Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = super-fine powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3740 KiB  
Article
Study on the Strength and Mechanism Analysis of Coarse Aggregate Reactive Powder Concrete
by Xiuhong Hao, Haichuan Jia, Guangyao Ding, Xianxian Kong and Xianghe Meng
Buildings 2025, 15(13), 2327; https://doi.org/10.3390/buildings15132327 - 2 Jul 2025
Viewed by 343
Abstract
The demand for super-tall buildings and long-span bridges has driven concrete development toward higher strength and durability. Therefore, this study investigated the impact of composition of materials (aggregates, admixtures, and steel fibers) on the mechanical performance and economic feasibility of coarse aggregate reactive [...] Read more.
The demand for super-tall buildings and long-span bridges has driven concrete development toward higher strength and durability. Therefore, this study investigated the impact of composition of materials (aggregates, admixtures, and steel fibers) on the mechanical performance and economic feasibility of coarse aggregate reactive powder concrete (CA-RPC). The goal is to identify optimal combinations for both performance and cost. Scanning electron microscopy (SEM) and pore structure analysis were used to assess microstructural characteristics. The results demonstrated that replacing quartz sand with yellow sand as the fine aggregate in CA-RPC effectively reduced construction costs without compromising compressive strength. The use of basalt as the coarse aggregate led to higher mechanical strength compared to limestone. Incorporating 20% fly ash reduced the 7-day compressive strength, while the 28-day strength remained unaffected. The addition of 10% silica fume showed no obvious effect on the early strength but significantly improved the 28-day strength and workability of the concrete. Moreover, the incorporation of steel fibers improved the flexural strength and structural integrity of CA-RPC, shifting the failure mode from brittle fracture to a more ductile cracking behavior. SEM observations and pore structure analyses revealed that the admixtures altered the hydration products and pore distribution, thereby affecting the mechanical performance. This study provides valuable insights into the strength development and underlying mechanisms of CA-RPC, offering a theoretical basis for its practical application in bridge deck pavement and tunnels. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 3920 KiB  
Article
Steam Explosion Enhances the Powder Property, Instant Solubility, and Diffusivity of Superfine Ground Tea Powder
by Xin Zhuang, Yue Chen, Shuiqing Wang, Kai Zhong, Wenjie Sui, Chao Ma and Maoyu Wu
Foods 2025, 14(8), 1345; https://doi.org/10.3390/foods14081345 - 14 Apr 2025
Viewed by 498
Abstract
Low-grade tea, often underutilized due to its coarse texture and limited bioavailability, represents a significant resource waste. This study systematically investigated the synergistic effects of steam explosion (SE) and superfine grinding on enhancing the structural deconstruction, powder property, instant solubility, and diffusivity of [...] Read more.
Low-grade tea, often underutilized due to its coarse texture and limited bioavailability, represents a significant resource waste. This study systematically investigated the synergistic effects of steam explosion (SE) and superfine grinding on enhancing the structural deconstruction, powder property, instant solubility, and diffusivity of low-grade. SE treatment induced critical physicochemical modifications, including hemicellulose degradation, lignin recondensation, and cellulose crystalline reorganization, which significantly weakened the lignocellulosic matrix. Subsequent superfine grinding via ball milling achieved ultrafine particles, with median diameter D50 = 10.4 ± 0.17 μm, and almost completely destroyed the cell wall by 99.9%. Extraction kinetics revealed that SE-ball milling synergistically accelerated the diffusion behavior of bioactive compounds, reducing equilibrium time by 2~4 times and increasing maximum yields of polysaccharides, polyphenols, caffeine, and water-soluble solids by 9~25% compared to untreated samples. Homogenization combined with 0.08 mg/mL CMC-Na further improved the suspension stability of tea powder and reduced its centrifugal sedimentation to 9.85%. These findings demonstrate a scalable strategy to transform low-grade tea into high-value ingredients with enhanced accessibility and solubility of bioactive compounds, offering promising applications in instant beverages, fortified foods, and nutraceuticals. Full article
Show Figures

Figure 1

25 pages, 562 KiB  
Article
Optimization of the Ball Milling Process for Producing Superfine Green Tea Powder: An Analytic Hierarchy Process–Fuzzy Comprehensive Evaluation Approach
by Yangpujia Zhou, Guohao Liu, Tao Zhou and Sui Ni
Foods 2025, 14(7), 1283; https://doi.org/10.3390/foods14071283 - 7 Apr 2025
Viewed by 1034
Abstract
In this study, the ball milling method was used to produce superfine green tea powder (SGTP). We used the contents of chlorophyll, caffeine, tea polyphenols, and total free amino acids as indicators and combined the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation [...] Read more.
In this study, the ball milling method was used to produce superfine green tea powder (SGTP). We used the contents of chlorophyll, caffeine, tea polyphenols, and total free amino acids as indicators and combined the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation to establish an AHP–fuzzy comprehensive evaluation approach applicable to SGTP. The production process of SGTP was optimized using the response surface methodology (RSM). The results showed that the three factors of grinding time, rotation speed, and ball-to-material ratio had significant effects on the content of the main components of the tea powder, and the order of the effects was as follows: ball-to-material ratio > grinding time > rotation speed. The optimal grinding time, rotation speed, and ball-to-material ratio for the preparation of SGTP were 5.85 h, 397 r/min, and 9.2:1, respectively. We also found that, compared with green tea powder made with the traditional crushing method, the SGTP prepared under these conditions possessed strong advantages in terms of particle size, the content and dissolution of major components, and antioxidant capacity. In this study, the optimization of the production process of tea powder is initially discussed, and then, a new evaluation method for tea powder is proposed, providing technical support for improving the quality of green tea powder. The AHP–fuzzy comprehensive evaluation approach, by quantifying qualitative assessments, significantly refined our optimization process, enabling a more precise determination of optimal SGTP production parameters. Full article
Show Figures

Graphical abstract

20 pages, 5033 KiB  
Article
Effects of Frost Mulberry Leaf Superfine Powder on the Hypoglycemic and Gut Microbiota of High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes Mellitus Mice
by Jingya Wu, Qiu Wu, Guojian Zhao, Jing Liang, Lei Sun, Ming Jia, Rui Sun and Mingguan Yang
Appl. Sci. 2025, 15(7), 3766; https://doi.org/10.3390/app15073766 - 29 Mar 2025
Viewed by 701
Abstract
Frost mulberry leaves possess significant medicinal and nutritional values and feature extensive resource availability and convenient acquisition. The study investigated the physicochemical structure and functional properties of frost mulberry leaf superfine powder (FMLSP) and the effects of FMLSP on the hypoglycemic activity and [...] Read more.
Frost mulberry leaves possess significant medicinal and nutritional values and feature extensive resource availability and convenient acquisition. The study investigated the physicochemical structure and functional properties of frost mulberry leaf superfine powder (FMLSP) and the effects of FMLSP on the hypoglycemic activity and gut microbiota of type 2 diabetes mellitus (T2DM) mice. The results indicated that the total flavonoid content of FMLSP reached 91.30 mg/g, with significant inhibitory effects on both α-glucosidase and α-amylase activities. Animal experimental data showed that FMLSP could significantly reduce insulin content, improve insulin resistance, and protect liver and pancreatic tissues in T2DM mice. Meanwhile, FMLSP showed significant effects on lipid metabolism, especially the low-density lipoprotein cholesterol (LDL-C) content in T2DM mice was significantly reduced by 76.22%. In addition, FMLSP has excellent antioxidant effects, which greatly alleviated the oxidative stress phenomenon in T2DM mice, especially the malondialdehyde (MDA) content was significantly reduced by 72.17%. FMLSP also restored the diversity and structure of the gut microbiota, significantly increasing the abundance of beneficial bacteria such as Akkermansia, Lachnospiraceae_NK4A136_group, Alloprevotella, and Lactobacillus in T2DM mice and significantly decreasing the abundance of abundance of harmful bacteria such as Rikenellaceae_RC9_gut_group, Enterorhabdus. These results indicate that FMLSP may serve as a potential dietary intervention for the prevention and treatment of T2DM. Full article
Show Figures

Figure 1

17 pages, 7718 KiB  
Article
Effect of Geographic Regions on the Flavor Quality and Non-Volatile Compounds of Chinese Matcha
by Hongchun Cui, Yun Zhao, Hongli Li, Min Ye, Jizhong Yu and Jianyong Zhang
Foods 2025, 14(1), 97; https://doi.org/10.3390/foods14010097 - 2 Jan 2025
Cited by 2 | Viewed by 1488
Abstract
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are [...] Read more.
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are receiving research attention. However, research on the differences in flavor and quality characteristics of matcha from the same tea tree variety from different typical regions in China is relatively weak and urgently required. Taking Japan Shizuoka matcha (R) as a reference, the differences in sensory quality characteristics and non-volatile substances of matcha processed with the same tea variety from different regions in China were analyzed. The samples were China Hangzhou matcha (Z1), China Wuyi matcha (Z2), China Enshi matcha (H), and China Tongren matcha (G), which represent the typical matcha of eastern, central, and western China. A total of 1131 differential metabolites were identified in the matcha samples, comprising 118 flavonoids, 14 tannins, 365 organic acids, 42 phenolic acids, 22 alkaloids, 39 saccharides, 208 amino acids and derivatives, 17 lignans and coumarins, seven quinones, 44 nucleotides and derivatives, 14 glycerophospholipids, two glycolipids, 15 alcohols and amines, 140 benzenes and substituted derivatives, 38 terpenoids, 30 heterocyclic compounds, and 15 lipids. Kaempferol-7-O-rhamnoside, 3,7-Di-O-methylquercetin, epigallocatechin gallate, epicatechin gallate, and epigallocatechin were detected in Z1, Z2, H, and G. A total of 1243 metabolites differed among Z1, Z2, and R. A total of 1617 metabolites differed among G, H, and R. The content of non-volatile difference metabolites of Z2 was higher than that of Z1. The content of non-volatile difference metabolites of G was higher than that of H. The 20 key differential non-volatile metabolites of Z1, Z2, G, and H were screened out separately. The types of non-volatile flavor differential metabolites of G and H were more numerous than those of Z1 and Z2. The metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of co-factors, flavonoid biosynthesis, biosynthesis of amino acids, biosynthesis of various plant secondary metabolites, and purine metabolism of metabolic pathways were the main KEGG pathways. This study provides new insights into the differences in metabolite profiles among typical Chinese matcha geographic regions with the same tea variety. Full article
(This article belongs to the Special Issue Tea: Processing Techniques, Flavor Chemistry and Health Benefits)
Show Figures

Figure 1

16 pages, 2718 KiB  
Article
Optimization of the Homogenization Process of Ginseng Superfine Powder to Improve Its Powder Characteristics and Bioavailability
by Mei Sun, Keke Li, Yuanpei Zhang, Jiwen Li, Deqiang Dou, Xiaojie Gong and Zhongyu Li
Foods 2024, 13(20), 3332; https://doi.org/10.3390/foods13203332 - 20 Oct 2024
Viewed by 1526
Abstract
As consumer demands evolve for health supplements, traditional ginseng products are facing challenges in enhancing their powder characteristics and bioavailability. The objective of this study was to prepare a novel ginseng superfine powder using a high-pressure homogenization (HPH) process. Response surface methodology was [...] Read more.
As consumer demands evolve for health supplements, traditional ginseng products are facing challenges in enhancing their powder characteristics and bioavailability. The objective of this study was to prepare a novel ginseng superfine powder using a high-pressure homogenization (HPH) process. Response surface methodology was employed to determine the effects of HPH parameters (pressure, number of passes, and concentration) on particle size and the dissolution of the saponin components of the superfine powders. The Box–Behnken design of experiments was applied to ascertain the optimal HPH parameters for the smallest particle size and the highest dissolution of the saponin components. For the powders obtained at different parameters, the characterization of tap density, bulk density, flowability, water-holding capacity, appearance, and taste were observed. The optimized experimental conditions for the HPH process were as follows: 15,000 psi (pressure), 3 (number of passes), and 1 kg/L (concentration). The optimized values were 55 μm (particle size) and 83 mg/g (dissolution of the saponin components), respectively. The method offered technical support for the application of the HPH process in the preparation of ginseng powders. The objects of this research could be broadened to include a diverse array of botanical materials, addressing contemporary demands for cost-effectiveness and sustainability within the industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 17403 KiB  
Article
Tensile Properties and Fracture Analysis of Duplex (2205) and Super Duplex (2507) Stainless Steels, Produced via Laser Powder Bed Fusion Additive Manufacturing
by Leonidas Karavias, Leonidas Gargalis, Joachim Seland Graff, Marius Johansen, Spyros Diplas and Evaggelia K. Karaxi
Metals 2024, 14(7), 838; https://doi.org/10.3390/met14070838 - 22 Jul 2024
Cited by 1 | Viewed by 2051
Abstract
Additive manufacturing of duplex (DSS) and super duplex stainless steel (SDSS) has been successfully demonstrated using laser powder bed fusion (LPBF) in recent years. Owing to the high cooling rates, as-built LPBF-processed DSS and SDSS exhibit close to 100% ferritic microstructures and require [...] Read more.
Additive manufacturing of duplex (DSS) and super duplex stainless steel (SDSS) has been successfully demonstrated using laser powder bed fusion (LPBF) in recent years. Owing to the high cooling rates, as-built LPBF-processed DSS and SDSS exhibit close to 100% ferritic microstructures and require heat treatment at 1000–1300 °C to obtain the desired duplex microstructure. In this work, the mechanical properties of DSS and SDSS processed via LPBF were investigated in three building directions (vertical, horizontal, diagonal) and three processing conditions (as-built, stress-relieved, annealed, and quenched) using uniaxial tensile testing. As-built samples exhibited tensile and yield strength greater than 1000 MPa accompanied by less than 20% elongation at break. In comparison, the water-quenched samples and samples annealed at 1100 °C exhibited elongation at break greater than 34% with yield and tensile strength values less than 950 MPa. Stress relief annealing at 300 °C had a negligible impact on the mechanical properties. Austenite formation upon high-temperature annealing restored the reduced ductility of the as-built samples. The as-built and stress-relieved SDSS showed the highest yield and tensile strength values in the horizontal build direction, reaching up to ≈1400 and ≈1500 MPa (for SDSS), respectively, as compared to the vertical and diagonal directions. Fractographic investigation after tensile testing revealed predominantly a quasi-ductile failure mechanism, showing fine size dimple formation and cleavage facets in the as-built state and a fully ductile fracture in the annealed and quenched conditions. The findings in this study demonstrate the mechanical anisotropy of DSS and SDSS along three different build orientations, 0°, 45°, 90°, and three post-processing conditions. Full article
Show Figures

Figure 1

14 pages, 3536 KiB  
Article
The Effects of Jet-Milling and Pulsed Electric Fields on the Preservation of Spinach Juice Lutein Contents during Storage
by Si-Yeon Kim, Yeong-Geol Lee, Hye-In Ju, Ji-Hee Jeon, Se-Ho Jeong and Dong-Un Lee
Foods 2024, 13(6), 834; https://doi.org/10.3390/foods13060834 - 8 Mar 2024
Viewed by 1526
Abstract
This study aimed to investigate the effects of jet-milling on the lutein extraction contents of spinach powder (SP), as well as the effects of pulsed electric field (PEF), as a non-thermal pasteurization technology, on the preservation of spinach juice (SJ) lutein contents. SP [...] Read more.
This study aimed to investigate the effects of jet-milling on the lutein extraction contents of spinach powder (SP), as well as the effects of pulsed electric field (PEF), as a non-thermal pasteurization technology, on the preservation of spinach juice (SJ) lutein contents. SP particles were divided into SP-coarse (Dv50 = 315.2 μm), SP-fine (Dv50 = 125.20 μm), and SP-superfine (Dv50 = 5.59 μm) fractions, and SP-superfine was added to SJ due to its having the highest contents of lutein extract. PEFs and thermal treatment were applied to evaluate the effects of preserving the lutein content of PEF during storage (25 days). The juice was then designated as untreated (no pasteurization), PEF-1,2 (SJ treated with PEF 20 kV/cm 110 kJ/L, 150 kJ/L), or Thermal-1,2 (SJ treated with 90 °C, 10 min and 121 °C, 15 min). The sizes and surface shapes of the superfine SP particles were more homogeneous and smoother than those of the other samples. SJ made with SP-superfine and treated with PEF had the highest lutein content and antioxidant activities among the group during storage. A complex of jet-milling and PEF could have great potential as a method to improve the lutein contents of lutein-enriched juice in the food industry. Full article
(This article belongs to the Special Issue Novel Food and Beverages: Production and Characterization)
Show Figures

Figure 1

12 pages, 6554 KiB  
Article
Two-Step PM Procedure for Fabrication of Super-Engineering Plastic Gears
by Tatsuhiko Aizawa, Tomohiro Miyata and Kiyoyuki Endoh
Machines 2024, 12(3), 174; https://doi.org/10.3390/machines12030174 - 4 Mar 2024
Cited by 1 | Viewed by 1791
Abstract
The two-step PM (powder metallurgy)-route procedure was proposed to fabricate a super-engineering plastic gear directly from powder feedstock. Its lightweight, fully dense integrity and high-stiffness has been found to be suitable for reducers in robotics and electric vehicles, as they work even in [...] Read more.
The two-step PM (powder metallurgy)-route procedure was proposed to fabricate a super-engineering plastic gear directly from powder feedstock. Its lightweight, fully dense integrity and high-stiffness has been found to be suitable for reducers in robotics and electric vehicles, as they work even in severe environmental conditions. In this study, the green compaction and sinter-forging processes were used to consolidate the polyimide powder feedstock and to sinter forge the solid preform into the final products. To demonstrate the high density of preforms and sinter-forged gears, a hardness measurement and X-ray computer tomography were employed. The gear-grade balancing was also evaluated to describe the effect of fine sinter-forging conditions on the dimensional quality of polyimide gears. High gear grade with JIS-2 class proved that the polyimide was useful as a matrix of lightweight and high-strength gears. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

14 pages, 3975 KiB  
Article
Influence of Silane Coupling Agent and Anionic Dispersant on the Dispersion Effect of Silicon Carbide Particles
by Zheng Zheng, Min Li, Wenxiao Zhang, Xuhui Zhang, Jiaxiang Liu and Tianyu Yang
Materials 2024, 17(2), 425; https://doi.org/10.3390/ma17020425 - 15 Jan 2024
Cited by 5 | Viewed by 1958
Abstract
Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(β-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder [...] Read more.
Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(β-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder Company. The effects of different modifiers on improving the flowability of ultrafine silicon carbide slurry were investigated by means of viscosity tests, sedimentation experiments, and SEM observations. Their modification mechanisms were investigated by means of zeta potential tests, XPS tests, and so on. In this paper, the initial modification of SiC was carried out with KH792, followed by the secondary modification with anionic and cationic modifiers (tetramethylammonium hydroxide and sodium humate), and the optimal modification conditions were investigated by means of a viscosity test, which showed that the lowest viscosity of the modified SiC reached 0.076 Pa·s and that the absolute maximum value of the zeta potential increased from 47.5 at the time of no modification to 63.7 (maximum values) at the time of modification. This means it has an improved surface charge, which improves dispersion. The adsorption results of the modifier on the silicon carbide surface were also demonstrated by the XPS test results. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 3610 KiB  
Article
Effects of Superfine Tricalcium Silicate Powder on the Physicochemical and Mechanical Properties of Its Premixed Cement as a Root Canal Filling Material
by Xin Duan, Yanni Tan, Dechang Zhang and Hong Wu
Materials 2024, 17(2), 347; https://doi.org/10.3390/ma17020347 - 10 Jan 2024
Cited by 1 | Viewed by 1846
Abstract
Calcium silicate-based cement is a promising material for filling root canals. However, it has several drawbacks to its clinical application, including difficult operation and low curing strength. In this study, we successfully prepared an ultrafine tricalcium silicate powder and investigated the effects of [...] Read more.
Calcium silicate-based cement is a promising material for filling root canals. However, it has several drawbacks to its clinical application, including difficult operation and low curing strength. In this study, we successfully prepared an ultrafine tricalcium silicate powder and investigated the effects of this ultrafine powder on the performance of the premixed tricalcium silicate cement, including the curing process, setting time, hydration products, microstructure, injectivity, fluidity, and compressive strength. The results demonstrate that the addition of ultrafine tricalcium silicate powder alters the hydration product content and product morphology of the premixed cement. By increasing the content of the ultrafine powder, the injectable property of the cement can be increased to more than 95%, the fluidity can be increased from 18 mm to 35 mm, and the curing time can be shortened from 13 h to 11 h. Notably, the addition of the ultrafine powder greatly enhances the compressive strength of the hardened cement, which increases from 20.6 MPa to 51.0 MPa. These results indicate that altering the particle size distribution of the powder is an effective method for enhancing the physicochemical and mechanical properties of tricalcium silicate cement as a root canal filling material. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Biomaterials)
Show Figures

Figure 1

16 pages, 7304 KiB  
Article
Study on Slurry Flow Characteristics and Diffusion Law of Superfine Cement-Based Composite Grouting Material
by Tongqiang Xiao, Zihao Yu, Fayi Liu, Xiaoliang Dai and Jianwei Sun
Processes 2023, 11(7), 1906; https://doi.org/10.3390/pr11071906 - 25 Jun 2023
Cited by 8 | Viewed by 1583
Abstract
The soft surrounding rock of deep roadways is in the state of “micro-fracture and low permeability”. In order to solve the problem of grouting reinforcement of micro-fractures surrounding rock in deep roadways, the influence characteristics of auxiliary materials and additives on slurry flow [...] Read more.
The soft surrounding rock of deep roadways is in the state of “micro-fracture and low permeability”. In order to solve the problem of grouting reinforcement of micro-fractures surrounding rock in deep roadways, the influence characteristics of auxiliary materials and additives on slurry flow were analyzed, and the composition and proportion of superfine cement-based composite grouting materials were determined: superfine cement accounted for 89.4%, superfine coal ash accounted for 5%, ultrafine mineral powder accounted for 5%, naphthalene water reducing agent accounted for 3~5‰, and lignin sulfonate calcium accounted for 1~3‰. The effects of water–cement ratio and water reducer content on slurry viscosity and water bleeding rate were tested by laboratory experiments. Based on the fracture characteristics of surrounding rock and the “Liu Jiacai Formula”, the influence law of fracture opening, grouting pressure and slurry viscosity on the slurry diffusion radius was analyzed. The results show that the slurry viscosity decreases with the increase of water–cement ratio and water reducer content, but the bleeding rate increases obviously with the increase of the two factors; when the water–cement ratio is 1.0 and the water reducer content is 3‰, the slurry has the advantages of “strong permeability, strong flow and low water bleeding rate”; the smaller the fracture opening is, the greater the required grouting pressure and the lower the required slurry viscosity. Aiming at the “micro-fracture zone” of surrounding rock in deep roadways, when the dynamic viscosity of the slurry is 2.0 mPa·s, the reasonable grouting pressure should be 12 MPa to meet the needs of grouting reinforcement engineering. The high-pressure grouting test of surrounding rock in the “micro-fracture zone” was successfully carried out by using the superfine cement-based composite grouting material. Full article
(This article belongs to the Special Issue Advanced Technologies of Deep Mining)
Show Figures

Figure 1

22 pages, 12427 KiB  
Article
Strength Investigation and Prediction of Superfine Tailings Cemented Paste Backfill Based on Experiments and Intelligent Methods
by Yafei Hu, Keqing Li, Bo Zhang and Bin Han
Materials 2023, 16(11), 3995; https://doi.org/10.3390/ma16113995 - 26 May 2023
Cited by 13 | Viewed by 1602
Abstract
The utilization of solid waste for filling mining presents substantial economic and environmental advantages, making it the primary focus of current filling mining technology development. To enhance the mechanical properties of superfine tailings cemented paste backfill (SCPB), this study conducted response surface methodology [...] Read more.
The utilization of solid waste for filling mining presents substantial economic and environmental advantages, making it the primary focus of current filling mining technology development. To enhance the mechanical properties of superfine tailings cemented paste backfill (SCPB), this study conducted response surface methodology experiments to investigate the impact of various factors on the strength of SCPB, including the composite cementitious material, consisting of cement and slag powder, and the tailings’ grain size. Additionally, various microanalysis techniques were used to investigate the microstructure of SCPB and the development mechanisms of its hydration products. Furthermore, machine learning was utilized to predict the strength of SCPB under multi-factor effects. The findings reveal that the combined effect of slag powder dosage and slurry mass fraction has the most significant influence on strength, while the coupling effect of slurry mass fraction and underflow productivity has the lowest impact on strength. Moreover, SCPB with 20% slag powder has the highest amount of hydration products and the most complete structure. When compared to other commonly used prediction models, the long-short term memory neural network (LSTM) constructed in this study had the highest prediction accuracy for SCPB strength under multi-factor conditions, with root mean square error (RMSE), correlation coefficient (R), and variance account for (VAF) reaching 0.1396, 0.9131, and 81.8747, respectively. By optimizing the LSTM using the sparrow search algorithm (SSA), the RMSE, R, and VAF improved by 88.6%, 9.4%, and 21.9%, respectively. The research results can provide guidance for the efficient filling of superfine tailings. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 2609 KiB  
Article
Size Effect on Hygroscopicity of Waterlogged Archaeological Wood by Simultaneous Dynamic Vapour Sorption
by Liuyang Han, Dehao Yu, Tiantian Liu, Xiangna Han, Guanglan Xi and Hong Guo
Forests 2023, 14(3), 519; https://doi.org/10.3390/f14030519 - 7 Mar 2023
Cited by 6 | Viewed by 1944
Abstract
Hygroscopicity is one of the most important properties of wood and plays a decisive role in its dimensional stability. In this context, conservation plans for waterlogged archaeological wood (WAW) and relevant waterlogged artefacts must be created. The size of the sample required for [...] Read more.
Hygroscopicity is one of the most important properties of wood and plays a decisive role in its dimensional stability. In this context, conservation plans for waterlogged archaeological wood (WAW) and relevant waterlogged artefacts must be created. The size of the sample required for a moisture sorption assessment may affect the results for (and thus the perception of) the hygroscopicity of a testing artefact. Herein, to investigate the effects of the sample size on the hygroscopicity of WAW as measured via dynamic vapour sorption (DVS), typical WAW and recent (i.e., sound) wood are processed into four differently sized samples, ranging in thickness from 200 mesh to millimetre. The equilibrium moisture contents (EMCs) of the wood samples are simultaneously measured using simultaneous DVS. The sorption isotherms show that the EMC values of the recent wood at each relative humidity increase as the sample size decreases, with the superfine powder sample achieving the highest EMC of all of the recent samples. Although the WAW has a higher EMC than that of recent wood, the effect of the size of the WAW sample on its hygroscopic properties is surprisingly not as pronounced as that for the recent wood. In addition, the hysteresis between the samples of different sizes of the archaeological wood is significantly smaller than that for the reference samples. Furthermore, regarding the standard deviations of the parameters obtained from the Guggenheim Anderson de Boer and Hailwood–Horrobin models, the values for WAW are all much smaller than those for the reference wood. This further verifies the disappearance of the size effect of the hygroscopicity for WAW. Full article
(This article belongs to the Special Issue Wood Conversion, Engineered Wood Products and Performance Testing)
Show Figures

Figure 1

20 pages, 6006 KiB  
Article
Analysis of the Effect of Pore Water Pressure on a Small Radius Curve Section of a Fine Sand Layer under Cyclic Metro
by Xiaorui Wang, Xu Liu, Yunhong Lin and Fei Tan
Water 2023, 15(5), 981; https://doi.org/10.3390/w15050981 - 3 Mar 2023
Cited by 1 | Viewed by 2681
Abstract
Small curved metro shield tunnels located in fine sand layers are sensitive to the response of horizontal and vertical cyclic loads from train operations, especially for centrifugal horizontal loads. The majority of Zhengzhou’s strata are dominated by this geological composition. Therefore, the dynamic [...] Read more.
Small curved metro shield tunnels located in fine sand layers are sensitive to the response of horizontal and vertical cyclic loads from train operations, especially for centrifugal horizontal loads. The majority of Zhengzhou’s strata are dominated by this geological composition. Therefore, the dynamic response of the fine sand layer under the train vibration load will lead to the settlement of the sand layer, which brings great hidden danger to the train operation. Long-term pore water monitoring was carried out in this paper, and the use of MIDAS-GTS (Multi-candidate Iterative Design with Adaptive Selection) finite element calculation platform to establish the metro ballast-lining-soil coupling dynamic model for mutual verification. The variation patterns of pore water pressure and super pore water pressure during train operation and the vibration response pattern of the soil layer around the tunnel were investigated. The results suggest that: (1) The pore and excess pore water pressures generated at the start of vibration are not easily dissipated and transferred, making them larger in the early stages of train operation. In contrast, the fine-grained powdered sandy soil has a small amount of clay particles, giving strength and cohesion to the soil layer. Vibrating hole pressure and excess pore water pressure stabilize with the train at a later stage; (2) The low probability of liquefaction in the silt layer surrounding the tunnel; (3) Under vibrating loads, areas of significant soil settlement are concentrated on the soil surface, on the upper side of the tunnel in the silty sand layer and at the bottom 3 m of the tunnel, however, its low variation in settlement has a low impact on the tunnel. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

Back to TopTop