Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = super-absorbing polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1889 KiB  
Article
Influence of Mixing Duration and Absorption Characteristics of Superabsorbent Polymers on the Fresh and Hardened Properties of High-Performance Concrete
by Yu-Cun Gu and Kamal H. Khayat
Materials 2025, 18(15), 3609; https://doi.org/10.3390/ma18153609 - 31 Jul 2025
Viewed by 232
Abstract
This study investigates the combined influence of superabsorbent polymers (SAPs) with distinct absorption kinetics and extended mixing sequences on the rheological, mechanical, and transport properties of high-performance concrete (HPC). Two SAPs—an ionic acrylamide-co-acrylic acid copolymer (SAP-P) and a non-ionic acrylamide polymer (SAP-B)—were incorporated [...] Read more.
This study investigates the combined influence of superabsorbent polymers (SAPs) with distinct absorption kinetics and extended mixing sequences on the rheological, mechanical, and transport properties of high-performance concrete (HPC). Two SAPs—an ionic acrylamide-co-acrylic acid copolymer (SAP-P) and a non-ionic acrylamide polymer (SAP-B)—were incorporated at an internal curing level of 100%. The impact of extended mixing times (3, 5, and 7 min) following SAP addition was systematically evaluated. Results showed that longer mixing durations led to increased superplasticizer demand and higher plastic viscosity due to continued water absorption by SAPs. However, yield stress remained relatively stable owing to the dispersing effect of the added superplasticizer. Both SAPs significantly enhanced the static yield stress and improved fresh stability, as evidenced by reduced surface settlement. Despite the rheological changes, mechanical properties—including compressive and flexural strengths and modulus of elasticity—were consistently improved, regardless of mixing duration. SAP incorporation also led to notable reductions in autogenous and drying shrinkage, as well as enhanced electrical resistivity, indicating better durability performance. These findings suggest that a 3 min extended mixing time is sufficient for effective SAP dispersion without compromising performance. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

15 pages, 721 KiB  
Article
Effect of Superabsorbent Polymer Size on Strength and Shrinkage in Concrete Mixtures
by Wissawin Arckarapunyathorn, Pochpagee Markpiban and Raktipong Sahamitmongkol
Polymers 2025, 17(14), 1942; https://doi.org/10.3390/polym17141942 - 16 Jul 2025
Viewed by 287
Abstract
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm [...] Read more.
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm and 600–1180 µm. The primary focus was on evaluating compressive strength, elastic modulus, autogenous shrinkage, drying shrinkage, and total shrinkage. The mechanical performance and dimensional stability were measured at different curing ages, and microstructural analysis was conducted using X-ray fluorescence (XRF) at 7 days to examine changes in chemical composition. Results showed that smaller SAP sizes contributed to more homogeneous internal curing, improved hydration, and higher matrix density. In contrast, larger SAP particles were more effective in reducing shrinkage but slightly compromised strength and stiffness. This study emphasizes the importance of selecting appropriate SAP particle sizes to balance mechanical integrity and shrinkage control, contributing to the development of high-performance concrete with reduced cracking potential. Full article
(This article belongs to the Special Issue Polymer Materials for Construction)
Show Figures

Figure 1

36 pages, 2776 KiB  
Review
Superabsorbent Core/Shell Composite Materials: A Review on Synthesis, Design and Applications
by Maria Pastrafidou, Evangelia C. Vouvoudi, Vassilios Binas and Ioannis A. Kartsonakis
Polymers 2025, 17(11), 1461; https://doi.org/10.3390/polym17111461 - 24 May 2025
Viewed by 1157
Abstract
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can [...] Read more.
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can be tailored to improve the material’s performance. The core is typically fabricated from superabsorbent polymers such as sodium polyacrylate, poly(acrylic acid) or other hydrophilic materials. The shell can be either inorganic polymers or organic polymers such as poly(methyl methacrylate), biodegradable polymers, polysaccharides or other functionalized materials in order to enhance biodegradability, mechanical strength or responsiveness to stimuli (e.g., temperature, pH). These materials present enormous potential to address issues for versatile applications in various fields, including biomedical applications, hygiene products and agriculture, due to their tailored structure. The common synthesis techniques for these advanced materials are emulsion polymerization, in situ polymerization, suspension polymerization with respect to the core material, layer-by-layer assembly and the sol–gel technique with respect to the shell formation. The techniques that are usually utilized for the characterization of the aforementioned materials and the validation of their functionalities are based on thermal analysis, morphology studies and swelling behavior and water retention and release mechanical properties, respectively. This review offers an in-depth examination of recent advancements in synthesis methods, structural engineering approaches and emerging applications of superabsorbent core/shell composites, highlighting the critical importance of material design in boosting their performance and broadening their practical use. Finally, special attention is devoted to the future perspectives of superabsorbent core/shell composites, exploring potential innovations in material design and multifunctionality. Emerging trends such as stimuli-responsive behavior, sustainability and scalability are discussed as key factors for next-generation applications. The review also outlines challenges and opportunities that could guide future research and industrial implementation. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Polymeric Materials)
Show Figures

Graphical abstract

23 pages, 4270 KiB  
Article
Molecular Dynamics Study of a Superabsorbent Polymer (SAP)-Modified Calcium Silicate Hydrate (C-S-H) Gel’s Mechanical Properties
by Shengbo Zhou, Jinlin Cai, Ke Lai, Gengfei Li, Shengjie Liu, Jian Wang and Xiaohu Sun
Buildings 2025, 15(10), 1752; https://doi.org/10.3390/buildings15101752 - 21 May 2025
Viewed by 480
Abstract
Superabsorbent polymers (SAPs) are widely employed as an internal curing agent to enhance the durability and shrinkage–cracking resistance of concrete. However, while its macroscopic effects on concrete properties (e.g., strength reduction) have been documented, the nanoscale mechanisms governing the mechanical behavior of calcium [...] Read more.
Superabsorbent polymers (SAPs) are widely employed as an internal curing agent to enhance the durability and shrinkage–cracking resistance of concrete. However, while its macroscopic effects on concrete properties (e.g., strength reduction) have been documented, the nanoscale mechanisms governing the mechanical behavior of calcium silicate hydrate (C-S-H) gel in SAP-modified concrete remain poorly understood. This knowledge gap limits the optimization of SAP content for balancing durability and strength, a critical challenge in high-performance concrete design. In this paper, we address this scientific problem by combining experimental characterization and molecular dynamics (MD) simulations to systematically investigate how SAP-induced pore structure modifications dictate the mechanical performance of C-S-H gel. First, we analyzed the effects of SAP on concrete pore structure and compressive strength, revealing its role in refining capillary pores into gel pores. Next, MD simulations were employed to construct C-S-H gel models with controlled pore size distributions at three SAP contents (0.2%, 0.3%, and 0.5%), to establish a quantitative relationship between pore characteristics and material performance. The results reveal that pores of ~0.74 nm diameter, predominantly located in weak interfacial regions, critically govern the mechanical behavior of C-S-H gel. At 0.2% SAP content, the C-S-H gel exhibits the highest bulk modulus (10.61 GPa) and optimal mechanical properties, whereas 0.3% SAP leads to a dominant pore cluster at 1.12 nm, resulting in significant reductions in bulk modulus (30.8%), shear modulus (29%), and Young’s modulus (22.3%). These findings establish a quantitative pore-property relationship, providing a mechanistic basis for tailoring SAP content to enhance both durability and mechanical performance in concrete, ultimately advancing the design of longer-lasting infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 6185 KiB  
Article
Investigating Moisture-Induced Particle Behavior in a Horizontal Shaft Mixer
by Minkyung Sim and Kwang Kim
Fluids 2025, 10(5), 135; https://doi.org/10.3390/fluids10050135 - 19 May 2025
Viewed by 372
Abstract
Grains stored in silos and pellets for injection molding deteriorate in quality due to increased moisture in the particles when exposed to air for a long period of time, so it is necessary to reduce the moisture in the particles through the mixing [...] Read more.
Grains stored in silos and pellets for injection molding deteriorate in quality due to increased moisture in the particles when exposed to air for a long period of time, so it is necessary to reduce the moisture in the particles through the mixing process. However, few studies have conducted parallel experiments and simulations to understand the behavior of particles depending on their moisture content. In this study, mixing experiments were conducted using superabsorbent polymer (SAP) beads that expand depending on the moisture content, and the interparticle friction coefficient and interface friction coefficient required for simulation were derived. As a result, it was found that moisture generates an adhesive force that causes interparticle cohesion, and as the moisture content increases further, the particles adhere to the vessel wall due to the adhesive force. In addition, particles with high moisture content (e.g., 90%) showed faster mixing behavior similar to dry particles, as indicated by the Lacey Mixing Index (LMI), while low moisture particles (e.g., 60%) showed the slowest mixing. It is expected that the mixing characteristics of particles depending on the moisture content can be understood and will be useful for the design of horizontal shaft mixers. Full article
Show Figures

Figure 1

14 pages, 3273 KiB  
Article
Improved Autogenous Healing of Concrete with Superabsorbent Polymers Evaluated Through Coupled and Air-Coupled Ultrasound
by Gerlinde Lefever
Buildings 2025, 15(10), 1691; https://doi.org/10.3390/buildings15101691 - 17 May 2025
Viewed by 410
Abstract
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount [...] Read more.
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount included. To evaluate the self-healing effectiveness, the regain of mechanical performance needs to be assessed. However, such evaluation requires destructive testing, meaning that the healing progress cannot be followed over time. As a solution, air-coupled ultrasonic testing was used within this study, adopting a novel laser interferometer as a receiver, to estimate the regained properties of cementitious mixtures with and without superabsorbent polymers. The sensitivity of ultrasonic waves to the elastic properties of the material under study allows us to monitor the crack healing progress, while the semi-contactless nature of the procedure enables an easy and reliable measurement. Up to 80% recovery in ultrasonic velocity was achieved with reference concrete, while SAP concrete demonstrated up to 100% recovery after wet–dry curing. Following microscopic analysis, up to 19% visual crack closure was obtained for reference concrete, compared to a maximum of 50% for SAP mixtures, for average crack widths between 250 µm and 450 µm. Full article
Show Figures

Figure 1

34 pages, 3878 KiB  
Review
Influences of Additives on the Rheological Properties of Cement Composites: A Review of Material Impacts
by Ke Xu, Jie Yang, Haijie He, Jingjie Wei and Yanping Zhu
Materials 2025, 18(8), 1753; https://doi.org/10.3390/ma18081753 - 11 Apr 2025
Cited by 1 | Viewed by 1139
Abstract
Cement-based materials are essential in modern construction, valued for their versatility and performance. Rheological properties, including yield stress, plastic viscosity, and thixotropy, play indispensable roles in optimizing the workability, stability, and overall performance of cement composites. This review explores the effects of supplementary [...] Read more.
Cement-based materials are essential in modern construction, valued for their versatility and performance. Rheological properties, including yield stress, plastic viscosity, and thixotropy, play indispensable roles in optimizing the workability, stability, and overall performance of cement composites. This review explores the effects of supplementary cementitious materials (SCMs), chemical admixtures, nanomaterials, and internal curing agents on modulating rheological properties. Specifically, SCMs, including fly ash (FA), ground granulated blast furnace slag (GGBFS), and silica fume (SF), generally improve the rheology of concrete while reducing the cement content and CO2 emissions. Regarding chemical admixtures, like superplasticizers (SPs), viscosity-modifying agents (VMAs), setting-time control agents, and superabsorbent polymers (SAPs), they further optimize flow and cohesion, addressing issues such as segregation and early-age shrinkage. Nanomaterials, including nano-silica (NS) and graphene oxide (GO), can enhance viscosity and mechanical properties at the microstructural level. By integrating these materials above, it can tailor concrete for specific applications, thereby improving both performance and sustainability. This review presents a comprehensive synthesis of recent literature, utilizing both qualitative and quantitative methods to assess the impacts of various additives on the rheological properties of cement-based materials. It underscores the pivotal roles of rheological properties in optimizing the workability, stability, and overall performance of cement composites. The review further explores the influences of SCMs, chemical admixtures, nanomaterials, and internal curing agents on rheological modulation. Through the strategic integration of these materials, it is possible to enhance both the performance and sustainability of cement composites, ultimately reducing carbon emissions and advancing the development of eco-friendly construction materials. Full article
(This article belongs to the Special Issue Advances in Low Carbon Concrete and Structures)
Show Figures

Graphical abstract

30 pages, 5685 KiB  
Article
Development of Polyampholyte Cellulose-Based Hydrogels for Diapers with Improved Biocompatibility
by Beatriz Simões, Rafael C. Rebelo, Sara Ledesma, Patrícia Pereira, Rui Moreira, Brígida C. Ferreira, Jorge F. J. Coelho and Arménio C. Serra
Gels 2025, 11(4), 282; https://doi.org/10.3390/gels11040282 - 10 Apr 2025
Cited by 2 | Viewed by 996
Abstract
Non-biodegradable superabsorbent polymers (SAPs) in personal care products (PCPs) pose significant environmental and health concerns despite their high absorption capacity. The aim of this study was to develop cellulose-based hydrogels as a sustainable alternative to those conventional SAPs, taking advantage of cellulose properties [...] Read more.
Non-biodegradable superabsorbent polymers (SAPs) in personal care products (PCPs) pose significant environmental and health concerns despite their high absorption capacity. The aim of this study was to develop cellulose-based hydrogels as a sustainable alternative to those conventional SAPs, taking advantage of cellulose properties such as biocompatibility, biodegradability, and hydrophilicity. A synthesized allyl cellulose (AC) derivative was copolymerized with unusual monomers used in the production of SAPs, and the influence of monomer ratios, crosslinking density, and the ratio of cellulose to monomers on the absorption capacity was investigated and optimized. The most promising hydrogels were fully characterized for the proposed application and compared with a commercial SAP extracted from a baby diaper. The cellulose-based hydrogels showed promising absorption capacities in synthetic urine (~15 g/g), and a high centrifuge retention capacity (12.5 g/g), which was only slightly lower than the commercial SAP. These new hydrogels exhibited excellent biocompatibility and outperformed the established commercial diaper SAP. This study represents a more sustainable alternative to conventional SAPs, potentially reducing health risks while increasing the bio-based content of PCPs. Further optimization of these hydrogels could transform the hygiene product industry, by providing a balance between performance and environmental sustainability. Full article
(This article belongs to the Special Issue Cellulose Gels: Properties and Prospective Applications)
Show Figures

Graphical abstract

11 pages, 4944 KiB  
Article
Synthesis and Characterization of a Superabsorbent Polymer Gel Using a Simultaneous Irradiation Technique on Corn Straw
by Xingkui Tao, Jun Guo, Aihua Wang, Qiang Wang, Yang Yang and Minwei Xu
Gels 2025, 11(4), 244; https://doi.org/10.3390/gels11040244 - 26 Mar 2025
Cited by 1 | Viewed by 619
Abstract
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of [...] Read more.
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of absorbing significantly more water. The structural attributes of the corn straw, the decrystallized corn straw, and the SAPG were analyzed via Fourier transform infrared spectroscopy (FTIR), X-ray crystal powder diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). To enhance the SAPG’s performance, optimization of various parameters was carried out, such as irradiation dose, dose rate, the ratio of monomer to corn straw, the proportion of acrylic acid (AA) to acrylamide (Am), and the degree of neutralization. The resulting SAPG exhibited distilled water absorption of 1033 g/g and 90 g/g in 0.9 wt.% NaCl solution, with a radiation dose of 5 kGy, a dose rate of 1.5 kGy/h, AA-to-AM mass ratio of 1.2, monomer-to-CS mass ratio of 7, and 90% AA neutralization. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

28 pages, 4775 KiB  
Review
Progress and Prospects of Polymer/One-Dimensional Nanoclay Superabsorbent Composites
by Haifeng Xing, Xiangyu Liu, Qingdong He and Wenbo Wang
Polymers 2025, 17(5), 669; https://doi.org/10.3390/polym17050669 - 28 Feb 2025
Viewed by 998
Abstract
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of [...] Read more.
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of SAMs is influenced by the presence of hydrophilic groups and a swellable network structure. To optimize performance, one must adjust the types and concentrations of functional groups. Additionally, changes in the density and regularity of the polymer network are necessary. Significant performance improvements are limited by inherent challenges in modifying polymer chains or networks. To enhance performance, researchers focus on manipulating the components and structure of the polymer network. Effective water retention requires the network to fully expand while maintaining its strength. Incorporating nanoparticles, especially one-dimensional (1D) nanoclays, minimizes chain entanglement and prevents network collapse during drying. This approach effectively addresses the above challenges. Upon swelling, these nanoparticles improve hydrogen bonding within the polymer network, significantly boosting the performance of SAMs. Nanoclays are abundant natural silicates found in various nanostructures like nanorods, nanofibers, and nanotubes. These nanoclays contain reactive silanol groups that form strong hydrogen bonds with polymer chains. This aids in network formation and reduces costs. Advances in synthesis and structural control have facilitated the development of versatile 1D nanoclay-based SAMs. This paper reviews the structure, characteristics, and applications of such materials and proposes future research directions aimed at developing higher-performance clay-based SAMs. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

26 pages, 7628 KiB  
Article
Poly(Acrylic Acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized Using Electron-Beam Irradiation—Part III: An Evaluation of Their Degradation in Soil
by Elena Manaila, Ion Cosmin Calina, Marius Dumitru and Gabriela Craciun
Molecules 2025, 30(5), 1126; https://doi.org/10.3390/molecules30051126 - 28 Feb 2025
Cited by 1 | Viewed by 895
Abstract
Global challenges in agriculture, in terms of water and nutrient loss control, require new approaches to maintaining or even increasing crop production. Promising materials, such as superabsorbent hydrogels of hybrid types obtained from natural polymers grafted with synthetic polymers, represent a viable solution [...] Read more.
Global challenges in agriculture, in terms of water and nutrient loss control, require new approaches to maintaining or even increasing crop production. Promising materials, such as superabsorbent hydrogels of hybrid types obtained from natural polymers grafted with synthetic polymers, represent a viable solution to solve these problems and maintain a clean environment. In view of this, two types of hydrogels based on sodium alginate, acrylic acid and polyethylene oxide obtained using 5.5 MeV electron-beam irradiation were subjected to degradation through burial in the soil. Swollen hydrogels in two types of water (distilled and tap) and two types of nutrient solutions (synthetic nutrient solution and 100% natural organic nutrient solution), with different pHs of 5.40, 6.05, 7.45 and 7.66, were buried in soil for 30 and 60 days and then extracted and analyzed in terms of their mass loss, swelling behavior and cross-linking structure. The highest mass losses after both 30 and 60 days were recorded for the hydrogels buried in soils whose humidity was maintained by watering them with the basic solutions (tap water and the organic nutrient solution). Structural modifications associated with the degradation process were highlighted by decreases in the cross-link densities and increases in the mesh sizes and swelling. These results were confirmed using FTIR and SEM techniques. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Graphical abstract

31 pages, 27163 KiB  
Article
Synergistic Use of Nanosilica and Basalt Fibers on Mechanical Properties of Internally Cured Concrete with SAP: An Experimental Analysis and Optimization via Response Surface Methodology
by Said Mirgan Borito, Han Zhu, Yasser E. Ibrahim, Sadi Ibrahim Haruna and Zhao Bo
Fibers 2025, 13(3), 25; https://doi.org/10.3390/fib13030025 - 26 Feb 2025
Viewed by 1242
Abstract
This study explores the combined effects of nanosilica (NS) and basalt fibers (BF) on the mechanical and microstructural properties of superabsorbent polymer (SAP)-modified concrete. NS (0–1.5% replaced by cement weight) and BF (0–1.2% by volume fraction) were incorporated to optimize compressive, flexural, and [...] Read more.
This study explores the combined effects of nanosilica (NS) and basalt fibers (BF) on the mechanical and microstructural properties of superabsorbent polymer (SAP)-modified concrete. NS (0–1.5% replaced by cement weight) and BF (0–1.2% by volume fraction) were incorporated to optimize compressive, flexural, and split-tensile strengths using response surface methodology. Digital Image Correlation (DIC) was employed to analyze failure mechanisms. Results show that while SAP alone reduced strength, the addition of NS and BF mitigated this loss through synergistic microstructure enhancement and crack-bridging reinforcement. The optimal mix (0.9% NS and 1.2% BF) increased compressive, flexural, and split-tensile strengths by 15.3%, 10.0%, and 14.0%, respectively. SEM analysis revealed that NS filled SAP-induced pores, while BF limited crack propagation, contributing to improved mechanical strength of SAP-modified concrete. This hybrid approach offers a promising solution for durable and sustainable concrete pavements. Full article
Show Figures

Figure 1

15 pages, 4312 KiB  
Article
Insights into Hydration Kinetics of Cement Pastes Evaluated by Low-Field Nuclear Magnetic Resonance: Effects of Super-Absorbent Polymer as Internal Curing Agent and Calcium Oxide as Expansive Agent
by Meixin Liu, Yuan Hu, Jing Li, Xiaolin Liu, Huiwen Sun, Yunfei Di, Xia Wu and Junyi Zhang
Materials 2025, 18(4), 836; https://doi.org/10.3390/ma18040836 - 14 Feb 2025
Cited by 1 | Viewed by 714
Abstract
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2 [...] Read more.
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2) signals. This study provides insights into the influence of a super-absorbent polymer (SAP) as an internal curing agent and calcium oxide (CaO) as an expansive agent (EA) on LF-NMR spectroscopy of cement paste for the first time. The chemical compositions of the cement and CaO-based EA were determined by X-ray fluorescence, while the morphological characterizations of the cement, SAP and CaO-based EA materials were characterized by scanning electron microscopy. Based on the extreme points in the first-order derivatives of the T2 signal maximum amplitude curve, the hydration progress was analyzed and identified with four stages in detail. The results showed that the use of the SAP with a higher content retarded the hydration kinetics more evidently at a very early age, thus prolonging the duration of the induction and acceleration stages. The use of the CaO-based EA shortened the induction, acceleration and deceleration stages, which verified its promotion of hydration kinetics in the presence of the SAP. The combination of 3 wt% SAP and 2 wt% CaO consumed more water content synergistically in the first 100 h by hydration reactions. These findings revealed the roles of SAP and CaO-based EA (commonly adopted for low-shrinkage concrete) in adjusting hydration parameters and the microstructure evolution of cement-based materials, which would further offer fundamental knowledge for the early-age cracking control of concrete structures. Full article
Show Figures

Figure 1

27 pages, 5690 KiB  
Review
Superabsorbent Polymers: Innovations in Ecology, Environmental, and Diverse Applications
by Qingya Niu, Jiayin Xie, Jiayan Li, Zaixu An, Huijie Xiao, Xiaoyuan Zhang, Zhiqiang Su and Zhichao Wang
Materials 2025, 18(4), 823; https://doi.org/10.3390/ma18040823 - 13 Feb 2025
Cited by 1 | Viewed by 2241
Abstract
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been [...] Read more.
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been successfully integrated with SAPs for desert greening, improving water retention, salt resistance, and seedling survival. The inclusion of nutrient-rich organic-inorganic composites further enhances the durability, efficiency, and recyclability of SAPs. In drought mitigation, polymeric absorbent resins such as polyacrylamide and starch-grafted acrylates have shown efficacy in ameliorating soil conditions and fostering plant growth. In arid environments, agents enriched with humic acid and bentonite contribute to improved soil aeration and water retention, creating optimal conditions for plant establishment. Additionally, the adoption of innovative waste management solutions has led to the production of amphiphilic SAPs from residual sludge, effectively addressing soil nutrient deficiencies and environmental pollution. In the food industry, SAPs containing protease, tea polyphenols, and chitosan exhibit potential for enhancing the stability and quality of seafood products. These advancements highlight the growing relevance of structural optimization approaches in SAP development across diverse applications and underline the importance of continued innovation in these fields. As novel materials emerge and environmental challenges intensify, the potential applications of SAPs are anticipated to expand significantly. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

12 pages, 3243 KiB  
Article
Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing
by Lin Liu, Jizhen Zhang, Zirong Luo, Na Kong, Xu Zhao, Xu Ji, Jihua Li, Shenbo Huang, Pengfei Zhao, Shuang Li, Yanqiu Shao and Jinlong Tao
Polymers 2025, 17(3), 351; https://doi.org/10.3390/polym17030351 - 28 Jan 2025
Cited by 1 | Viewed by 1803
Abstract
Direct ink writing (DIW) is an economical, straightforward, and relatively energy-efficient 3D printing technique that has been used in various domains. However, the utilization of rubber latex for DIW remains limited due to its high fluidity and inadequate support, which makes it challenging [...] Read more.
Direct ink writing (DIW) is an economical, straightforward, and relatively energy-efficient 3D printing technique that has been used in various domains. However, the utilization of rubber latex for DIW remains limited due to its high fluidity and inadequate support, which makes it challenging to meet the required ink rheological characteristics for DIW. In this study, a concentrated pre-vulcanized natural rubber latex (CPNRL) ink with a high solid content of 73% without additives is developed for DIW 3D printing. The CPNRL ink is concentrated using superabsorbent polymer (SAP) beads, which demonstrates good colloidal stability, favorable rheological properties, and superior printability. The impact of printing angles on the mechanical properties of the rubber specimens based on the CPNRL-73 ink is explored in detail, wherein the tensile strength of the specimen printed at a 90° angle reaches an impressive 26 MPa and a strain of approximately 800%, which surpasses the majority of 3D-printed rubber latex specimens. Additionally, the CPNRL ink can be used to print a wide range of intricate shapes, demonstrating its advantages in excellent formability. The preparation of 3D printable ink using the absorption method will expand the application of elastomers in fields such as customized flexible sensing and personalized rubber products. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

Back to TopTop