Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (220)

Search Parameters:
Keywords = sunlight protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2864 KB  
Article
Melanin Found in Wheat Spike Husks
by Mikhail S. Bazhenov, Dmitry Y. Litvinov, Tatiana A. Feodorova and Mikhail G. Divashuk
Agronomy 2025, 15(12), 2809; https://doi.org/10.3390/agronomy15122809 - 6 Dec 2025
Viewed by 304
Abstract
Melanin is the dark polymer pigment found in all kingdoms of life. Plant allomelanin, formed through the oxidation and polymerization of phenolic compounds, does not contain nitrogen; however, it possesses similar properties to melanin of animal, fungal, or bacterial origin. The black coloration [...] Read more.
Melanin is the dark polymer pigment found in all kingdoms of life. Plant allomelanin, formed through the oxidation and polymerization of phenolic compounds, does not contain nitrogen; however, it possesses similar properties to melanin of animal, fungal, or bacterial origin. The black coloration of awns, spike husk edges, and even complete spikes is well-known in wheat and occurs frequently in wild, but rarely in cultivated, wheat species. Previously, anthocyanins were considered the only pigments responsible for the black coloration of wheat ears. Recently, it has been shown that the black coloration of the husks in other cereals can be attributed to melanin or anthocyanins, or both of these pigments. In this study, using standard procedures for chemical extraction of anthocyanins and melanin, ultraviolet–visible–near-infrared spectroscopy, and hyperspectral imaging, we examined the pigment in Persian wheat (Triticum carthlicum Line 5999) black-colored spikes and found that it exhibits properties characteristic of melanin rather than anthocyanins. Also, using microscopy, we show that the dark pigment in the husks and awns of mature spikes is located mainly in the dead protoplasts of epiderma and sub-epidermal sclerenchyma cells. The localization of the pigment suggests that melanin may perform some protective or sunlight-to-heat transforming function. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

40 pages, 3986 KB  
Review
Electrochemical Synthesis of TiO2 Nanotubes for Photocatalytic Water Splitting: Mechanisms, Challenges, and Improvement Strategies
by Hamed Namdar-Asl, Farzaneh Shiran-Jang, Leila Fathyunes, M. A. Mohtadi-Bonab and Sadegh Pour-Ali
Catalysts 2025, 15(12), 1155; https://doi.org/10.3390/catal15121155 - 5 Dec 2025
Viewed by 726
Abstract
Nowadays, due to strategic reasons such as the importance of energy and environmental protection, the demand for alternatives to fossil fuels has surged. Hydrogen is considered a suitable and potential alternative energy source, promoting the development of various production technologies. However, conventional technologies [...] Read more.
Nowadays, due to strategic reasons such as the importance of energy and environmental protection, the demand for alternatives to fossil fuels has surged. Hydrogen is considered a suitable and potential alternative energy source, promoting the development of various production technologies. However, conventional technologies for hydrogen production generate a large amount of CO2 greenhouse gases, contributing to serious environmental issues. In recent decades, TiO2 nanotubes have emerged as effective photocatalysts for electrode reactions involving water splitting, resulting in hydrogen production. These photocatalysts utilize readily available resources: water as the raw material and sunlight as the energy source. Despite their potential, TiO2 nanotubes face substantial challenges, including a large energy gap resulting in very low electrical conductivity, along with the recombination of electrons and electron holes during the water splitting reaction. These issues present considerable obstacles to the integration of these materials into the industrial cycle of new energy production, particularly hydrogen generation. Currently, the challenges and potential solutions associated with TiO2 have made it one of the most extensively researched materials worldwide. In this review, the status of photocatalysts based on TiO2 nanotubes is examined, highlighting the main challenges in this field and the proposed solutions to address these obstacles. Full article
(This article belongs to the Special Issue Advanced Semiconductor Photocatalysts)
Show Figures

Graphical abstract

16 pages, 2473 KB  
Article
Abiotic Degradation of Polymeric Personal Protective Equipment by Artificial Weathering
by Sudhakar Muniyasamy and Asis Patnaik
Processes 2025, 13(12), 3904; https://doi.org/10.3390/pr13123904 - 3 Dec 2025
Viewed by 309
Abstract
Personal protective equipment (PPE) like single-use face masks is discarded after a single use and poses a significant danger to the environment, resulting in plastic pollution. Most of the face masks are made from synthetic polymers and are non-biodegradable to the environment; hence, [...] Read more.
Personal protective equipment (PPE) like single-use face masks is discarded after a single use and poses a significant danger to the environment, resulting in plastic pollution. Most of the face masks are made from synthetic polymers and are non-biodegradable to the environment; hence, concerns are being raised about polymers’ environmental impact. Most of the previous studies so far focus on polypropylene (PP) disposable masks and limited data related to environmental abiotic degradation behavior. There is a lack of studies aiming to understand the degradation behavior of different masks and the influence of physical-chemical factors. In this paper, we report on the environmental abiotic degradation of cloth, surgical and respirator filter facepiece 1 (FFP1) masks by accelerated artificial weathering. Furthermore, physical-chemical properties of masks were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). The cloth and FFP1 masks are made from polyethylene terephthalate (PET) and surgical masks were made from polypropylene (PP). Masks were exposed to an accelerated weathering test, which simulates the effects of natural sunlight and reproduces the damage caused by weathering elements such as sunlight, rain and dew. Masks were exposed to Ultraviolet radiation (UV) for 120, 240 and 360 h followed by condensation at 50 °C for 4 h. The FTIR results show that PET cloth and FFP1 PET masks are not degrading with the 360 h maximum exposure duration, which is equivalent to ±180 days. The FTIR scan of the PP surgical mask after 120 h of exposure time shows that it was degraded and broken down into fragments. For the PET cloth mask, a 58% reduction in crystallinity and heat of enthalpy was observed after 120 h of exposure. UV exposure causes a chain scission reaction, breaking down the ester bond in the case of the PET cloth mask. In the case of the PET FFP1 mask exposed to UV for 120, 240 and 360 h, a drastic reduction in crystallinity was observed as compared to the neat (original) PET FFP1 mask. Neat PET cloth and FFP1 masks have higher onset and maximum degradation temperatures as compared to the 120, 240 and 360 h UV exposed masks. Neat PET cloth and FFP1 masks have better resistance to thermal degradation. Full article
Show Figures

Figure 1

16 pages, 2680 KB  
Article
The Effect of Lipid Extract of Nannochloropsis oceanica Marine Microalgae on Glutathione and Thioredoxin-Dependent Antioxidant Systems in UVB-Irradiated Keratinocytes
by Agnieszka Gęgotek, Maria Rosario Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Mar. Drugs 2025, 23(12), 454; https://doi.org/10.3390/md23120454 - 26 Nov 2025
Viewed by 440
Abstract
UVB radiation present in sunlight is the main pro-oxidative and pro-inflammatory factor that reaches human skin cells, including keratinocytes. Therefore, protective compounds eliminating the negative impact of UVB radiation are constantly being sought. This study aimed to estimate the effect of the lipid [...] Read more.
UVB radiation present in sunlight is the main pro-oxidative and pro-inflammatory factor that reaches human skin cells, including keratinocytes. Therefore, protective compounds eliminating the negative impact of UVB radiation are constantly being sought. This study aimed to estimate the effect of the lipid extract of microalgae Nannochloropsis oceanica (N.o.) on UVB-irradiated keratinocytes. A proteomic approach was used to estimate the proteomic profile of in vitro-treated keratinocytes. The results indicated 270 proteins had significantly altered expression in UVB-irradiated keratinocytes, while the treatment of cells with N.o. extract partially restored the levels of these proteins. Moreover, changes in protein structure resulting from the binding of glutathione (GSH) and thioredoxin (Trx) were also observed. Most of the GSH-modified proteins were involved in GSH or prostaglandin metabolism, while Trx-modified proteins were molecules related to Trx metabolism, as well as antioxidant and anti-inflammatory signaling. The treatment of cells with N.o. extract contributed to reversing the changes in the level of modification in individual proteins. It can be suggested that the lipid components of the microalgae N.o. extract protect keratinocytes against changes in metabolism induced by UVB radiation, modulating the antioxidant and pro-inflammatory responses of cells at the GSH and Trx-based signaling levels. Full article
Show Figures

Graphical abstract

20 pages, 2654 KB  
Article
Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin
by Morgane de Tollenaere, Catherine Zanchetta, Anaïs Durduret, Jessy Martinez, Bénédicte Sennelier-Portet, Jean Tiguemounine, Amandine Scandolera and Romain Reynaud
Cosmetics 2025, 12(6), 237; https://doi.org/10.3390/cosmetics12060237 - 23 Oct 2025
Viewed by 911
Abstract
Benefit/risk management of skin exposure to sunlight, especially ultraviolet (UV) rays, is mainly driven by photoaging, cancer incidence, and the requirement for vitamin D3 synthesis. Antioxidant phytocompounds are considered to be a valuable source of molecules to protect skin from UV-induced damage, but [...] Read more.
Benefit/risk management of skin exposure to sunlight, especially ultraviolet (UV) rays, is mainly driven by photoaging, cancer incidence, and the requirement for vitamin D3 synthesis. Antioxidant phytocompounds are considered to be a valuable source of molecules to protect skin from UV-induced damage, but their impact on other UV-related metabolic pathways is rarely described. In this study, an indigoid-rich Persicaria tinctoria extract (PTE) was evaluated on three consequences of UV exposure: DNA damage and inflammation, vitamin D3 content, and melanogenesis. A moderate UV exposure was applied on skin models, corresponding to approximately 1 h exposure in the spring in western Europe. UV-induced DNA damage and inflammation were measured through the quantification of cyclobutane pyrimidine dimers (CPDs) and cytokines. Response to heat stress was quantified through the release of prostaglandin. Then, the impact of PTE on vitamin D3 and melanin synthesis was observed. PTE decreased by −56% in the number of cells presenting CPDs. PTE decreased the production of pro-inflammatory cytokine IL-6 (−59%) and stimulated the release of the protective cytokine IL-1Ra (+49%). It decreased PGE2 release by −27%. In skin explants, PTE boosted the vitamin D3 concentration (+345%). Several genes involved in melanogenesis were up-regulated by PTE (MC1R × 2.46, MITF × 1.69, TYR × 2.06, MLPH × 1.53). It promoted melanin content by +126% and by +86% when associated with SPF 30. The extract decreased the amount of protective eumelanin, leading to visible skin tanning of reconstructed human epidermis (L*-15%, ITA −125%). As a new finding, PTE minimized DNA damage and inflammation caused by a daily dose of UV, and surprisingly, promoted vitamin D3 and eumelanin synthesis, suggesting that it represents an opportunity to reconcile skin protection and the physiological need for sunlight. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Graphical abstract

18 pages, 2058 KB  
Article
Assessing the Role of Sunlight Exposure in Lighting Performance and Lighting Energy Performance in Learning Environments: A Case Study in South Korea
by Hong Soo Lim and Gon Kim
Buildings 2025, 15(20), 3644; https://doi.org/10.3390/buildings15203644 - 10 Oct 2025
Viewed by 1035
Abstract
In South Korea, sunlight rights and daylight rights are legally distinguished, yet no standardized methodology exists for their quantitative assessment. Current evaluations of sunlight rights are narrowly defined, relying on the duration of direct solar penetration at the window center during the winter [...] Read more.
In South Korea, sunlight rights and daylight rights are legally distinguished, yet no standardized methodology exists for their quantitative assessment. Current evaluations of sunlight rights are narrowly defined, relying on the duration of direct solar penetration at the window center during the winter solstice, while excluding reflected and diffuse light. This restrictive approach has led to confusion among both researchers and legal practitioners, as it diverges from daylighting evaluations that account for indoor brightness and energy performance. The recent enactment of regulations to secure solar access in schools has further intensified disputes between educational institutions striving to protect students’ visual comfort and developers seeking to maximize building potential. To address this gap, this study proposes an evaluation framework tailored to the Korean context. A reference classroom model representative of standard Korean schools was developed, and simulations were conducted by introducing obstructing building masses to block direct sunlight. The methodology evaluated key variables, including time of day and solar altitude, and analyzed daylighting performance and lighting-related energy consumption under obstructed conditions. The results show that blocking sunlight through south-facing windows reduces daylighting performance by 89% to 98%, leading to additional reliance on artificial lighting, with energy use increasing between 128 Wh and 768 Wh. These findings underscore the limitations of current legal interpretations based solely on sunlight duration and highlight the necessity of adopting performance-based evaluation methods. Protecting school sunlight rights through such approaches is essential to enhancing classroom visual environments and reducing energy demand. Full article
Show Figures

Figure 1

14 pages, 1161 KB  
Article
Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina
by Cecilia Rubio, Javiera Ramírez, José L. Rojas, Norma A. Valencia-Islas, Carolina Campos and Natalia Quiñones
Molecules 2025, 30(18), 3833; https://doi.org/10.3390/molecules30183833 - 22 Sep 2025
Viewed by 696
Abstract
Exposure to sunlight, whose main component is UV radiation (UVR), leads to various skin damage such as sunburns, premature aging, or more severe issues such as increased symptoms of autoimmune disease and skin cancer. Therefore, there is a growing interest in developing improved [...] Read more.
Exposure to sunlight, whose main component is UV radiation (UVR), leads to various skin damage such as sunburns, premature aging, or more severe issues such as increased symptoms of autoimmune disease and skin cancer. Therefore, there is a growing interest in developing improved photoprotective agents that can protect skin from sunlight incidence and antioxidants that counteract the oxidative stress caused by it. Lichens are a source of such agents since they adapt to extreme environments including those with high UVR by biosynthesizing metabolites with those properties. In this study, brialmontin 2 (1), physciosporin (2), and pseudocyphellarin A (3) were isolated for the first time from the lichen Pseudocyphellaria berberina (G. Forst.) D. J. Galloway & P. James, along with calycin (4) and 22-hydroxystictan-3-one (5). Their structural characterization was carried out by spectroscopy (1H and 13C NMR). Sun protection factor (SPF) along with critical wavelength (λcrit), a UVA/UVB ratio (UVA/UVB-r) of one to five, and acetone extract (AE) were evaluated spectrophotometrically as a measure of their UVB and UVA photoprotective capacities, respectively. Additionally, their antioxidant activity was measured by scavenging DPPH free radicals (RSA). Compounds 2, 4, and AE showed “medium” UVB photoprotective capacities (with SPFs between 15 and 30). Additionally, 4 and AE presented “maximum” UVA photoprotective capacities (λcrit > 370 nm and UVA/UVB-r > 0.8), whereas this activity was “good” for 2 and 3crit 350 to 370 nm and UVA/UVB-r 0.4 to 0.6), and “moderate” for 1crit 335 to 350 nm and UVA/UVB-r 0.2 to 0.4). All compounds and AE showed antioxidant activity, standing out were AE and 4 with activity comparable to the controls (ca. 95 and 81 RSA %, respectively, at 1000 ppm). AE and 4 are dual agents with photoprotective (UVB-UVA) and antioxidant capacities that could help prevent skin damage associated with sunlight. In silico assays suggest that 4 spontaneously diffuses into the stratum corneum with limited absorption through the skin. Additionally, 4 lacks potential toxicity to Normal Human Epidermal Keratinocytes (showing viability ca. 70% at 100 ppm); therefore, it is a candidate for the development of sunscreen formulations. Full article
(This article belongs to the Special Issue Exploring the Therapeutic Potential of Natural Antioxidants)
Show Figures

Figure 1

15 pages, 1050 KB  
Review
Chlorophylls and Polyphenols: Non-Enzymatic Regulation of the Production and Removal of Reactive Oxygen Species, as a Way of Regulating Abiotic Stress in Plants
by Bogdan Radomir Nikolić, Sanja Đurović, Boris Pisinov, Vladan Jovanović and Danijela Šikuljak
Int. J. Mol. Sci. 2025, 26(18), 9039; https://doi.org/10.3390/ijms26189039 - 17 Sep 2025
Viewed by 1153
Abstract
Chlorophylls, which are associated with carotenoids and photosynthetic protein complexes, acquire optical properties that enable the absorption of sunlight, necessary for the synthesis of energy and redox equivalents, necessary for photosynthetic absorption of CO2 and the production of oxygen as an intermediate [...] Read more.
Chlorophylls, which are associated with carotenoids and photosynthetic protein complexes, acquire optical properties that enable the absorption of sunlight, necessary for the synthesis of energy and redox equivalents, necessary for photosynthetic absorption of CO2 and the production of oxygen as an intermediate product. These processes are important for plants, but also for the biosphere. In stressful situations, when photosynthesis is limited, the production of reactive oxygen and other species increases, and the activation of various protective systems is necessary to remove the aforementioned reactive species or reduce the excessive reduction in photosynthetic electron transport, as the cause of the production of the reactive species. A review of studies where the content and physiological state of chlorophyll are monitored, using destructive and non-destructive methods, such as various optical methods for monitoring its content and physiological activity, is given. Polyphenolic compounds belong to non-enzymatic systems for quenching the reactive species. In addition to their presence in monomeric and oligomeric forms of polyphenols, polymerization of this type of compound can occur. In addition to having a protective effect on the plants that synthesize them, polyphenolic compounds also have a beneficial effect on the health of animals and humans who consume them from plants. Full article
(This article belongs to the Special Issue Plant Molecular Regulatory Networks and Stress Responses)
Show Figures

Figure 1

11 pages, 909 KB  
Article
Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation
by Monika Zemła-Krawczyk and Beata Sarecka-Hujar
Processes 2025, 13(9), 2864; https://doi.org/10.3390/pr13092864 - 8 Sep 2025
Viewed by 1592
Abstract
Sunlight contains a wide spectrum of radiation from ultraviolet (UV) through visible light to infrared (IR). UV radiation plays a crucial role in skin damage, photoaging, and carcinogenesis, necessitating effective photoprotection strategies. The study evaluated the efficacy of protective lipsticks with different sun [...] Read more.
Sunlight contains a wide spectrum of radiation from ultraviolet (UV) through visible light to infrared (IR). UV radiation plays a crucial role in skin damage, photoaging, and carcinogenesis, necessitating effective photoprotection strategies. The study evaluated the efficacy of protective lipsticks with different sun protection factor (SPF) values (10, 15, and 30) against UVA and infrared (IR) radiation. In this study, the directional-hemispherical reflectance (DHR) was measured across various spectral bands (335–380 nm, 400–540 nm, 700–1100 nm, and 1000–1700 nm) with SOC 410 Reflectometer (San Diego, CA, USA). Since the device used in this study did not cover the UVB range (290–320 nm), this study does not provide a direct assessment of SPF in its conventional sense. The measurements were taken at four time points up to 120 min after lipstick application. Results indicated that lipsticks with higher SPF values significantly altered skin reflectance in UVA and IR ranges, with SPF30 showing the lowest reflectance in the UVA range (335–380 nm), suggesting greater absorption of UVA radiation by the product and significantly higher reflectance in IR ranges compared to lower SPF lipsticks. Reflectance values generally increased over time post-application for key spectral bands. These findings demonstrate that SPF lipsticks provide variable attenuation of UVA and IR radiation, highlighting their role in comprehensive lip photoprotection. The data support the importance of SPF selection for optimized protection, especially against penetrating UVA and IR components of sunlight. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

21 pages, 101607 KB  
Article
Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation
by Michael J. Davies, John R. Lawson, Trevor O’Neil, Seth N. Lyman, KarLee Zager and Tristan D. Coxson
Air 2025, 3(3), 22; https://doi.org/10.3390/air3030022 - 31 Aug 2025
Viewed by 1381
Abstract
After heavy snowfall in the Uinta Basin, Utah, elevated surface ozone occurs if a cold-air pool persists and traps emissions from oil and gas industry operations. Sunlight and actinic flux from a high-albedo snowpack drive ozone buildup via photolysis. Snow coverage is paramount [...] Read more.
After heavy snowfall in the Uinta Basin, Utah, elevated surface ozone occurs if a cold-air pool persists and traps emissions from oil and gas industry operations. Sunlight and actinic flux from a high-albedo snowpack drive ozone buildup via photolysis. Snow coverage is paramount in initiating the cold pool and driving ozone generation. Its depth is critical for predicting ozone concentrations. The Basin’s location leeward of the Wasatch Mountains provides conditions for a precipitation shadow, where sinking air suppresses snowfall. We analyzed multiple years of ground-based snow depth measurements, surface ozone data, and meteorological observations; we found that ozone levels track with snow coverage, but diagnosing a shadow effect (and any impact on ozone levels) was difficult due to sparse, noisy data. The uncertainty in linking snowfall variation to ozone levels hinders forecast quality in, e.g., machine-learning training. We highlight the importance of a better understanding of regional variation when issuing outlooks to protect the local economy and health. A wider sampling of snow depth across the Basin would benefit operational forecasters and, likely, predictive skill. Full article
Show Figures

Figure 1

12 pages, 763 KB  
Article
Objective Biomarkers of Outdoor Activity (Vitamin D and CUVAF) in Young Adults with Myopia During and After the SARS-CoV-2 Pandemic
by Natali Gutierrez-Rodriguez, Miriam de la Puente-Carabot, Javier Andres Rodriguez-Hilarion, Jorge A. Ramos-Castaneda, Valentina Bilbao-Malavé, Carlos Javier Avendaño-Vasquez, Jorge Gonzalez-Zamora, Sandra Johanna Garzón-Parra and Sergio Recalde
Biomedicines 2025, 13(8), 2042; https://doi.org/10.3390/biomedicines13082042 - 21 Aug 2025
Viewed by 2013
Abstract
Background/Objectives: Intrinsic biomarkers, such as serum vitamin D levels and the conjunctival ultraviolet autofluorescence (CUVAF) area, have been proposed to quantify sunlight exposure. Evidence suggests that reduced outdoor activity during the SARS-CoV-2 pandemic accelerated the progression of myopia; however, there is little [...] Read more.
Background/Objectives: Intrinsic biomarkers, such as serum vitamin D levels and the conjunctival ultraviolet autofluorescence (CUVAF) area, have been proposed to quantify sunlight exposure. Evidence suggests that reduced outdoor activity during the SARS-CoV-2 pandemic accelerated the progression of myopia; however, there is little information on the impact of such restrictions on vitamin D levels and CUVAF area in populations with myopia. This study aims to assess the association between serum vitamin D levels and conjunctival ultraviolet autofluorescence area (CUVAF) in young adults with myopia during and after the pandemic, as well as its relationship with sun exposure habits and the use of skin protection measures. Methods: A prospective observational study was carried out. A total of 59 students participated, 32 with a diagnosis of myopia and 27 controls, during SARS-CoV-2 pandemic. Two serological tests for total 25-hydroxy vitamin D (D2 + D3) (Calciferol) were taken, activity habits and sun exposure were identified using the Intermountain Live Well Institute tool, and CUVAF images were taken post-pandemic. Results: In the 59 participants, we observed similar vitamin D concentrations between the myopic and control groups during and after the pandemic. However, analysis of CUVAF areas after the pandemic revealed that myopes had significantly smaller areas compared to controls (p < 0.05). Conclusions: The study demonstrated that using vitamin D as a biomarker for outdoor activity requires additional investigation; the CUVAF biomarker showed a significant association with myopia. Full article
Show Figures

Figure 1

18 pages, 1709 KB  
Article
Effects of Light–Nitrogen Interactions on Leaf Functional Traits of (Picea neoveitchii Mast.)
by Sibo Chen, Siyu Yang, Wanting Liu, Kaiyuan Li, Ninghan Xue and Wenli Ji
Plants 2025, 14(16), 2550; https://doi.org/10.3390/plants14162550 - 16 Aug 2025
Cited by 1 | Viewed by 732
Abstract
Picea neoveitchii Mast., a critically endangered spruce species endemic to China, is classified as a national second-level key protected wild plant and listed as critically endangered (CR) on the International Union for Conservation of Nature (IUCN) Red List. Its habitat features complex forest [...] Read more.
Picea neoveitchii Mast., a critically endangered spruce species endemic to China, is classified as a national second-level key protected wild plant and listed as critically endangered (CR) on the International Union for Conservation of Nature (IUCN) Red List. Its habitat features complex forest light environments, and global climate change coupled with environmental pollution has increased regional nitrogen deposition, posing significant challenges to its survival. This study explores the effects of light–nitrogen interactions on the leaf functional traits of Picea neoveitchii Mast. seedlings by simulating combinations of light intensities (100%, 70%, and 40% full sunlight) and nitrogen application levels (0, 10, and 20 g N·m −2·a−1, where g N·m−2·a−1 denotes grams of nitrogen applied per square meter per year). We examined changes in morphological traits, anatomical structures, photosynthetic physiology, and stress resistance traits. Results indicate that moderate shading (70% full sunlight) significantly enhances leaf morphological traits (e.g., leaf length, leaf area, and specific leaf area) and anatomical features (e.g., mesophyll tissue area and resin duct cavity area), improving light capture and stress resistance. Medium- to high-nitrogen treatments (10 or 20 g N·m−2·a−1) under moderate shading further increase photosynthetic efficiency, stomatal conductance, and antioxidant enzyme activity. According to the comprehensive membership function evaluation, the L2N0 (70% full sunlight, 0 g N·m−2·a−1) treatment exhibits the most balanced performance across both growth and stress-related traits. These findings underscore the critical role of light–nitrogen interactions in the growth and adaptability of Picea neoveitchii Mast. leaves, offering a scientific foundation for the conservation and ecological restoration of endangered plant populations. Full article
(This article belongs to the Special Issue Advances in Plant Photobiology)
Show Figures

Figure 1

43 pages, 4357 KB  
Systematic Review
Vitamin D’s Impact on Cancer Incidence and Mortality: A Systematic Review
by Sunil J. Wimalawansa
Nutrients 2025, 17(14), 2333; https://doi.org/10.3390/nu17142333 - 16 Jul 2025
Cited by 1 | Viewed by 8497
Abstract
Background/Objectives: Adequate vitamin D levels are essential for various physiological functions, including cell growth, immune modulation, metabolic regulation, DNA repair, and overall health span. Despite its proven cost-effectiveness, widespread deficiency persists due to inadequate supplementation and limited sunlight exposure. Methods: This [...] Read more.
Background/Objectives: Adequate vitamin D levels are essential for various physiological functions, including cell growth, immune modulation, metabolic regulation, DNA repair, and overall health span. Despite its proven cost-effectiveness, widespread deficiency persists due to inadequate supplementation and limited sunlight exposure. Methods: This systematic review (SR) examines the relationship between vitamin D and the reduction of cancer risk and mortality, and the mechanisms involved in cancer prevention. This SR followed the PRISMA and PICOS guidelines and synthesized evidence from relevant studies. Results: Beyond genomic actions via calcitriol [1,25(OH)2D]-receptor interactions, vitamin D exerts cancer-protective effects through mitigating inflammation, autocrine, paracrine, and membrane signaling. The findings reveal a strong inverse relationship between serum 25(OH)D levels and the incidence, metastasis, and mortality of several cancer types, including colon, gastric, rectal, breast, endometrial, bladder, esophageal, gallbladder, ovarian, pancreatic, renal, vulvar cancers, and both Hodgkin’s and non-Hodgkin’s lymphomas. While 25(OH)D levels of around 20 ng/mL suffice for musculoskeletal health, maintaining levels above 40 ng/mL (100 nmol/L: range, 40–80 ng/mL) significantly lowers cancer risks and mortality. Conclusions: While many observational studies support vitamin D’s protective role in incidents and deaths from cancer, some recent mega-RCTs have failed to demonstrate this. The latter is primarily due to critical study design flaws, like recruiting vitamin D sufficient subjects, inadequate dosing, short durations, and biased designs in nutrient supplementation studies. Consequently, conclusions from these cannot be relied upon. Well-designed, adequately powered clinical trials using appropriate methodologies, sufficient vitamin D3 doses, and extended durations consistently demonstrate that proper supplementation significantly reduces cancer risk and markedly lowers cancer mortality. Full article
Show Figures

Figure 1

13 pages, 4342 KB  
Article
Wholesale Destruction Inside a Marine Protected Area: Anchoring Impacts on Sciaphilic Communities and Coralligenous Concretions in the Eastern Mediterranean
by Carlos Jimenez, Magdalene Papatheodoulou, Vasilis Resaikos and Antonis Petrou
Water 2025, 17(14), 2092; https://doi.org/10.3390/w17142092 - 14 Jul 2025
Cited by 3 | Viewed by 1175
Abstract
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on [...] Read more.
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on the destruction of sciaphilic sessile communities and coralligenous concretions produced by the anchoring of a high-tonnage vessel inside a Marine Protected Area in Cyprus. The damage from the anchors and the chains consisted of the dislodgement of large boulders that were dragged or rolled over the seafloor, increasing the breakage and further dislodgement of more boulders; many were left upside-down. The biological communities that thrived in the dark environments below the boulders were directly exposed to high irradiance levels and went through a slow mortality and decaying process, most probably due to a combination of several deterioration agents, such as exposure to direct sunlight, predation, mucilage aggregates, and cyanobacterial blooms. The enforcement of regulatory measures for anchoring and transit in the MPA is necessary to prevent similar destruction. Given the extent of the irreversible damage to these sciaphilic communities, our study is, unfortunately, another environmental post-mortem contribution. Full article
(This article belongs to the Special Issue Effect of Human Activities on Marine Ecosystems)
Show Figures

Graphical abstract

13 pages, 1661 KB  
Communication
Effects of Long-Term Blue Light Exposure on Body Fat Synthesis and Body Weight Gain in Mice and the Inhibitory Effect of Tranexamic Acid
by Keiichi Hiramoto and Hirotaka Oikawa
Int. J. Mol. Sci. 2025, 26(12), 5554; https://doi.org/10.3390/ijms26125554 - 10 Jun 2025
Viewed by 2122
Abstract
Humans are continuously exposed to blue light from sunlight, computers, and smartphones. While blue light has been reported to affect living organisms, its role in fat synthesis and weight changes remains unclear. In this study, we investigated the effects of prolonged blue light [...] Read more.
Humans are continuously exposed to blue light from sunlight, computers, and smartphones. While blue light has been reported to affect living organisms, its role in fat synthesis and weight changes remains unclear. In this study, we investigated the effects of prolonged blue light exposure on weight changes in mice and the protective role of tranexamic acid (TA). Mice were exposed daily to blue light from a light-emitting diode for five months. Blue light exposure led to increased fat mass and body weight. The expression of the clock genes arnt-like 1 (Bmal1) and Clock was reduced in the brain and muscle of exposed mice. In addition, reduced Sirt1 and increased mammalian target of rapamycin complex 1 (mTORC1)/sterol regulatory element-binding protein 1 (SREBP1) were observed. The levels of liver X receptor a and liver kinase B1/5′AMP-activated protein kinase a1, both involved in SREBP1-mediated lipogenesis, were also elevated. TA treatment prevented the blue light-induced suppression of Bmal1/Clock and modulated the subsequent series of signal transduction. These findings suggest that prolonged blue light exposure suppresses the clock gene Bmal1/Clock, reduces Sirt1, and activates lipogenic pathways, contributing to weight gain. TA appears to regulate clock gene expression and mitigate blue light-induced weight gain. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop