Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin
Abstract
1. Introduction
2. Materials and Methods
2.1. Persicaria Tinctoria Extract (PTE)
2.2. Quantification of Cyclobutane Pyrimidine Dimers (CPDs) Under Moderate Daily UV Exposure
2.2.1. Skin Explants Culture and Preparation
2.2.2. Immunostaining of CPDs
2.3. Quantification of Cytokines and Prostaglandin Under UV and Heat Stress
2.3.1. UV-Induced Inflammation in NHEKs- IL6 and IL-1Ra Quantification
2.3.2. Heat Stress Condition in NHEKs—PGE2 Quantification
2.4. Quantification of Vitamin D3 in Skin Explants Treated with PTE and Under Moderate Daily UV Exposure
2.4.1. Skin Explants Culture and Preparation
2.4.2. HPLC Quantification of Vitamin D3
2.5. Gene Expression Analysis on Skin Explants Treated with PTE
2.6. Quantification of Melanin in Skin Explants Treated with PTE Under Moderate Daily UV Exposure, Using Fontana Masson Stain
2.6.1. Skin Explants Culture and Preparation
2.6.2. Fontana–Masson Staining and Quantification of Melanin Content by Imagery Analysis
2.7. Quantification of Eumelanin and Pheomelanin in Skin Explants Treated with PTE Under Moderate Daily UV Exposure, Using LC-MS
2.7.1. Skin Explants Culture and Preparation
2.7.2. Quantitative Analysis of Eumelanin and Pheomelanin Using HPLC
2.8. Evaluation of Skin Pigmentation on Pigmented-Reconstructed Human Epidermis Treated with PTE Under Moderate Daily UV Exposure
2.8.1. Culture and Preparation
2.8.2. L* and ITA* Parameters Measurement
2.9. Evaluation of Pigmentation in Skin Explants Treated with PTE in SPF 30 Sunscreen Formula Under Moderate Daily UV Exposure
2.10. Statistical Analysis
3. Results
3.1. UVA/UVB Dose Determination
3.2. PTE Mitigates the Deleterious Effects of Sun Exposure
3.2.1. PTE Decreases DNA Damage
3.2.2. PTE Decreases UV-Induced Inflammation and Heat Stress-Induced PGE2
3.3. PTE Increases Vitamin D3 Content
3.4. PTE Promotes Melanogenesis
3.4.1. PTE Increases Expression of Genes Involved in Melanogenesis and Its Regulation
3.4.2. PTE Enhances Melanin Content and Skin Color Under Moderate Daily UV Dose Exposure
3.4.3. PTE Promotes Melanin Synthesis Under SPF Protection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHR | Aryl Hydrocarbon Receptor |
αMSH | Melanocyte-Stimulating Hormone |
CPD | Cyclobutane Pyrimidine Dimers |
MC1R | Melanocortin 1 Receptor |
MITF | Microphtalmia-Associated Transcription Factor |
MLPH | Melanophilin |
PTE | Persicaria tinctoria Extract |
SPF | Sun Protection Factor |
TYR | Tyrosinase |
UV | Ultraviolet |
References
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Nasti, T.H.; Timares, L. MC1R, Eumelanin and Pheomelanin: Their Role in Determining the Susceptibility to Skin Cancer. Photochem. Photobiol. 2015, 91, 188–200. [Google Scholar] [CrossRef]
- Battie, C.; Jitsukawa, S.; Bernerd, F.; Del Bino, S.; Marionnet, C.; Verschoore, M. New Insights in Photoaging, UVA Induced Damage and Skin Types. Exp. Dermatol. 2014, 23, 7–12. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.; Jiang, G. Research Progress on Skin Photoaging and Oxidative Stress. Postępy Dermatol. I Alergol. 2021, 38, 931–936. [Google Scholar] [CrossRef]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef]
- Marionnet, C.; Tricaud, C.; Bernerd, F. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection. Int. J. Mol. Sci. 2014, 16, 68–90. [Google Scholar] [CrossRef]
- Seité, S.; Medaisko, C.; Christiaens, F.; Bredoux, C.; Compan, D.; Zucchi, H.; Lombard, D.; Fourtanier, A. Biological Effects of Simulated Ultraviolet Daylight: A New Approach to Investigate Daily Photoprotection. Photodermatol. Photoimmunol. Photomed. 2006, 22, 67–77. [Google Scholar] [CrossRef]
- Seité, S.; Fourtanier, A.; Moyal, D.; Young, A.R. Photodamage to Human Skin by Suberythemal Exposure to Solar Ultraviolet Radiation Can Be Attenuated by Sunscreens: A Review. Br. J. Dermatol. 2010, 163, 903–914. [Google Scholar] [CrossRef]
- Gabe, Y.; Takeda, K.; Tobiishi, M.; Kikuchi, S.; Tsuda, K.; Haryuu, Y.; Nakajima, Y.; Inomata, Y.; Nakamura, S.; Murase, D.; et al. Evaluation of Subclinical Chronic Sun Damage in the Skin via the Detection of Long-Lasting Ultraweak Photon Emission. Ski. Res. Technol. 2021, 27, 1064–1071. [Google Scholar] [CrossRef]
- Weill, F.S.; Cela, E.M.; Ferrari, A.; Paz, M.L.; Leoni, J.; Gonzalez Maglio, D.H. Skin Exposure to Chronic but Not Acute UV Radiation Affects Peripheral T-Cell Function. J. Toxicol. Environ. Health A 2011, 74, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily Photoprotection to Prevent Photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Flament, F.; Mercurio, D.G.; Catalan, E.; Bouhadanna, E.; Delaunay, C.; Miranda, D.F.; Passeron, T. Impact on Facial Skin Aging Signs of a 1-Year Standardized Photoprotection over a Classical Skin Care Routine in Skin Phototypes II–VI Individuals: A Prospective Randomized Trial. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Seité, S.; Christiaens, F.; Bredoux, C.; Compan, D.; Zucchi, H.; Lombard, D.; Fourtanier, A.; Young, A. A Broad-Spectrum Sunscreen Prevents Cumulative Damage from Repeated Exposure to Sub-Erythemal Solar Ultraviolet Radiation Representative of Temperate Latitudes. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 219–222. [Google Scholar] [CrossRef]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating Life’s Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef]
- Rossberg, W.; Saternus, R.; Wagenpfeil, S.; Kleber, M.; März, W.; Reichrath, S.; Vogt, T.; Reichrath, J. Human Pigmentation, Cutaneous Vitamin D Synthesis and Evolution: Variants of Genes (SNPs) Involved in Skin Pigmentation Are Associated with 25(OH)D Serum Concentration. Anticancer Res. 2016, 36, 1429–1437. [Google Scholar]
- Alfredsson, L.; Armstrong, B.K.; Butterfield, D.A.; Chowdhury, R.; de Gruijl, F.R.; Feelisch, M.; Garland, C.F.; Hart, P.H.; Hoel, D.G.; Jacobsen, R.; et al. Insufficient Sun Exposure Has Become a Real Public Health Problem. Int. J. Environ. Res. Public Health 2020, 17, 5014. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need? In Sunlight, Vitamin D and Skin Cancer; Reichrath, J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 19–36. ISBN 978-3-030-46227-7. [Google Scholar]
- Lindqvist, P.G.; Epstein, E.; Landin-Olsson, M. Sun Exposure—Hazards and Benefits. Anticancer Res. 2022, 42, 1671–1677. [Google Scholar] [CrossRef]
- Webb, A.R.; Kift, R.; Berry, J.L.; Rhodes, L.E. The Vitamin D Debate: Translating Controlled Experiments into Reality for Human Sun Exposure Times. Photochem. Photobiol. 2011, 87, 741–745. [Google Scholar] [CrossRef]
- Felton, S.J.; Cooke, M.S.; Kift, R.; Berry, J.L.; Webb, A.R.; Lam, P.M.W.; de Gruijl, F.R.; Vail, A.; Rhodes, L.E. Concurrent Beneficial (Vitamin D Production) and Hazardous (Cutaneous DNA Damage) Impact of Repeated Low-Level Summer Sunlight Exposures. Br. J. Dermatol. 2016, 175, 1320–1328. [Google Scholar] [CrossRef]
- Jablonski, N.G.; Chaplin, G. Human Skin Pigmentation as an Adaptation to UV Radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 8962–8968. [Google Scholar] [CrossRef]
- Serre, C.; Busuttil, V.; Botto, J.-M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40, 328–347. [Google Scholar] [CrossRef]
- Del Bino, S.; Ito, S.; Sok, J.; Nakanishi, Y.; Bastien, P.; Wakamatsu, K.; Bernerd, F. Chemical Analysis of Constitutive Pigmentation of Human Epidermis Reveals Constant Eumelanin to Pheomelanin Ratio. Pigment Cell Melanoma Res. 2015, 28, 707–717. [Google Scholar] [CrossRef]
- Tadokoro, T.; Yamaguchi, Y.; Batzer, J.; Coelho, S.G.; Zmudzka, B.Z.; Miller, S.A.; Wolber, R.; Beer, J.Z.; Hearing, V.J. Mechanisms of Skin Tanning in Different Racial/Ethnic Groups in Response to Ultraviolet Radiation. J. Investig. Dermatol. 2005, 124, 1326–1332. [Google Scholar] [CrossRef]
- Wang, F.; Ma, W.; Fan, D.; Hu, J.; An, X.; Wang, Z. The Biochemistry of Melanogenesis: An Insight into the Function and Mechanism of Melanogenesis-Related Proteins. Front. Mol. Biosci. 2024, 11, 1440187. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Lim, H.W.; Goh, C.-L.; Kang, H.Y.; Ly, F.; Morita, A.; Ocampo Candiani, J.; Puig, S.; Schalka, S.; Wei, L.; et al. Photoprotection According to Skin Phototype and Dermatoses: Practical Recommendations from an Expert Panel. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Swope, V.B.; Abdel-Malek, Z.A. MC1R: Front and Center in the Bright Side of Dark Eumelanin and DNA Repair. Int. J. Mol. Sci. 2018, 19, 2667. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Dürr, P. Plant Extracts and Natural Compounds Used against UVB-Induced Photoaging. Biogerontology 2017, 18, 499–516. [Google Scholar] [CrossRef]
- Sun, Q.; Leng, J.; Tang, L.; Wang, L.; Fu, C. A Comprehensive Review of the Chemistry, Pharmacokinetics, Pharmacology, Clinical Applications, Adverse Events, and Quality Control of Indigo Naturalis. Front. Pharmacol. 2021, 12, 664022. [Google Scholar] [CrossRef]
- Min, G.-Y.; Kim, J.-H.; Kim, T.-I.; Cho, W.-K.; Yang, J.-H.; Ma, J.-Y. Indigo Pulverata Levis (Chung-Dae, Persicaria Tinctoria) Alleviates Atopic Dermatitis-like Inflammatory Responses In Vivo and In Vitro. Int. J. Mol. Sci. 2022, 23, 553. [Google Scholar] [CrossRef]
- Han, N.-R.; Park, J.-Y.; Jang, J.-B.; Jeong, H.-J.; Kim, H.-M. A Natural Dye, Niram Improves Atopic Dermatitis through down-Regulation of TSLP. Environ. Toxicol. Pharmacol. 2014, 38, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Han, N.-R.; Kang, S.W.; Moon, P.-D.; Jang, J.-B.; Kim, H.-M.; Jeong, H.-J. Genuine Traditional Korean Medicine, Naju Jjok (Chung-Dae, Polygonum Tinctorium) Improves 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis-like Lesional Skin. Phytomedicine 2014, 21, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, W.-L.; Lin, Y.-K.; Tsai, C.-N.; Wang, T.-M.; Chen, T.-Y.; Pang, J.-H.S. Indirubin, An Acting Component of Indigo Naturalis, Inhibits EGFR Activation and EGF-Induced CDC25B Gene Expression in Epidermal Keratinocytes. J. Dermatol. Sci. 2012, 67, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-J.; Di, T.-T.; Wang, Y.; Wang, M.-X.; Meng, Y.-J.; Lin, Y.; Xu, X.-L.; Li, P.; Zhao, J.-X. Indirubin Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in Mice by Inhibiting Inflammatory Responses Mediated by IL-17A-Producing Γδ T Cells. Mol. Immunol. 2018, 101, 386–395. [Google Scholar] [CrossRef]
- Qi, T.; Li, H.; Li, S. Indirubin Improves Antioxidant and Anti-Inflammatory Functions in Lipopolysaccharide-Challenged Mice. Oncotarget 2017, 8, 36658–36663. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Huang, W.; Rao, X.; Lai, Y. Pharmacological Properties of Indirubin and Its Derivatives. Biomed. Pharmacother. 2022, 151, 113112. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ito, S. Advanced Chemical Methods in Melanin Determination. Pigment Cell Res. 2002, 15, 174–183. [Google Scholar] [CrossRef]
- Christiaens, F.J.; Chardon, A.; Fourtanier, A.; Frederick, J.E. Standard Ultraviolet Daylight for Nonextreme Exposure Conditions. Photochem. Photobiol. 2005, 81, 874–878. [Google Scholar] [CrossRef]
- Tran, T.T.-N.; Schulman, J.; Fisher, D.E. UV and Pigmentation: Molecular Mechanisms and Social Controversies. Pigment Cell Melanoma Res. 2008, 21, 509–516. [Google Scholar] [CrossRef]
- Home/Root—EUROSUN Project. Available online: https://i-pri.org/ (accessed on 21 April 2025).
- Tadokoro, T.; Kobayashi, N.; Zmudzka, B.Z.; Ito, S.; Wakamatsu, K.; Yamaguchi, Y.; Korossy, K.S.; Miller, S.A.; Beer, J.Z.; Hearing, V.J. UV-Induced DNA Damage and Melanin Content in Human Skin Differing in Racial/Ethnic Origin. FASEB J. 2003, 17, 1177–1179. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV Radiation-Induced Inflammation and Immunosuppression Accelerate the Aging Process in the Skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Rigel, D.S.; Taylor, S.C.; Lim, H.W.; Alexis, A.F.; Armstrong, A.W.; Chiesa Fuxench, Z.C.; Draelos, Z.D.; Hamzavi, I.H. Photoprotection for Skin of All Color: Consensus and Clinical Guidance from an Expert Panel. J. Am. Acad. Dermatol. 2022, 86, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A Global Perspective for Health. Dermatoendocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Casale, G.R.; Colosimo, A.; Schmalwieser, S.S.; Siani, A.M. Review on Occupational Personal Solar UV Exposure Measurements. Atmosphere 2021, 12, 142. [Google Scholar] [CrossRef]
- Coppeta, L.; Papa, F.; Magrini, A. Are Shiftwork and Indoor Work Related to D3 Vitamin Deficiency? A Systematic Review of Current Evidences. J. Environ. Public Health 2018, 2018, 8468742. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Mechanisms of UV-Induced Mutations and Skin Cancer. Genome Instab. Dis. 2020, 1, 99–113. [Google Scholar] [CrossRef]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef]
- Rebl, H.; Sawade, M.; Hein, M.; Bergemann, C.; Wende, M.; Lalk, M.; Langer, P.; Emmert, S.; Nebe, B. Synergistic Effect of Plasma-Activated Medium and Novel Indirubin Derivatives on Human Skin Cancer Cells by Activation of the AhR Pathway. Sci. Rep. 2022, 12, 2528. [Google Scholar] [CrossRef]
- Ciążyńska, M.; Olejniczak-Staruch, I.; Sobolewska-Sztychny, D.; Narbutt, J.; Skibińska, M.; Lesiak, A. Ultraviolet Radiation and Chronic Inflammation—Molecules and Mechanisms Involved in Skin Carcinogenesis: A Narrative Review. Life 2021, 11, 326. [Google Scholar] [CrossRef]
- Jensen, L.E. Targeting the IL-1 Family Members in Skin Inflammation. Curr. Opin. Investig. Drugs 2010, 11, 1211–1220. [Google Scholar]
- Faber, S.C.; Soshilov, A.A.; Giani Tagliabue, S.; Bonati, L.; Denison, M.S. Comparative In Vitro and In Silico Analysis of the Selectivity of Indirubin as a Human Ah Receptor Agonist. Int. J. Mol. Sci. 2018, 19, 2692. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gallego, N.; Sánchez-Madrid, F.; Cibrian, D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021, 10, 3176. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Uchi, H.; Mitoma, C.; Hashimoto-Hachiya, A.; Chiba, T.; Ito, T.; Nakahara, T.; Tsuji, G. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2. Nutrients 2017, 9, 223. [Google Scholar] [CrossRef]
- Cho, S.; Shin, M.H.; Kim, Y.K.; Seo, J.-E.; Lee, Y.M.; Park, C.-H.; Chung, J.H. Effects of Infrared Radiation and Heat on Human Skin Aging In Vivo. J. Investig. Dermatol. Symp. Proc. 2009, 14, 15–19. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D: An Ancient Hormone. Exp. Dermatol. 2011, 20, 7–13. [Google Scholar] [CrossRef]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. The Impact of Vitamin D on Skin Aging. Int. J. Mol. Sci. 2021, 22, 9097. [Google Scholar] [CrossRef]
- Levis, S.; Gomez, A.; Jimenez, C.; Veras, L.; Ma, F.; Lai, S.; Hollis, B.; Roos, B.A. Vitamin D Deficiency and Seasonal Variation in an Adult South Florida Population. J. Clin. Endocrinol. Metab. 2005, 90, 1557–1562. [Google Scholar] [CrossRef]
- Eloi, M.; Horvath, D.V.; Szejnfeld, V.L.; Ortega, J.C.; Rocha, D.A.C.; Szejnfeld, J.; Castro, C.H.M. Vitamin D Deficiency and Seasonal Variation over the Years in São Paulo, Brazil. Osteoporos. Int. 2016, 27, 3449–3456. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Takahashi, K.; Zmudzka, B.Z.; Kornhauser, A.; Miller, S.A.; Tadokoro, T.; Berens, W.; Beer, J.Z.; Hearing, V.J. Human Skin Responses to UV Radiation: Pigment in the Upper Epidermis Protects against DNA Damage in the Lower Epidermis and Facilitates Apoptosis. FASEB J. 2006, 20, 1486–1488. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Kucharska, E.; Zajdel, R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022, 27, 4360. [Google Scholar] [CrossRef]
- Goenka, S. Oleuropein Is a Stimulator of Melanocyte Dendricity: Potential for Treatment of Hypopigmentation. Biologics 2025, 5, 8. [Google Scholar] [CrossRef]
- Pratiwi, D.; Mariya, S.; Rayendra, R.; Setiyono, A. Phytochemical Analysis and Pro-Melanogenic Activity of Nigella Sativa Extract in B16F10 Cells: A Natural Candidate for Vitiligo Treatment. Pharmacogn. J. 2025, 17, 307–313. [Google Scholar] [CrossRef]
- Myung, C.H.; Lee, J.E.; Jo, C.S.; Park, J.I.; Hwang, J.S. Regulation of Melanophilin (Mlph) Gene Expression by the Glucocorticoid Receptor (GR). Sci. Rep. 2021, 11, 16813. [Google Scholar] [CrossRef]
- De Tollenaere, M.; Durduret, A.; Chapuis, E.; Martinez, J.; Sennelier-Portet, B.; Scandolera, A.; Reynaud, R. Sunshine in a Bottle: Harnessing the Power of Persicaria Tinctoria Extract for Radiant Skin and Enhanced Well-Being—SOFW—Verlag Für Chemische Industrie. Available online: https://www.sofw.com/en/hikashop-menu-for-categories-listing/product/1944-sunshine-in-a-bottle-harnessing-the-power-of-persicaria-tinctoria-extract-for-radiant-skin-and-enhanced-well-being (accessed on 10 June 2025).
- Fell, G.L.; Robinson, K.C.; Mao, J.; Woolf, C.J.; Fisher, D.E. Skin β-Endorphin Mediates Addiction to Ultraviolet Light. Cell 2014, 157, 1527–1534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Tollenaere, M.; Zanchetta, C.; Durduret, A.; Martinez, J.; Sennelier-Portet, B.; Tiguemounine, J.; Scandolera, A.; Reynaud, R. Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin. Cosmetics 2025, 12, 237. https://doi.org/10.3390/cosmetics12060237
de Tollenaere M, Zanchetta C, Durduret A, Martinez J, Sennelier-Portet B, Tiguemounine J, Scandolera A, Reynaud R. Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin. Cosmetics. 2025; 12(6):237. https://doi.org/10.3390/cosmetics12060237
Chicago/Turabian Stylede Tollenaere, Morgane, Catherine Zanchetta, Anaïs Durduret, Jessy Martinez, Bénédicte Sennelier-Portet, Jean Tiguemounine, Amandine Scandolera, and Romain Reynaud. 2025. "Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin" Cosmetics 12, no. 6: 237. https://doi.org/10.3390/cosmetics12060237
APA Stylede Tollenaere, M., Zanchetta, C., Durduret, A., Martinez, J., Sennelier-Portet, B., Tiguemounine, J., Scandolera, A., & Reynaud, R. (2025). Persicaria tinctoria Extract Mitigates UV-Associated DNA Damage and Inflammation, While Boosting Vitamin D3 and Melanin in Human Skin. Cosmetics, 12(6), 237. https://doi.org/10.3390/cosmetics12060237