-MOSFET (SSJ-UMOS) with a modulated drift region utilizing semi-insulating poly-crystalline silicon (SIPOS) pillars. This SJ drift region modulation is achieved through SIPOS pillars beneath the trench gate, focusing on optimizing the tradeoff between breakdown voltage (BV) and specific ON-resistance (RON,sp). This analytical model considers the effects of electric field modulation, charge-coupling, and majority carrier accumulation due to additional SIPOS pillars. Gaussian process regression is employed for the figure of merit (FOM = BV2/RON,sp) prediction and hyperparameter optimization, ensuring a reasonable and accurate model. A methodology is devised to determine the optimal BV-RON,sp tradeoff, surpassing the SJ silicon limit. The paper also delves into a discussion of optimal structural parameters for drift region, oxide thickness, and electric field modulation coefficients within the analytical model. The validity of the proposed model is robustly confirmed through comprehensive verification against TCAD simulation results. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 6556 KiB  
Article
Analysis of the Operation Mechanism of Superjunction in RC-IGBT and a Novel Snapback-Free Partial Schottky Collector Superjunction RC-IGBT
by Song Yuan, Yichong Li, Min Hou, Xi Jiang, Xiaowu Gong and Yue Hao
Micromachines 2024, 15(1), 73; https://doi.org/10.3390/mi15010073 - 29 Dec 2023
Cited by 3 | Viewed by 2162
Abstract
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed [...] Read more.
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed to address these issues. The new structure eliminates the snapback phenomenon. Furthermore, by leveraging the unipolar conduction of the Schottky diode and its fast turn-off characteristics, the proposed device significantly reduces the turn-off power consumption and reverse recovery charge. With medium pillar doping concentration, the turn-off loss of the PSC-SJ-RC-IGBT decreases by 54.1% compared to conventional superjunction RC-IGBT, while the reverse recovery charge is reduced by 52.6%. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 6622 KiB  
Article
A Novel Super-Junction DT-MOS with Floating p Regions to Improve Short-Circuit Ruggedness
by Sujie Yin, Wei Cao, Xiarong Hu, Xinglai Ge and Dong Liu
Micromachines 2023, 14(10), 1962; https://doi.org/10.3390/mi14101962 - 21 Oct 2023
Cited by 1 | Viewed by 2286
Abstract
A novel super-junction (SJ) double-trench metal oxide semiconductor field effect transistor (DT-MOS) is proposed and studied using Synopsys Sentaurus TCAD in this article. The simulation results show that the proposed MOSFET has good static performance and a longer short-circuit withstand time (t [...] Read more.
A novel super-junction (SJ) double-trench metal oxide semiconductor field effect transistor (DT-MOS) is proposed and studied using Synopsys Sentaurus TCAD in this article. The simulation results show that the proposed MOSFET has good static performance and a longer short-circuit withstand time (tsc). The super-junction structure enables the device to possess an excellent compromise of breakdown voltage (BV) and specific on-resistance (Ron,sp). Under short-circuit conditions, the depletion of p-pillar, p-shield, and floating p regions can effectively reduce saturation current and improve short-circuit capability. The proposed device has minimum gate-drain charge (Qgd) and gate-drain capacitance (Cgd) compared with other devices. Moreover, the formation of floating p regions will not lead to an increase in process complexity. Therefore, the proposed MOSFET can maintain good dynamic and static performance and short-circuit ability together without increasing the difficulty of the process. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

12 pages, 9845 KiB  
Article
Reverse Recovery Optimization of Multiepi Superjunction MOSFET Based on Tunable Doping Profile
by Ke Liu, Chunjian Tan, Shizhen Li, Wucheng Yuan, Xu Liu, Guoqi Zhang, Paddy French, Huaiyu Ye and Shaogang Wang
Electronics 2023, 12(13), 2977; https://doi.org/10.3390/electronics12132977 - 6 Jul 2023
Viewed by 2079
Abstract
This paper proposes and simulates research on the reverse recovery characteristics of two novel superjunction (SJ) MOSFETs by adjusting the doping profile. In the manufacturing process of the SJ MOSFET using multilayer epitaxial deposition (MED), the position and concentration of each Boron bubble [...] Read more.
This paper proposes and simulates research on the reverse recovery characteristics of two novel superjunction (SJ) MOSFETs by adjusting the doping profile. In the manufacturing process of the SJ MOSFET using multilayer epitaxial deposition (MED), the position and concentration of each Boron bubble can be adjusted by designing different doping profiles to adjust the resistance of the upper half P-pillar. A higher P-pillar resistance can slow down the sweep out speed of hole carriers when the body diode is turned off, thus resulting in a smoother reverse recovery current and reducing the current recovery rate (dir/dt) from a peak to zero. The simulation results show that the reverse recovery peak current (Irrm) of the two proposed devices decreased by 5% and 3%, respectively, compared to the conventional SJ. Additionally, the softness factor (S) increased by 64% and 55%, respectively. Furthermore, this study also demonstrates a trade-off relationship between static and reverse recovery characteristics with the adjustable doping profile, thus providing a guideline for actual application scenarios. Full article
(This article belongs to the Special Issue Applications and Design of Power Electronic Converters)
Show Figures

Figure 1

15 pages, 7734 KiB  
Article
A FIN-LDMOS with Bulk Electron Accumulation Effect
by Weizhong Chen, Zubing Duan, Hongsheng Zhang, Zhengsheng Han and Zeheng Wang
Micromachines 2023, 14(6), 1225; https://doi.org/10.3390/mi14061225 - 10 Jun 2023
Cited by 1 | Viewed by 2243
Abstract
A thin Silicon-On-Insulator (SOI) LDMOS with ultralow Specific On-Resistance (Ron,sp) is proposed, and the physical mechanism is investigated by Sentaurus. It features a FIN gate and an extended superjunction trench gate to obtain a Bulk Electron Accumulation (BEA) effect. The [...] Read more.
A thin Silicon-On-Insulator (SOI) LDMOS with ultralow Specific On-Resistance (Ron,sp) is proposed, and the physical mechanism is investigated by Sentaurus. It features a FIN gate and an extended superjunction trench gate to obtain a Bulk Electron Accumulation (BEA) effect. The BEA consists of two p-regions and two integrated back-to-back diodes, then the gate potential VGS is extended through the whole p-region. Additionally, the gate oxide Woxide is inserted between the extended superjunction trench gate and N-drift. In the on-state, the 3D electron channel is produced at the P-well by the FIN gate, and the high-density electron accumulation layer formed in the drift region surface provides an extremely low-resistance current path, which dramatically decreases the Ron,sp and eases the dependence of Ron,sp on the drift doping concentration (Ndrift). In the off-state, the two p-regions and N-drift deplete from each other through the gate oxide Woxide like the conventional SJ. Meanwhile, the Extended Drain (ED) increases the interface charge and reduces the Ron,sp. The 3D simulation results show that the BV and Ron,sp are 314 V and 1.84 mΩ∙cm−2, respectively. Consequently, the FOM is high, reaching up to 53.49 MW/cm2, which breaks through the silicon limit of the RESURF. Full article
Show Figures

Figure 1

22 pages, 20434 KiB  
Article
Simulation Studies on Single-Event Effects and the Mechanisms of SiC VDMOS from a Structural Perspective
by Tao Liu, Yuan Wang, Rongyao Ma, Hao Wu, Jingyu Tao, Yiren Yu, Zijun Cheng and Shengdong Hu
Micromachines 2023, 14(5), 1074; https://doi.org/10.3390/mi14051074 - 18 May 2023
Cited by 8 | Viewed by 2361
Abstract
The single-event effect reliability issue is one of the most critical concerns in the context of space applications for SiC VDMOS. In this paper, the SEE characteristics and mechanisms of the proposed deep trench gate superjunction (DTSJ), conventional trench gate superjunction (CTSJ), conventional [...] Read more.
The single-event effect reliability issue is one of the most critical concerns in the context of space applications for SiC VDMOS. In this paper, the SEE characteristics and mechanisms of the proposed deep trench gate superjunction (DTSJ), conventional trench gate superjunction (CTSJ), conventional trench gate (CT), and conventional planar gate (CT) SiC VDMOS are comprehensively analyzed and simulated. Extensive simulations demonstrate the maximum SET current peaks of DTSJ−, CTSJ−, CT−, and CP SiC VDMOS, which are 188 mA, 218 mA, 242 mA, and 255 mA, with a bias voltage VDS of 300 V and LET = 120 MeV·cm2/mg, respectively. The total charges of DTSJ−, CTSJ−, CT−, and CP SiC VDMOS collected at the drain are 320 pC, 1100 pC, 885 pC, and 567 pC, respectively. A definition and calculation of the charge enhancement factor (CEF) are proposed. The CEF values of DTSJ−, CTSJ−, CT−, and CP SiC VDMOS are 43, 160, 117, and 55, respectively. Compared with CTSJ−, CT−, and CP SiC VDMOS, the total charge and CEF of the DTSJ SiC VDMOS are reduced by 70.9%, 62.4%, 43.6% and 73.1%, 63.2%, and 21.8%, respectively. The maximum SET lattice temperature of the DTSJ SiC VDMOS is less than 2823 K under the wide operating conditions of a drain bias voltage VDS ranging from 100 V to 1100 V and a LET value ranging from 1 MeV·cm2/mg to 120 MeV·cm2/mg, while the maximum SET lattice temperatures of the other three SiC VDMOS significantly exceed 3100 K. The SEGR LET thresholds of DTSJ−, CTSJ−, CT−, and CP SiC VDMOS are approximately 100 MeV·cm2/mg, 15 MeV·cm2/mg, 15 MeV·cm2/mg, and 60 MeV·cm2/mg, respectively, while the value of VDS = 1100 V. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications)
Show Figures

Figure 1

13 pages, 5527 KiB  
Article
A Novel Concept of Electron–Hole Enhancement for Superjunction Reverse-Conducting Insulated Gate Bipolar Transistor with Electron-Blocking Layer
by Zhigang Wang, Chong Yang and Xiaobing Huang
Micromachines 2023, 14(3), 646; https://doi.org/10.3390/mi14030646 - 12 Mar 2023
Cited by 5 | Viewed by 2710
Abstract
A novel snapback-free superjunction reverse-conducting insulated gate bipolar transistor (SJ-RC-IGBT) is proposed and verified by simulation. In the SJ-RC-IGBT, the parasitic P/N/P/N structure as thyristor or Shockley diode demonstrates large conductivity due to an overabundance of carriers for reverse conduction. By preventing electrons [...] Read more.
A novel snapback-free superjunction reverse-conducting insulated gate bipolar transistor (SJ-RC-IGBT) is proposed and verified by simulation. In the SJ-RC-IGBT, the parasitic P/N/P/N structure as thyristor or Shockley diode demonstrates large conductivity due to an overabundance of carriers for reverse conduction. By preventing electrons from leaking across the N+ region at the collector side, the extra electron-blocking (EB) layer introduced in the SJ-RC-IGBT can dramatically enhance electron–hole pairs in the N/P-pillars. Hence, the SJ-RC-IGBT demonstrates a low on-state voltage (Von). In addition, snapback-free characteristics and a large safe operating area (SOA) are also achieved in the SJ-RC-IGBT. During the turn-off process, a significant amount of electrons are extracted by parasitic MOS across the EB layer at the collector side to decrease the turn-off loss (Eoff). According to the optimized results, the SJ-RC-IGBT with EB layer obtains an ultralow Eoff of 3.9 mJ/cm2 at Von = 1.38 V with 88% and 81% decreases, respectively, compared with the conventional reverse-conducting IGBT (CRC-IGBT) and superjunction IGBT (SJ-IGBT). Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications)
Show Figures

Figure 1

8 pages, 4213 KiB  
Article
Integrating a Soft Body Diode in the Super-Junction MOSFET by Using an n/n+-Buffer Layer
by Zhi Lin, Wei Zeng, Da Wang, Ping Li and Shengdong Hu
Micromachines 2022, 13(12), 2193; https://doi.org/10.3390/mi13122193 - 10 Dec 2022
Cited by 1 | Viewed by 2453
Abstract
In this paper, a novel silicon super-junction (SJ) MOSFET embedded with a soft reverse recovery body diode is proposed and studied by numerical simulation. The device introduces an n+-buffer layer between the n-buffer layer and the n+-substrate [...] Read more.
In this paper, a novel silicon super-junction (SJ) MOSFET embedded with a soft reverse recovery body diode is proposed and studied by numerical simulation. The device introduces an n+-buffer layer between the n-buffer layer and the n+-substrate to improve the reverse recovery behaviour of its body diode. The n+-buffer layer provides residual carriers during the reverse recovery process, reduces the overshoot voltage, and suppresses oscillation. Simulated results demonstrate that the increment of the on-resistance and the drain-to-source overshoot voltage can be respectively kept below 5% and 20 V, if a 10 μm n+-buffer layer whose impurity concentration ranges from 4 × 1015 cm−3 to 6 × 1016 cm−3 is used. In addition, the fabrication process is the same as that of the conventional SJ-MOSFET. These features make the proposed SJ-MOSFET suitable for inverter applications. Full article
(This article belongs to the Special Issue Semiconductor Power Devices: Reliability and Applications)
Show Figures

Figure 1

17 pages, 2138 KiB  
Article
An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications
by Edemar O. Prado, Pedro C. Bolsi, Hamiltom C. Sartori and José R. Pinheiro
Energies 2022, 15(14), 5244; https://doi.org/10.3390/en15145244 - 20 Jul 2022
Cited by 67 | Viewed by 12665
Abstract
This work presents a comparative analysis among four power MOSFET technologies: conventional Silicon (Si), Superjunction (SJ), Silicon Carbide (SiC) and Gallium Nitride (GaN), indicating the voltage, current and frequency ranges of the best performance for each technology. For this, a database with 91 [...] Read more.
This work presents a comparative analysis among four power MOSFET technologies: conventional Silicon (Si), Superjunction (SJ), Silicon Carbide (SiC) and Gallium Nitride (GaN), indicating the voltage, current and frequency ranges of the best performance for each technology. For this, a database with 91 power MOSFETs from different manufacturers was built. MOSFET losses are related to individual characteristics of the technology: drain-source on-state resistance, input capacitance, Miller capacitance and internal gate resistance. The total losses are evaluated considering a drain-source voltage of 400 V, power levels from 1 kW to 16 kW (1 A–40 A) and frequencies from 1 kHz to 500 kHz. A methodology for selecting power MOSFETs in power electronics applications is also presented. Full article
Show Figures

Graphical abstract

Back to TopTop