Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Products
2.2. Study Group
2.3. Application of the Tested Lipsticks
2.4. Analysis of Directional-Hemispherical Reflectance
2.5. Statistical Analyses
3. Results
3.1. Changes in the Reflectance of the Skin with the Tested Cosmetics Applied over Time
3.1.1. Lipstick with SPF10
3.1.2. Lipstick with SPF15
3.1.3. Lipstick with SPF 30
3.2. Comparison of Skin Reflectance Depending on the SPF Value of the Tested Lipstick at Each Time Point
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic acid |
IR | Infrared |
M | Mean |
MMP-1 | Matrix metalloproteinase-1 |
ROS | Reactive oxygen species |
SD | Standard deviation |
SPF | Sun protection factor |
UV | Ultraviolet |
References
- Watson, M.; Holman, D.M.; Maguire-Eisen, M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin. Oncol. Nurs. 2016, 32, 241–254. [Google Scholar] [CrossRef]
- Raymond-Lezman, J.R.; Riskin, S.I. Sunscreen Safety and Efficacy for the Prevention of Cutaneous Neoplasm. Cureus 2024, 16, e56369. [Google Scholar] [CrossRef]
- Sieniawska, D.; Proszowska, P.; Madoń, M.; Kotowicz, Z.; Orzeł, A.; Pich-Czekierda, A.; Sieniawska, J. Ultraviolet-Protective Clothing and Sunscreen: Sun-Protection for Healthy Skin. J. Educ. Health Sport. 2024, 71, 51237. [Google Scholar] [CrossRef]
- Moyal, D.; Passeron, T.; Josso, M.; Douezan, S.; Delvigne, V.; Seite, S. Formulation of Sunscreens for Optimal Efficacy. J. Cosmet. Sci. 2020, 71, 199–208. [Google Scholar]
- Moloney, F.J.; Collins, S.; Murphy, G.M. Sunscreens: Safety, efficacy and appropriate use. Am. J. Clin. Dermatol. 2002, 3, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Brar, G.; Dhaliwal, A.; Brar, A.S.; Sreedevi, M.; Ahmadi, Y.; Irfan, M.; Golbari, R.; Zumárraga, D.; Yateem, D.; Lysak, Y.; et al. A Comprehensive Review of the Role of UV Radiation in Photoaging Processes Between Different Types of Skin. Cureus 2025, 17, e81109. [Google Scholar] [CrossRef]
- ISO 24444; Second edition. Cosmetics—Sun protection test methods—In vivo determination of the sun protection factor (SPF). ISO: Geneva, Switzerland, 2019.
- Gabard, B.; Ademola, J. Lip sun protection factor of a lipstick sunscreen. Dermatology 2001, 203, 244–247. [Google Scholar] [CrossRef]
- Stolecka-Warzecha, A.; Wilczyński, S.; Pawlus, A.; Lebiedowska, A.; Chmielewski, Ł.; Niezgoda, Z. The Use of Hemispheric Directional Reflectance Method to Verify the Usefulness of Filters Protecting the Skin Against Infrared Radiation. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2663–2675. [Google Scholar] [CrossRef]
- Bożek, M.; Trybała, J.; Lebiedowska, A.; Stolecka-Warzecha, A.; Babczyńska, P.; Wilczyński, S. Assessment of the Sunscreen Properties of Sesame Oil Using the Hemispherical Directional Reflectance Method. Appl. Sci. 2024, 14, 6545. [Google Scholar] [CrossRef]
- Kim, J.; Yeo, H.; Kim, T.; Jeong, E.T.; Lim, J.M.; Park, S.G. Relationship between lip skin biophysical and biochemical characteristics with corneocyte unevenness ratio as a new parameter to assess the severity of lip scaling. Int. J. Cosmet. Sci. 2021, 43, 275–282. [Google Scholar] [CrossRef]
- Dahmer, D.; Scandorieiro, S.; Bigotto, B.G.; Bergamini, T.A.; Germiniani-Cardozo, J.; da Costa, I.M.; Kobayashi, R.K.T.; Nakazato, G.; Borsato, D.; Prudencio, S.H.; et al. Multifunctional Biotechnological Lip Moisturizer for Lip Repair and Hydration: Development, In Vivo Efficacy Assessment and Sensory Analysis. Cosmetics 2023, 10, 166. [Google Scholar] [CrossRef]
- Rahrovan, S.; Fanian, F.; Mehryan, P.; Humbert, P.; Firooz, A. Male versus female skin: What dermatologists and cosmeticians should know. Int. J. Women’s Dermatol. 2018, 4, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Cosmetic Products Regulation, Annex VI—Allowed UV Filters. Annex VI, Regulation 1223/2009/EC on Cosmetic Products, as Amended by Regulation (EU) 2024/996, OJ L of 4 April 2024. Available online: https://echa.europa.eu/cosmetics-uv-filters (accessed on 31 August 2025).
- Kadad, I.M.; Ramadan, A.A.; Kandil, K.M.; Ghoneim, A.A. Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate. Energies 2022, 15, 3130. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Buechner, N.; Schroeder, P.; Jakob, S.; Kunze, K.; Maresch, T.; Calles, C.; Krutmann, J.; Haendeler, J. Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1. Exp. Gerontol. 2008, 43, 633–637. [Google Scholar] [CrossRef]
- Calles, C.; Schneider, M.; Macaluso, F.; Benesova, T.; Krutmann, J.; Schroeder, P. Infrared A radiation influences the skin fibroblast transcriptome: Mechanisms and consequences. J. Investig. Dermatol. 2010, 130, 1524–1536. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Krutmann, J. Effective photoprotection of human skin against infrared A radiation by topically applied antioxidants: Results from a vehicle controlled, double-blind, randomized study. Photochem. Photobiol. 2015, 91, 248–250. [Google Scholar] [CrossRef]
- Pourang, A.; Tisack, A.; Ezekwe, N.; Torres, A.E.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Effects of visible light on mechanisms of skin photoaging. Photodermatol. Photoimmunol. Photomed. 2022, 38, 191–196. [Google Scholar] [CrossRef]
- Lane, B.; Lim, H.W.; Hamzavi, I.H.; Mohammad, T.F.; Kohli, I. Implications of visible light and means of photoprotection. J. Photochem. Photobiol. 2023, 17, 100203. [Google Scholar] [CrossRef]
- He, X.; Jin, S.; Dai, X.; Chen, L.; Xiang, L.; Zhang, C. The Emerging Role of Visible Light in Melanocyte Biology and Skin Pigmentary Disorders: Friend or Foe? J. Clin. Med. 2023, 12, 7488. [Google Scholar] [CrossRef]
- Bernstein, E.F.; Sarkas, H.W.; Boland, P.; Bouche, D. Beyond sun protection factor: An approach to environmental protection with novel mineral coatings in a vehicle containing a blend of skincare ingredients. J. Cosmet. Dermatol. 2020, 19, 407–415. [Google Scholar] [CrossRef]
- Stiefel, C.; Schwack, W.; Nguyen, Y.T. Photostability of cosmetic UV filters on mammalian skin under UV exposure. Photochem. Photobiol. 2015, 91, 84–91. [Google Scholar] [CrossRef]
- Gonzalez, H.; Tarras-Wahlberg, N.; Strömdahl, B.; Juzeniene, A.; Moan, J.; Larkö, O.; Rosén, A.; Wennberg, A.M. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, S.; Deda, A.; Koprowski, R.; Banyś, A.; Błońska-Fajfrowska, B. The Use of Directional Reflectance Measurement for in vivo Assessment of Protective Properties of Cosmetics in the Infrared Radiation Range. Photochem. Photobiol. 2017, 93, 1303–1311. [Google Scholar] [CrossRef]
- Mickoś, E.; Michalak, M.; Hartman-Petrycka, M.; Banyś, A.; Babczyńska, P.; Koprowski, R.; Wilczyński, S. Assessing Skin Photoprotection in the Infrared Range: The Reflectance Profiles of Cold-Pressed Plant Oils. Cosmetics 2025, 12, 80. [Google Scholar] [CrossRef]
- Gfeller, C.; Hardie, G.; Shanga, G.; Mahalingam, H. Evaluating the Moisturizing Abilities and Sun Protection Factor of New Lip Balm Formulations. J. Cosmet. Sci. 2019, 70, 1. [Google Scholar] [PubMed]
- Ruvolo, E.; Cole, C.; Rohr, M.; Silverman, J.; Yousefian, O.; Batzer, J.; Lange, N.; Touti, R.; Pouradier, F.; Nogueira, L.; et al. Performance of hybrid diffuse reflectance spectroscopy (HDRS-ISO 23698) methodology for assessment of sunscreen protection in the ALT-SPF Consortium validation study. Int. J. Cosmet. Sci. 2025, 47 (Suppl. 1), 53–77. [Google Scholar] [CrossRef]
Spectral Bands [nm] | THR [a.u.], M ± SD over Time | p | η | |||
---|---|---|---|---|---|---|
Control (Clean Skin, 0 min) | 20 min | 60 min | 120 min | |||
335–380 | 0.203 ± 0.065 | 0.196 ± 0.069 | 0.208 ± 0.084 | 0.219 ± 0.084 | 0.021 1 | 0.046 |
400–540 | 0.400 ± 0.031 | 0.397 ± 0.033 | 0.413 ± 0.035 | 0.414 ± 0.038 | <0.001 2 | 0.195 |
480–600 | 0.453 ± 0.190 | 0.439 ± 0.176 | 0.409 ± 0.116 | 0.404 ± 0.112 | 0.111 | - |
590–720 | 0.629 ± 0.176 | 0.615 ± 0.158 | 0.580 ± 0.096 | 0.583 ± 0.099 | 0.051 | - |
700–1100 | 0.534 ± 0.068 | 0.525 ± 0.070 | 0.551 ± 0.057 | 0.558 ± 0.059 | <0.001 3 | 0.095 |
1000–1700 | 0.292 ± 0.016 | 0.284 ± 0.017 | 0.295 ± 0.024 | 0.296 ± 0.025 | <0.001 4 | 0.159 |
1700–2500 | 0.096 ± 0.062 | 0.097 ± 0.063 | 0.086 ± 0.037 | 0.083 ± 0.037 | 0.114 | - |
Spectral Bands [nm] | THR [a.u.], M ± SD over Time | p | η | |||
---|---|---|---|---|---|---|
Control (Clean Skin, 0 min) | 20 min | 60 min | 120 min | |||
335–380 | 0.203 ± 0.065 | 0.190 ± 0.060 | 0.204 ± 0.085 | 0.207 ± 0.078 | 0.113 | - |
400–540 | 0.399 ± 0.031 | 0.402 ± 0.033 | 0.421 ± 0.038 | 0.416 ± 0.043 | <0.001 1 | 0.239 |
480–600 | 0.453 ± 0.190 | 0.452 ± 0.184 | 0.424 ± 0.118 | 0.411 ± 0.109 | 0.163 | - |
590–720 | 0.629 ± 0.176 | 0.620 ± 0.162 | 0.592 ± 0.108 | 0.590 ± 0.105 | 0.158 | - |
700–1100 | 0.534 ± 0.068 | 0.525 ± 0.076 | 0.559 ± 0.048 | 0.563 ± 0.049 | <0.001 2 | 0.134 |
1000–1700 | 0.292 ± 0.016 | 0.289 ± 0.017 | 0.299 ± 0.024 | 0.300 ± 0.026 | <0.001 3 | 0.145 |
1700–2500 | 0.096 ± 0.062 | 0.101 ± 0.064 | 0.088 ± 0.037 | 0.084 ± 0.037 | 0.095 | - |
Spectral Bands [nm] | THR [a.u.], M ± SD over Time | p | η | |||
---|---|---|---|---|---|---|
Control (Clean Skin, 0 min) | 20 min | 60 min | 120 min | |||
335–380 | 0.203 ± 0.065 | 0.067 ± 0.025 | 0.089 ± 0.035 | 0.089 ± 0.047 | <0.001 1 | 0.719 |
400–540 | 0.399 ± 0.031 | 0.397 ± 0.033 | 0.413 ± 0.040 | 0.414 ± 0.042 | <0.001 2 | 0.182 |
480–600 | 0.453 ± 0.190 | 0.444 ± 0.176 | 0.417 ± 0.114 | 0.411 ± 0.095 | 0.112 | - |
590–720 | 0.629 ± 0.176 | 0.619 ± 0.160 | 0.586 ± 0.106 | 0.589 ± 0.089 | 0.053 | - |
700–1100 | 0.534 ± 0.068 | 0.534 ± 0.072 | 0.560 ± 0.052 | 0.568 ± 0.056 | <0.001 3 | 0.110 |
1000–1700 | 0.292 ± 0.016 | 0.293 ± 0.017 | 0.303 ± 0.025 | 0.305 ± 0.027 | <0.001 4 | 0.172 |
1700–2500 | 0.096 ± 0.062 | 0.098 ± 0.065 | 0.087 ± 0.038 | 0.083 ± 0.037 | 0.156 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemła-Krawczyk, M.; Sarecka-Hujar, B. Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation. Processes 2025, 13, 2864. https://doi.org/10.3390/pr13092864
Zemła-Krawczyk M, Sarecka-Hujar B. Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation. Processes. 2025; 13(9):2864. https://doi.org/10.3390/pr13092864
Chicago/Turabian StyleZemła-Krawczyk, Monika, and Beata Sarecka-Hujar. 2025. "Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation" Processes 13, no. 9: 2864. https://doi.org/10.3390/pr13092864
APA StyleZemła-Krawczyk, M., & Sarecka-Hujar, B. (2025). Evaluation of the Effectiveness of Protective Lipsticks with Different Sun Protection Factor Values Against UVA and Infrared Radiation. Processes, 13(9), 2864. https://doi.org/10.3390/pr13092864