Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = sulfur pulp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 1188
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

21 pages, 4436 KiB  
Article
Alkaline Extraction and Ethanol Precipitation of High-Molecular-Weight Xylan Compounds from Eucalyptus Residues
by María Noel Cabrera, Antonella Rossi, Juan Ignacio Guarino, Fernando Esteban Felissia and María Cristina Area
Polymers 2025, 17(12), 1589; https://doi.org/10.3390/polym17121589 - 6 Jun 2025
Viewed by 641
Abstract
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent [...] Read more.
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent addition has received little attention in the literature. This study explores the use of eucalyptus industrial residue as feedstock, utilizing a statistical design to determine the optimal extraction conditions for hemicelluloses while minimizing the lignin content in the recovered liquor. The process uses alkali loads that are compatible with those in conventional Kraft pulp mills. Optimal extraction conditions involve a temperature of 105 °C, 16.7% NaOH charge, and 45 min at maximum temperature. The resulting liquor was subjected to ethanol precipitation under varying pH conditions (initial pH, 9, 7, 5, and 2) and different ethanol-to-liquor ratios (1:1 to 4:1). The acidification was performed using hydrochloric, sulfuric, and acetic acids. Ethanol served as the main antisolvent, while isopropyl alcohol and dioxane were tested for comparison. Results show that 2.3 ± 0.2% of xylans (based on oven-dry biomass) could be extracted, minimizing lignin content in the liquor. This value corresponds to the extraction of 15.6% of the xylans present in the raw material. The highest xylan precipitation yield (78%) was obtained at pH 7, using hydrochloric acid for pH adjustment and an ethanol-to-liquor ratio of 1:1. These findings provide valuable insight into optimizing hemicellulose recovery through antisolvent precipitation, contributing to more efficient biomass valorization strategies within lignocellulosic biorefineries. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 2858 KiB  
Article
Surface Physicochemical Property Differences Between Gold-Bearing and Gold-Free Pyrite for Efficient and Clean Processing of Refractory Pyritic Gold Ores
by Xujian Chai, Runqing Liu, Wenchao Dong, Wei Sun and Shangyong Lin
Minerals 2025, 15(6), 577; https://doi.org/10.3390/min15060577 - 29 May 2025
Viewed by 396
Abstract
Selective separation of gold-bearing pyrite from gold-free pyrite through flotation to improve the gold-to-sulfur ratio in the feed can significantly enhance the throughput of autoclaves, thus achieving efficient and clean processing of refractory pyritic gold ores. To achieve this expectation, this study examined [...] Read more.
Selective separation of gold-bearing pyrite from gold-free pyrite through flotation to improve the gold-to-sulfur ratio in the feed can significantly enhance the throughput of autoclaves, thus achieving efficient and clean processing of refractory pyritic gold ores. To achieve this expectation, this study examined the surface physicochemical differences between gold-bearing and gold-free pyrite under flotation conditions using cyclic voltammetry, polarization curve testing, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) simulations. Electrochemical tests showed higher reactivity in gold-bearing pyrite, with reactivity positively correlated to gold content. XPS results indicated more oxidation products on gold-bearing pyrite surfaces under identical conditions. DFT simulations revealed that the presence of gold reduced the oxygen adsorption energy on the pyrite surface while enhancing interactions between oxygen atoms and sulfur and iron atoms. Based on these findings, the selective separation of gold-bearing and gold-free pyrite in the flotation process can be explored through pulp aeration pre-oxidation combined with collectors demonstrating selectivity toward barren pyrite (e.g., dithiocarbamate collectors). This study provides theoretical foundations for the efficient exploitation and utilization of refractory gold-bearing pyrite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 1550 KiB  
Article
Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production
by Gayane Mikoyan, Liana Vanyan, Akerke Toleugazykyzy, Roza Bekbayeva, Kamila Baichiyeva, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(10), 2648; https://doi.org/10.3390/en18102648 - 20 May 2025
Cited by 1 | Viewed by 883
Abstract
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP [...] Read more.
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP was pretreated via thermochemical hydrolysis, and the effects of substrate concentration, dilution, and glycerol supplementation were evaluated. Hydrogen production was highly dependent on substrate dilution and nutrient balance. The septuple mutant achieved the highest H2 yield in 30 g L−1 SBP hydrolysate (0.75% sulfuric acid) at 5× dilution with glycerol, reaching 12.06 mmol H2 (g sugar)−1 and 0.28 mmol H2 (g waste)−1, while the wild type under the same conditions yielded 3.78 mmol H2 (g sugar)−1 and 0.25 mmol H2 (g waste)−1. In contrast, undiluted hydrolysates favored biomass accumulation over H2 production, with the highest biomass yield (0.3 g CDW L−1) obtained using the septuple mutant in 30 g L−1 SBP hydrolysate without glycerol. These findings highlight the potential of genetically optimized E. coli and optimized hydrolysate conditions to enhance the valorization of agro-industrial waste, supporting future advances in sustainable hydrogen bioeconomy and integrated waste biorefineries. Full article
Show Figures

Figure 1

21 pages, 8909 KiB  
Article
Isolation, Sphalerite Bioleaching, and Whole Genome Sequencing of Acidithiobacillus ferriphilus QBS3 from Zinc-Rich Sulfide Mine Drainage
by Kan Wang, Yuandong Liu, Run Liu, Wissal Belqadi, Weimin Zeng, Runlan Yu and Xueling Wu
Life 2025, 15(5), 792; https://doi.org/10.3390/life15050792 - 15 May 2025
Cited by 1 | Viewed by 533
Abstract
The genus Acidithiobacillus has been widely used in bioleaching, and novel strains in this genus, such as A. ferriphilus, have also been confirmed to possess bioleaching capabilities. In this study, an Acidithiobacillus ferriphilus strain, QBS3, was isolated from zinc-rich sulfide mine drainage [...] Read more.
The genus Acidithiobacillus has been widely used in bioleaching, and novel strains in this genus, such as A. ferriphilus, have also been confirmed to possess bioleaching capabilities. In this study, an Acidithiobacillus ferriphilus strain, QBS3, was isolated from zinc-rich sulfide mine drainage using the gradient dilution method. QBS3 is a Gram-negative, 1.3 µm rod-shaped bacterium with small red colonies. It showed a high iron oxidation efficiency of 0.361 g/(L·h) and a sulfur oxidation efficiency of 0.206 g/(L·d). QBS3 has sphalerite bioleaching ability; using QBS3 for pure sphalerite bioleaching, 18.8% of zinc was extracted in 14 days at 1% pulp density. Whole genome sequencing was performed on QBS3. Functional prediction showed that 9.13% of the genes were involved in replication, recombination, and repair. Bioleaching-related genes were analyzed, including iron and sulfur oxidation genes, and carbon and nitrogen fixation genes. For iron oxidation, the Cyc2→RusA pathway and Iro→RusB pathway were found in QBS3. In terms of sulfur oxidation, QBS3 has an incomplete SOX system and lacks the SDO gene, but Rho and Trx may complement the SOX system, enabling QBS3 to oxidize sulfur. QBS3 has multiple sets of carbon fixation genes, and nitrogen fixation genes were also identified. A hypothetical sphalerite bioleaching model is proposed; this study provides a theoretical basis for the zinc sulfide ore bioleaching industry. Full article
Show Figures

Figure 1

31 pages, 10540 KiB  
Article
Study of the Scale-Up Method and Dynamic Performance of the Forced-Air Self-Aspirating Flotation Machine
by Ming Zhang, Zhengchang Shen, Fei Ma, Yuejun Zhang and Boshen Liu
Processes 2025, 13(5), 1316; https://doi.org/10.3390/pr13051316 - 25 Apr 2025
Viewed by 508
Abstract
The forced-air self-aspirating flotation machine is the core equipment for achieving a horizontal configuration in a large-scale flotation circuit. During scale-up, power consumption increases significantly due to the requirement for a greater pulp suction volume, while flotation dynamics deteriorate. Therefore, it is difficult [...] Read more.
The forced-air self-aspirating flotation machine is the core equipment for achieving a horizontal configuration in a large-scale flotation circuit. During scale-up, power consumption increases significantly due to the requirement for a greater pulp suction volume, while flotation dynamics deteriorate. Therefore, it is difficult to meet the horizontal configuration requirement for a large-scale flotation process. In this study, the key factors influencing pulp suction capacity were analyzed, revealing that as impeller submergence depth increases, pulp suction capacity decreases sharply, while power consumption rises, which was determined to be the main limitation in scaling up a forced-air self-aspirating flotation machine. To address these challenges, a new design concept for large-scale forced-air self-aspirating flotation machines was developed, featuring an impeller–stator system positioned in the middle of a trough. This design eliminated the issue of the impeller moving farther from the overflow weir and prevented increasing pulp suction resistance during scale-up. Additionally, an independent design of the upper blades was introduced based on pulp suction demand, and the design method and scale-up equations for the new impeller were established. An industrial experiment system based on a 50 m3 forced-air self-aspirating flotation machine was established to verify the developed design schemes. The new impeller with a middle placement design achieved the best separation performance, exhibited low unit pulp suction power consumption, and demonstrated the most favorable overall performance. Using CFD simulations, the flow pattern and dynamic performance were calculated, including the pulp suction volume, circulation volume, and gas–liquid dispersion for large-scale forced-air self-aspirating flotation machines. The first and largest 160 m3 large-scale forced-air self-aspirating flotation cell was successfully developed and applied in a copper–sulfur mine, where the function of self-absorbing pulp was achieved and power consumption was effectively controlled. Finally, the feasibility and accuracy of the new large-scale forced-air self-aspirating flotation machine design and scale-up method were verified. In this paper, a large forced-air self-aspirating flotation machine is designed and developed which is capable of supporting horizontally configured large-scale flotation processes. This innovative approach significantly simplifies the processing layout and reduces both the equipment configuration complexity and energy consumption, offering a more efficient and cost-effective solution for large-scale mineral processing operations. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

18 pages, 6611 KiB  
Article
Optimization of Thiourea-Promoted Gold and Silver Leaching from Pyrite Cinders Using Response Surface Methodology (RSM)
by Yerkezhan Abikak, Bagdaulet Kenzhaliev, Ata Akcil, Seydou Dembele, Aigul Koizhanova, Nauryzbek Bakhytuly and Gulzhaina Kassymova
Processes 2025, 13(5), 1277; https://doi.org/10.3390/pr13051277 - 22 Apr 2025
Viewed by 789
Abstract
The cyanidation of precious metals from ores and secondary resources has been classified as a hazardous process due to the release of toxic gases. The use of environmentally friendly and cost-effective processes is a suitable alternative to cyanidation. Thiourea leaching has been shown [...] Read more.
The cyanidation of precious metals from ores and secondary resources has been classified as a hazardous process due to the release of toxic gases. The use of environmentally friendly and cost-effective processes is a suitable alternative to cyanidation. Thiourea leaching has been shown to be one of the best alternative reagents to cyanide. The present work aims to evaluate the efficiency of the thiourea leaching of gold and silver from pretreated pyrite cinders. The use of pre-chemical activation prior to leaching helped to increase the amount of free gold and silver particles. A preliminary leaching test led to the selection of Fe2(SO4)3 as a suitable oxidizing agent for Au and Ag leaching. To select suitable leaching parameters, the response surface methodology (RSM) was used to optimize some parameters that can considerably affect sulfuric acid–thiourea leaching and identify the greatest interaction between them. The optimized parameters of 30 g/L thiourea, 10% pulp density, pH = 1, and 50 °C over 4 h of leaching time allowed for Au and Ag recoveries of 98.31 and 88.57%, respectively. Full article
(This article belongs to the Special Issue Chemical Systems Dynamic Modeling and Simulation)
Show Figures

Figure 1

20 pages, 6711 KiB  
Article
Modeling and Simulation of a Real Lime Kiln Plant to Understand Ring Formation Phenomena
by Rui Neves-Silva, Paulo Pina and Joaquim Belfo
Processes 2025, 13(4), 1022; https://doi.org/10.3390/pr13041022 - 29 Mar 2025
Viewed by 836
Abstract
This paper presents a study on the ring formation phenomenon in lime kilns using simulation. The research focuses on the chemical recovery cycle integrated into the pulp production process at a pulp mill, with particular emphasis on the calcium cycle within the lime [...] Read more.
This paper presents a study on the ring formation phenomenon in lime kilns using simulation. The research focuses on the chemical recovery cycle integrated into the pulp production process at a pulp mill, with particular emphasis on the calcium cycle within the lime kilns. Lime kilns are critical components, as their unavailability can significantly impact the overall cost-effectiveness of the facility. The calcination of lime sludge occurs in a rotary kiln, where calcium carbonate in the lime sludge is converted into calcium oxide (lime). Under certain conditions, material can progressively accumulate, leading to ring formation and eventual kiln clogging, resulting in operational downtime. To investigate this issue, the authors developed a physics-based model using a finite-dimensional, one-dimensional approach that considers only longitudinal variation. Several approximations were made to maintain a reasonable simulation time without compromising accuracy. Simulations based on real operational data identified fluctuations in fuel flow rate and sulfur content from non-condensable gases as key contributors to ring formation. The results showed that these fluctuations caused instability in the temperature profiles of the solids and gas beds, leading to periods of cooling before the lime sludge reaches the outlet to the coolers. This cooling promotes the recarbonation of lime and, consequently, the formation of rings. The findings highlight that stabilizing fuel flow and managing sulfur content could mitigate ring formation and improve kiln efficiency. The developed model provides a valuable tool for predictive analysis and process optimization, potentially supporting the development of a digital twin to enhance real-time monitoring and operational control. Full article
Show Figures

Figure 1

22 pages, 855 KiB  
Perspective
Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development
by Kalavathy Rajan, Paula Berton, Robin D. Rogers and Julia L. Shamshina
Polymers 2024, 16(23), 3438; https://doi.org/10.3390/polym16233438 - 7 Dec 2024
Cited by 3 | Viewed by 2559
Abstract
By reflecting on the history and environmental impact of conventional biorefining, such as kraft pulping, we aim to explore important questions about how natural polymers can be more sustainably sourced to develop bio-products and reduce reliance on plastics. Since the Industrial Revolution, chemical [...] Read more.
By reflecting on the history and environmental impact of conventional biorefining, such as kraft pulping, we aim to explore important questions about how natural polymers can be more sustainably sourced to develop bio-products and reduce reliance on plastics. Since the Industrial Revolution, chemical pulping processes have enabled the mass production of cellulosic products from woody biomass. Kraft pulping, which dominates within modern pulp and paper mills, has significantly contributed to environmental pollution and carbon emissions due to sulfurous byproducts and its high water and energy consumption. While chemical pulping technologies have advanced over time, with improvements aimed at enhancing sustainability and economic feasibility, conventional biorefineries still face challenges related to biomass conversion efficiency and environmental impact. For example, efforts to fully utilize wood resources, such as isolating lignin from black liquor, have made limited progress. This perspective provides a thoughtful examination of the growth of chemical pulping, particularly the kraft process, in the production of consumer goods and its environmental consequences. It also presents key insights into the bottlenecks in developing truly sustainable biomass conversion technologies and explores potential alternatives to traditional chemical pulping. Full article
(This article belongs to the Special Issue Polysaccharide and Lignocellulose Materials)
Show Figures

Graphical abstract

14 pages, 6447 KiB  
Article
Acid-Hydrolysis-Assisted Cellulose Nanocrystal Isolation from Acacia mearnsii de Wild. Wood Kraft Pulp
by Daniel Tavares de Farias, Jalel Labidi, Cristiane Pedrazzi, Darci Alberto Gatto, Pedro Henrique Gonzalez de Cademartori, Carline Andréa Welter, Gabriela Teixeira da Silva and Tielle Moraes de Almeida
Polymers 2024, 16(23), 3371; https://doi.org/10.3390/polym16233371 - 29 Nov 2024
Cited by 2 | Viewed by 1873
Abstract
Cellulose nanocrystals (CNC) receive great attention for their physical and optical properties, high surface area, high tensile strength, rigidity (Young’s modulus up to 140 GPa), and ease of surface modification. However, controlling the properties of CNC is still challenging, given the wide variety [...] Read more.
Cellulose nanocrystals (CNC) receive great attention for their physical and optical properties, high surface area, high tensile strength, rigidity (Young’s modulus up to 140 GPa), and ease of surface modification. However, controlling the properties of CNC is still challenging, given the wide variety of pulp sources and the complexity of finding suitable processing conditions. In the present study, acid hydrolysis efficiently isolated CNC from wood Acacia mearnsii brown kraft pulp (AMKP). Initially, the AMKP was delignified by the treatment with acidified sodium chlorite. The Acacia mearnsii kraft pulp obtained was then subjected to acid hydrolysis with sulfuric acid at concentrations of 50 to 58% 45 °C for 60 min. The hydrolysate was sonicated in an ultrasonic processor for 30 min. The chemical composition was determined by Fourier transform infrared spectroscopy (FTIR), crystallinity by X-ray diffraction (XRD), zeta potential by Zetasizer ZS equipment, thermal stability by thermogravimetric analysis (TGA), and morphology by transmission electron microscopy (TEM) to verify the effect of acid concentration on the yield and properties of CNC. The optimization of the isolation process demonstrated that the maximum yield of 41.95% can be obtained when AMWP was hydrolyzed with sulfuric acid at a concentration of 54%. It was possible to isolate CNC with a crystallinity index between 71.66% and 81.76%, with the onset of thermal degradation at 240 °C; zeta potential of −47.87 to 57.23 mV; and rod-like morphology, with lengths and widths between 181.70 nm and 260.24 nm and 10.36 nm and 11.06 nm, respectively. Sulfuric acid concentration significantly affected the yield of acid hydrolysis, allowing the isolation of CNC with variable dimensions, high thermal stability, high crystallinity index, and great colloidal stability in aqueous medium. Full article
(This article belongs to the Special Issue Cellulose-Based Polymeric Materials)
Show Figures

Figure 1

18 pages, 5840 KiB  
Review
Accumulated Copper Tailing Solid Wastes with Specific Compositions Encourage Advances in Microbial Leaching
by Juan Zhang, Xiaojun Liu, Xinyue Du, Xin Wang, Yifan Zeng and Shukai Fan
Minerals 2024, 14(10), 1051; https://doi.org/10.3390/min14101051 - 20 Oct 2024
Cited by 1 | Viewed by 3092
Abstract
Against the backdrop of the increasing copper demand in a low-carbon economy, this work statistically forecasted the distribution of China’s copper tailings for the first time, and then characterized them as finely crushed and low-grade mining solid wastes containing copper mainly in the [...] Read more.
Against the backdrop of the increasing copper demand in a low-carbon economy, this work statistically forecasted the distribution of China’s copper tailings for the first time, and then characterized them as finely crushed and low-grade mining solid wastes containing copper mainly in the form of chalcopyrite, bornite, covelline, enargite and chalcocite based on available research data. China is the globally leading refined copper producer and consumer, where the typical commercial-scale bioleaching of copper tailings is conducted in the Dexing, Zijinshan and Jinchuan mining regions. And these leaching processes were compared in this study. Widely used chemolithoautotrophic and mesophilic bacteria are Acidithiobacillus, Leptospirillum, Acidiphilium, Alicyclobacillus and Thiobacillus with varied metal resistance. They can be used to treat copper sulfide tailings such as pyrite, chalcopyrite, enargite, chalcocite, bornite and covellite under sufficient dissolved oxygen from 1.5 to 4.1 mg/L and pH values ranging from 0.5 to 7.2. Moderate thermophiles (Acidithiobacillus caldus, Acidimicrobium, Acidiplasma, Ferroplasma and Sulfobacillus) and extreme thermophilic archaea (Acidianus, Metallosphaera, Sulfurococcus and Sulfolobus) are dominant in leaching systems with operating temperatures higher than 40 °C. However, these species are vulnerable to high pulp density and heavy metals. Heterotrophic Acidiphilium multivorum, Ferrimicrobium, Thermoplasma and fungi use organic carbon as energy to treat copper oxides (malachite, chrysocolla and azurite) and weathered sulfides (bornite, chalcocite, digenite and covellite) under a wide pH range and high pulp density. We also compared autotrophs in a planktonic state or biofilm to treat different metal sulfides using various sulfur-cycling enzymes involved in the polysulfide or thiosulfate pathways against fungi that produce various organic acids to chelate copper from oxides. Finally, we recommended a bioinformatic analysis of functional genes involved in Fe/S oxidization and C/N metabolism, as well as advanced representation that can create new possibilities for the development of high-efficiency leaching microorganisms and insight into the mechanisms of bioleaching desired metals from complex and low-grade copper tailings. Full article
Show Figures

Figure 1

14 pages, 1525 KiB  
Article
Nutritional Characterization of Whole Mangosteen Pulp with Seeds and Its Application as an Alternate Functional Ingredient in Crackers
by Nisa Saelee, Roberto Castro-Muñoz, Worawan Panpipat and Manat Chaijan
Foods 2024, 13(18), 2987; https://doi.org/10.3390/foods13182987 - 20 Sep 2024
Cited by 1 | Viewed by 2807
Abstract
Mangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers [...] Read more.
Mangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers but also adds value to the products. The study investigated the nutritional value of MFS and then employed MFS to formulate MFS-based crackers with varying levels of MFS substitution in order to develop crackers enriched with functional ingredients. Proximate compositions, amino acids, sugars, minerals, fatty acids, color, texture, and antiradical properties were analyzed in fresh MFS and MFS-based crackers. The results indicated that MFS can be a source of crude fiber, minerals, amino acids, omega-6, and omega-9 fatty acids. Adding 13%, 18%, and 23% ground MFS to the crackers improved their nutritional value and physical characteristics compared to the control (0% MFS). MFS-based crackers promoted significantly (p < 0.05) higher fiber (4.04 ± 0.00–5.66 ± 0.01%gdw), ash (2.45 ± 0.00–2.74 ± 0.01%gdw), and protein (4.72 ± 0.00–7.72 ± 0.05%gdw) than the control without MFS addition. Carbohydrates (including dietary fiber) and total sugar decreased significantly (p < 0.05) to 57.68 ± 0.00–55.21 ± 0.11%gdw and 2.37 ± 0.00–4.42 ± 0.01%gdw, respectively, in all MFS-based crackers compared to the control basal cracker with added sugar. Moreover, MFS-based crackers contained oleic acid (C18:1, omega-9) at 5.19–5.78%gdw and linoleic acid (C18:2, omega-6) at 0.63–0.77%gdw. Furthermore, the MFS-based crackers had higher levels of minerals (i.e., potassium, phosphorus, sulfur, calcium, and magnesium) and bioactive compounds such as total phenolic acid and total flavonoid, as well as antiradical activity. This study revealed that MFS can be applied as an alternative functional ingredient in the manufacturing of nutritious cracker products, and the findings could potentially be implemented to promote the utilization of mangosteen seed as a sustainable agricultural product and waste-reducing method. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 3783 KiB  
Article
Synthesis of Highly Porous Lignin-Sulfonate Sulfur-Doped Carbon for Efficient Adsorption of Sodium Diclofenac and Synthetic Effluents
by Glaydson S. dos Reis, Sarah Conrad, Eder C. Lima, Mu. Naushad, Gopinathan Manavalan, Francesco G. Gentili, Guilherme Luiz Dotto and Alejandro Grimm
Nanomaterials 2024, 14(16), 1374; https://doi.org/10.3390/nano14161374 - 22 Aug 2024
Cited by 3 | Viewed by 1683
Abstract
Herein, a novel sulfur-doped carbon material has been synthesized via a facile and sustainable single-step pyrolysis method using lignin-sulfonate (LS), a by-product of the sulfite pulping process, as a novel carbon precursor and zinc chloride as a chemical activator. The sulfur doping process [...] Read more.
Herein, a novel sulfur-doped carbon material has been synthesized via a facile and sustainable single-step pyrolysis method using lignin-sulfonate (LS), a by-product of the sulfite pulping process, as a novel carbon precursor and zinc chloride as a chemical activator. The sulfur doping process had a remarkable impact on the LS-sulfur carbon structure. Moreover, it was found that sulfur doping also had an important impact on sodium diclofenac removal from aqueous solutions due to the introduction of S-functionalities on the carbon material’s surface. The doping process effectively increased the carbon specific surface area (SSA), i.e., 1758 m2 g−1 for the sulfur-doped and 753 m2 g−1 for the non-doped carbon. The sulfur-doped carbon exhibited more sulfur states/functionalities than the non-doped, highlighting the successful chemical modification of the material. As a result, the adsorptive performance of the sulfur-doped carbon was remarkably improved. Diclofenac adsorption experiments indicated that the kinetics was better described by the Avrami fractional order model, while the equilibrium studies indicated that the Liu model gave the best fit. The kinetics was much faster for the sulfur-doped carbon, and the maximum adsorption capacity was 301.6 mg g−1 for non-doped and 473.8 mg g−1 for the sulfur-doped carbon. The overall adsorption seems to be a contribution of multiple mechanisms, such as pore filling and electrostatic interaction. When tested to treat lab-made effluents, the samples presented excellent performance. Full article
(This article belongs to the Special Issue Degradation of Pollutants by Nanostructured Photocatalysts)
Show Figures

Figure 1

18 pages, 1838 KiB  
Article
Thiocracking of Multi-Materials: High-Strength Composites from Post-Consumer Food Packaging Jars
by Katelyn M. Derr and Rhett C. Smith
Sustainability 2024, 16(16), 7023; https://doi.org/10.3390/su16167023 - 16 Aug 2024
Cited by 5 | Viewed by 2083
Abstract
A significant waste material threatening sustainability efforts are post-consumer food packaging goods. These ubiquitous multi-materials comprise chemically disparate components and are thus challenging targets for recycling. Herein, we undertake a proof-of-principle study in which we use a single-stage method to convert post-consumer multi-material [...] Read more.
A significant waste material threatening sustainability efforts are post-consumer food packaging goods. These ubiquitous multi-materials comprise chemically disparate components and are thus challenging targets for recycling. Herein, we undertake a proof-of-principle study in which we use a single-stage method to convert post-consumer multi-material food packaging (post-consumer peanut butter jars) to a high compressive strength composite (PBJS90). This is accomplished by thiocracking the ground jar pulp (10 wt. %) with elemental sulfur (90 wt. %) at 320 °C for 2 h. This is the first application of thiocracking to such mixed-material post-consumer goods. Composite synthesis proceeded with 100% atom economy, a low E factor of 0.02, and negative global warming potential of −0.099 kg CO2e/kg. Furthermore, the compressive strength of PBJS90 (37.7 MPa) is over twice that required for Portland cement building foundations. The simplicity of composite synthesis using a lower temperature/shorter heating time than needed for mineral cements, and exclusive use of waste materials as precursors are ecologically beneficial and represent an important proof-of-principle approach to using thiocracking as a strategy for upcycling multi-materials to useful composites. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

Back to TopTop