Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,183)

Search Parameters:
Keywords = sulfuration treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 (registering DOI) - 5 Aug 2025
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

9 pages, 781 KiB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA
by Steven I. Apfelbaum, Susan M. Lehnhardt, Michael Boston, Lea Daly, Gavin Pinnow, Kris Gillespie and Donald M. Waller
Agriculture 2025, 15(15), 1666; https://doi.org/10.3390/agriculture15151666 - 1 Aug 2025
Viewed by 178
Abstract
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus [...] Read more.
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus virginicus L.) or VWR. This crop type had 2-3X higher bird, dragonfly, butterfly and plant species richness, diversity, and faunal abundance relative to alfalfa and corn types. VWR crop fields also support more obligate grassland bird species and higher populations of dragonfly and butterfly species associated with grasslands and wet meadows. In contrast, the corn and alfalfa types support few or no obligatory grassland birds and mostly non-native insects such as the white cabbage looper (Artogeia rapae L.), the common yellow sulfur butterfly (Colias philodice Godart.), and the mobile and migratory common green darner dragonfly (Anax junius Drury.). In sum, the VWR perennial native grass crop type offers a special opportunity to improve the diversity and abundance of grassland bird species, beneficial insect species, and many native plant species within agricultural landscapes. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

13 pages, 1594 KiB  
Article
Unraveling Nitrogen Removal and Microbial Response of Integrated Sulfur-Driven Partial Denitrification and Anammox Process in Saline Wastewater Treatment
by Xiangchen Li, Jie Sun, Zonglun Cao, Junxi Lai, Haodi Feng and Minwen Guo
Water 2025, 17(15), 2284; https://doi.org/10.3390/w17152284 - 31 Jul 2025
Viewed by 271
Abstract
Increasing the discharge of saline wastewater from an industrial field poses a challenge for applicable Anammox-based technologies. This study established the integrated partial sulfur-driven denitrification and Anammox (SPDA) system to explore the effects of different salinity levels on nitrogen conversion features. The results [...] Read more.
Increasing the discharge of saline wastewater from an industrial field poses a challenge for applicable Anammox-based technologies. This study established the integrated partial sulfur-driven denitrification and Anammox (SPDA) system to explore the effects of different salinity levels on nitrogen conversion features. The results of batch tests suggested that sulfur-driven denitrification exhibited progressive suppression of nitrate reduction (97.7% → 12.3% efficiency at 0% → 4% salinity) and significant nitrite accumulation (56.4% accumulation rate at 2% salinity). Anammox showed higher salinity tolerance but still experienced drastic TN removal decline (97.6% → 17.3% at 0% → 4% salinity). Long-term operation demonstrated that the SPDA process could be rapidly established at 0% salinity and stabilize with TN removal efficiencies of 98.1% (1% salinity), 72.8% (2% salinity), and 70.2% (4% salinity). The robustness of the system was attributed to the appropriate strategy of gradual salinity elevation, the promoted secretion of protein-dominated EPS, the salinity-responsive enrichment of Sulfurimonas (replacing Thiobacillus and Ferritrophicum) as sulfur-oxidizing bacteria (SOB), and the sustained retention and activity of Brocadia as AnAOB. The findings in this study deepen the understanding of the inhibitory effects of salinity on the SPDA system, providing a feasible solution for saline wastewater treatment with low cost and high efficiency. Full article
Show Figures

Figure 1

16 pages, 1105 KiB  
Article
Ozone Stress During Rice Growth Impedes Grain-Filling Capacity of Inferior Spikelets but Not That of Superior Spikelets
by Shaowu Hu, Hairong Mu, Yunxia Wang, Liquan Jing, Yulong Wang, Jianye Huang and Lianxin Yang
Agronomy 2025, 15(8), 1809; https://doi.org/10.3390/agronomy15081809 - 26 Jul 2025
Viewed by 213
Abstract
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets [...] Read more.
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets located on the upper primary rachis (superior spikelets, SS) and the lower secondary rachis (inferior spikelets, IS). Ozone stress significantly decreased filled grain percentage by 41.4% and grain mass by 10.2% in IS, but had little effect on grain-filling capacity in SS. Consistent with the reduction in grain mass, ozone stress decreased grain volume, mainly due to reduced grain thickness, and IS was reduced more than SS. After removing the hull, brown rice obtained from ozone treatment exhibited higher proportions of immature and abnormal kernels, resulting in a substantially lower proportion of perfect kernels. Under ozone stress, the proportion of perfect kernels was only one-third in IS, compared with two-thirds in SS. Ozone stress affected the pasting properties of brown rice for both SS and IS, as shown by the decreased amylose content, and the increased maximum viscosity, minimum viscosity, final viscosity, setback, and peak time of the rapid visco analyzer profile. Out of fourteen traits related to nutritional quality of brown rice, only five showed significant increases under ozone stress, and they were the concentrations of albumin, prolamin, sulfur, copper, and manganese. The differential ozone responses between SS and IS were rather small for rice pasting properties and chemical compositions as shown by very few significant interactions between ozone and grain position. It is concluded that ozone stress during plant growth imposed more adverse effects on IS than SS in terms of grain-filling capacity and appearance quality, suggesting an enlarged asynchronous grain-filling pattern in rice panicles under ozone pollution. Strategies to improve the grain-filling capacity of IS are needed to mitigate ozone-induced damage to rice production. Full article
Show Figures

Figure 1

14 pages, 1632 KiB  
Article
Is the Mineral Content of Muscle Tissue (Longissimus Lumborum) in Cattle Finished During the Rainy Season in the Eastern Amazon Influenced by Different Farming Systems?
by Ana Paula Damasceno Ferreira, Jamile Andréa Rodrigues da Silva, Miguel Pedro Mourato, José António Mestre Prates, Thomaz Cyro Guimarães de Carvalho Rodrigues, André Guimarães Maciel e Silva, Andrea Viana da Cruz, Adriny dos Santos Miranda Lobato, Welligton Conceição da Silva, Elton Alex Corrêa da Silva, Antônio Marcos Quadros Cunha, Vanessa Vieira Lourenço-Costa, Éder Bruno Rebelo da Silva, Tatiane Silva Belo and José de Brito Lourenço-Júnior
Animals 2025, 15(15), 2186; https://doi.org/10.3390/ani15152186 - 25 Jul 2025
Viewed by 281
Abstract
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to [...] Read more.
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to assess whether the mineral content of muscle tissue (longissimus lumborum) in cattle finished during the rainy season in the Eastern Amazon is influenced by different farming systems. The treatments consisted of four systems (three pasture production systems and one feedlot system). 1. native wetland pasture in Santa Cruz do Arari (Mesoregion of Marajó); 2. native wetland pasture in Monte Alegre (Mesoregion of Baixo Amazonas); 3. cultivated dryland pasture in São Miguel do Guamá (Mesoregion of Nordeste Paraense); and 4. Confinement in Santa Izabel do Pará (Metropolitan Region of Belém). The analyses were carried out on samples of the longissimus lumborum muscle tissue of 48 male, castrated, crossbred Nelore cattle, twelve per breeding system, from commercial farms, destined for meat production, finished during the rainiest period of the year (between January and June). In systems 1 and 2, the animals were slaughtered in licensed slaughterhouses; the animals in systems 3 and 4 were slaughtered in commercial slaughterhouses. Food sampling and chemical analysis, soil sample collection and analysis, longissimus lumborum muscle tissue collection, sample preparation and digestion, and inductively coupled plasma optical emission spectrometry were evaluated. The experimental design was completely randomized in a linear model with four rearing systems and one period (rainy). The data was compared using the Statistical Analysis Systems (SAS) program. All analyses were carried out considering a significance level of 0.05. Samples of the diets offered (pasture and concentrate) were also collected. The Amazon systems influenced the macro- and micromineral content in the muscles of cattle (p < 0.05). The interaction between pasture systems vs. confinement showed differences in the minerals calcium (Ca), magnesium (Mg), phosphorus (P), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) (p < 0.05). However, there was no difference in the values of sodium (Na), potassium (K), and sulfur (S) between the rearing systems (p > 0.05). By contrast, the cultivated pasture system vs. extensive pasture showed differences in all the elements evaluated (p < 0.05). The rearing systems of the Eastern Amazon influenced the mineral content of beef, which continues to be an excellent source of macro- and microminerals and can compose the human diet. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

35 pages, 1745 KiB  
Article
Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
by Agnieszka Andrzejewska, Katarzyna Przygocka-Cyna and Witold Grzebisz
Sustainability 2025, 17(15), 6705; https://doi.org/10.3390/su17156705 - 23 Jul 2025
Viewed by 419
Abstract
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such [...] Read more.
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such as magnesium (Mg) and sulfur (S). This hypothesis was verified in a single-factor field experiment with winter wheat (WW) carried out in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of seven variants: absolute control (AC), NP, NPK-MOP (K as Muriate of Potash), NPK-MOP+Ki (Kieserite), NPK-KK (K as Korn–Kali), NPK-KK+Ki, and NPK-KK+Ki+ES (Epsom Salt). The use of K as MOP increased grain yield (GY) by 6.3% compared to NP. In the NPK-KK variant, GY was 13% (+0.84 t ha−1) higher compared to NP. Moreover, GYs in this fertilization variant (FV) were stable over the years (coefficient of variation, CV = 9.4%). In NPK-KK+Ki+ES, the yield increase was the highest and mounted to 17.2% compared to NP, but the variability over the years was also the highest (CV ≈ 20%). The amount of N in grain N (GN) increased progressively from 4% for NPK-MOP to 15% for NPK-KK and 25% for NPK-KK+Ki+ES in comparison to NP. The nitrogen harvest index was highly stable, achieving 72.6 ± 3.1%. All analyzed NUE indices showed a significant response to FVs. The PFP-Nf (partial factor productivity of Nf) indices increased on NPK-MOP by 5.8%, NPK-KK by 12.9%, and NPK-KK+Ki+ES by 17.9% compared to NP. The corresponding Nf recovery of Nf in wheat grain was 47.2%, 55.9%, and 64.4%, but its total recovery by wheat (grain + straw) was 67%, 74.5%, and 87.2%, respectively. In terms of the theoretical and practical value of the tested indexes, two indices, namely, NUP (nitrogen unit productivity) and NUA (nitrogen unit accumulation), proved to be the most useful. From the farmer’s production strategy, FV with K applied in the form of Korn–Kali proved to be the most stable option due to high and stable yield, regardless of weather conditions. The increase in the number of nutritional factors optimizing the action of nitrogen in winter wheat caused the phenomenon known as the “scissors effect”. This phenomenon manifested itself in a progressive increase in nitrogen unit productivity (NUP) combined with a regressive trend in unit nitrogen accumulation (NUA) in the grain versus the balance of soil available Mg (Mgb). The studies clearly showed that obtaining grain that met the milling requirements was recorded only for NUA above 22 kg N t−1 grain. This was possible only with the most intensive Mg treatment (NPK-KK+Ki and NPK-KK+Ki+ES). The study clearly showed that three of the six FVs fully met the three basic conditions for sustainable crop production: (i) stabilization and even an increase in grain yield; (ii) a decrease in the mass of inorganic N in the soil at harvest, potentially susceptible to leaching; and (iii) stabilization of the soil fertility of P, K, and Mg. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Metagenomic Sequencing Revealed the Effects of Different Potassium Sulfate Application Rates on Soil Microbial Community, Functional Genes, and Yield in Korla Fragrant Pear Orchard
by Lele Yang, Xing Shen, Linsen Yan, Jie Li, Kailong Wang, Bangxin Ding and Zhongping Chai
Agronomy 2025, 15(7), 1752; https://doi.org/10.3390/agronomy15071752 - 21 Jul 2025
Viewed by 368
Abstract
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, [...] Read more.
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, 75, 150, and 225 kg/hm2). Metagenomic sequencing was employed to assess the effects on soil microbial communities, sulfur cycle functional genes, and fruit yield. Potassium treatments significantly altered soil physicochemical properties, the abundance of sulfur cycle functional genes, and fruit yield (p < 0.05). Increasing application rates significantly elevated soil-available potassium and organic matter while reducing pH (p < 0.05). Although alpha diversity was unaffected, NMDS analysis revealed differences in microbial community composition under different treatments. Functional gene analysis showed a significant decreasing trend in betB abundance, a peak in hpsO under K150, and variable patterns for soxX and metX across treatments (p < 0.05). All potassium applications significantly increased yield relative to CK, with K150 achieving the highest yield (p < 0.05). PLS-PM analysis indicated significant positive associations between potassium rate, nutrient availability, microbial abundance, sulfur cycling, and yield, and a significant negative association with pH (p < 0.05). These results provide a foundation for optimizing potassium fertilizer strategies in Korla fragrant pear orchards. It is recommended that future studies combine metagenomic and metatranscriptomic approaches to further elucidate the mechanisms linking potassium-driven microbial functional changes to improvements in fruit quality. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 3953 KiB  
Article
Straw Returning Combined with Application of Sulfur-Coated Urea Improved Rice Yield and Nitrogen Use Efficiency Through Enhancing Carbon and Nitrogen Metabolism
by Guangxin Zhao, Kaiyu Gao, Ming Gao, Xiaotian Xu, Zeming Li, Xianzhi Yang, Ping Tian, Xiaoshuang Wei, Zhihai Wu and Meiying Yang
Agriculture 2025, 15(14), 1554; https://doi.org/10.3390/agriculture15141554 - 19 Jul 2025
Viewed by 331
Abstract
Straw returning inhibits tillering at the early stage of rice growth and thus affects grain yield. Sulfur-coated urea (SCU) has been expected to increase nitrogen use efficiency (NUE) and yield, save labor input, and reduce environmental pollution in crop production. Nevertheless, the sulfur [...] Read more.
Straw returning inhibits tillering at the early stage of rice growth and thus affects grain yield. Sulfur-coated urea (SCU) has been expected to increase nitrogen use efficiency (NUE) and yield, save labor input, and reduce environmental pollution in crop production. Nevertheless, the sulfur coatings of SCU are easy to break and then shorten the nutrient release cycle. Whether there was a complementary effect between straw returning and SCU in NUE and grain yield had remained elusive. To investigate the effects of straw returning combined with the application of SCU on NUE and rice yield, a two-year field experiment was conducted from 2022 to 2023 with three treatments (straw returning combined with conventional urea (SRU), no straw returning combined with SCU (NRS), straw returning combined with SCU (SRS)). We found that straw returning combined with the application of SCU increased rice yield and NUE significantly. Compared with SRU and NRS, SRS treatments significantly increased grain yield by 14.61–16.22%, and 4.14–7.35%, respectively. Higher effective panicle numbers per m2 and grain numbers per panicle were recorded in NRS and SRS treatments than SRU. SRS treatment increased nitrogen recovery efficiency by 79.53% and 22.97%, nitrogen agronomic efficiency by 18.68% and 17.37%, and nitrogen partial factor productivity by 10.51% and 9.81% compared with SRU and NRS treatment, respectively. The enhanced NUE in SRS was driven by higher leaf area index, SPAD value, net photosynthetic rate, carbon metabolic enzyme (RuBP and SPS) activity, nitrogen metabolic enzyme (NR, GS, and GOGAT) activity, sucrose and nitrogen content in leaves, and nitrogen accumulation in plant during grain filling. Moreover, the improved yield in SRS was closely related to superior NUE. In conclusion, straw returning combined with application of SCU boosted grain yield and NUE via enhanced carbon–nitrogen metabolism during the late growth period in rice. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Figure 1

15 pages, 725 KiB  
Article
In Vitro Evaluation of Ruminal Fermentation and Methane Production in Response to the Addition of Modified Nano-Bentonite with or Without Saccharomyces cerevisiae to a Forage-Based Diet
by Sohila Abo-Sherif, Sobhy Sallam, Ali M. Allam, Mounir El-Adawy and Yosra Soltan
Animals 2025, 15(14), 2081; https://doi.org/10.3390/ani15142081 - 15 Jul 2025
Viewed by 350
Abstract
Modified nano-clays, alone or combined with probiotics, may offer a novel and sustainable approach to improve ruminal fermentation and mitigate CH4 emissions in high-fiber diets. This study evaluated the properties and effects of modified nano-bentonite (MNB), with or without yeast (Saccharomyces [...] Read more.
Modified nano-clays, alone or combined with probiotics, may offer a novel and sustainable approach to improve ruminal fermentation and mitigate CH4 emissions in high-fiber diets. This study evaluated the properties and effects of modified nano-bentonite (MNB), with or without yeast (Saccharomyces cerevisiae), compared to natural bentonite (NB) and monensin, using the in vitro gas production (GP) technique. The substrate used was a basal diet composed primarily of forage (Trifolium alexandrinum clover) in a 70:30 forage-to-concentrate ratio. The treatments were a control group receiving the basal diet without additives; a monensin-added diet containing 40 mg/kg of dry matter (DM); a yeast-added diet with Saccharomyces cerevisiae at 2 × 108 CFU/g of DM; a NB clay-added diet at 5 g/kg of DM; and MNB diets added at two levels (0.5 g/kg of DM (MNBLow) and 1 g/kg of DM (MNBHigh)), with or without S. cerevisiae. MNB showed a smaller particle size and improved properties, such as higher conductivity, surface area, and cation exchange capacity, than NB. Sulfur and related functional groups were detected only in MNB. No differences were observed in total GP, while both the monensin diet and the MNBHigh-with-yeast diet significantly reduced CH4 emissions compared to the control (p < 0.05). The MNBHigh-without-yeast combination significantly (p < 0.05) reduced hemicellulose degradation, as well as total protozoal counts, including Isotricha and Epidinium spp. (p < 0.05), compared to the control. Ammonia levels did not differ significantly among treatments, while NB and MNBHigh diets tended to have (p = 0.063) the highest short-chain fatty acid (SCFA) concentrations. These findings suggest the potential modulatory effects of yeast and MNB on rumen fermentation dynamics and CH4 mitigation. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 322
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero and Juan Cancio Jiménez Lugos
Recycling 2025, 10(4), 136; https://doi.org/10.3390/recycling10040136 - 8 Jul 2025
Viewed by 589
Abstract
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican [...] Read more.
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican zinc hydrometallurgical plant corresponded to an ammonium jarosite with a measurable silver content. The specific heat capacity (Cp) of the ammonium jarosite was obtained from TGA and DSC measurements, as well as the thermodynamic functions of enthalpy, entropy, and Gibbs free energy. The Cp was successfully modeled using polynomial regression, with a second-degree polynomial employed to describe the low-temperature behavior. The thermodynamic data generated were input into the thermodynamic software FactSage 8.2 for modeling of the lead paste–ammonium jarosite-Na2CO3-SiC system and represented by stability phase diagrams. The thermodynamic assessment of the pyrometallurgical process predicted compounds formed at high temperatures, showing that a Pb-Ag alloy and a slag rich in Na, S, and Fe (NaFeS2 and NaFeO2) were obtained. The compounds formed evidence of the effective sulfur retention in the slag, which is crucial for mitigating SO2 emissions during high-temperature treatments. The experimental compounds, after solidification, were determined by X-ray diffraction measurements to be Na2Fe(SO4)2 and Na2(SO4), which reasonably match the thermodynamic assessment. The heat capacity of the ammonium jarosite provides essential thermodynamic insights into the compositional complexities of industrial waste, which are particularly relevant for thermodynamic modeling and process optimization in pyrometallurgical systems aimed at metal recovery and residue valorization. Full article
Show Figures

Figure 1

18 pages, 4826 KiB  
Article
Mass Distribution of Organic Carbon, S-Containing Compounds and Heavy Metals During Flotation of Municipal Solid Waste Incineration Fly Ash
by Weifang Chen, Peng Li, Shuyue Zhang and Yifan Chen
Recycling 2025, 10(4), 135; https://doi.org/10.3390/recycling10040135 - 8 Jul 2025
Viewed by 261
Abstract
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur [...] Read more.
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur removal showed that kerosene and MIBC showed the best performance. The results revealed that flotation was a method that could simultaneously achieve the removal of organics and S-containing compounds. Specifically, approximately 7.63–9.45% of the total mass was collected as light material, which was enriched with organic carbon. Contents of organic carbon reached 14.35 wt%–14.56 wt% in the light materials from those of 2.74 wt%–3.52 wt% in the original fly ash. Elemental analysis further proved that sulfur was also accumulated in light material. Approximately 78.84–81.69% of the organic carbon and 80.47–82.66% of the sulfur were removed. Decarbonization was primarily achieved through the flotation of organic materials, while desulfurization resulted from both flotation and the dissolution of soluble salts. Furthermore, the contents of the chloride and heavy metals in the residual fly ash also decreased. Particle size analysis showed that flotation was effective in the removal of smaller particles, and those particles were also rich in heavy metals. Overall, by selecting the right collector and frother, flotation was also able to reduce the leaching toxicity of heavy metals. The residual fly ash was safe for further disposal. Organic carbon, sulfur and heavy metals were accumulated in the light materials, which accounted for less than 10% of the original mass. The portion of fly ash needing further treatment was therefore greatly reduced. Full article
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Impact of Mild Acid and Alkali Treatments on Cotton Fibers with Nonlinear Optical Imaging and SEM Analysis
by Huipeng Gao, Xiaoxiao Li, Rui Li, Chao Wang, Hsiang-Chen Chui and Quan Zhang
Photonics 2025, 12(7), 688; https://doi.org/10.3390/photonics12070688 - 8 Jul 2025
Viewed by 274
Abstract
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the [...] Read more.
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the resulting changes were evaluated using scanning electron microscopy and nonlinear optical imaging techniques. The results indicate that sulfuric acid causes significant fiber degradation, leading to fragmentation and reduced fiber thickness. In contrast, sodium hydroxide treatment results in a roughened, flaky surface while preserving the overall structural integrity, with fibers appearing fluffier and more accessible to enzymatic processes. Untreated cotton fibers maintained a smooth and uniform surface, confirming the chemical specificity of the observed changes. These findings are crucial for optimizing biomass pretreatment methods, demonstrating that dilute chemical treatments primarily affect macrostructural features without significantly disrupting the cellulose microfibrils. The study provides valuable insights for the development of efficient biorefining processes and sustainable bio-based materials, highlighting the importance of selecting appropriate chemical conditions to enhance enzymatic hydrolysis and biomass conversion while maintaining the core structure of cellulose. This research contributes to advancing the understanding of cellulose’s structural resilience under mild chemical pretreatment conditions. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 281
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

Back to TopTop