Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = sulfonamides antibiotics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 320
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

28 pages, 3054 KiB  
Review
Impact of Antibacterial Agents in Horticulture: Risks to Non-Target Organisms and Sustainable Alternatives
by Mirza Abid Mehmood, Muhammad Mazhar Iqbal, Muhammad Ashfaq, Nighat Raza, Jianguang Wang, Abdul Hafeez, Samah Bashir Kayani and Qurban Ali
Horticulturae 2025, 11(7), 753; https://doi.org/10.3390/horticulturae11070753 - 1 Jul 2025
Viewed by 708
Abstract
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable [...] Read more.
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable agriculture. This review examines the ecological and health impacts of antibacterial agents (e.g., streptomycin, oxytetracycline, etc.) in horticultural crops, focusing on their effects on non-target organisms such as beneficial microbes involved in plant growth promotion and resistance development. Certain agents (e.g., triclosan, sulfonamides, and fluoroquinolones) leach into water systems, degrading water quality, while others leave toxic residues in crops, leading to human health risks like dysbiosis and antibiotic resistance. To mitigate these hazards, sustainable alternatives such as integrated plant disease management (IPDM) and biotechnological solutions are essential. Advances in genetic engineering including resistance-conferring genes like EFR1/EFR2 (Arabidopsis), Bs2 (pepper), and Pto (tomato) help combat pathogens such as Ralstonia solanacearum and Xanthomonas campestris. Additionally, CRISPR-Cas9 enables precise genome editing to enhance inherent disease resistance in crops. Emerging strategies like biological control, plant-growth-promoting rhizobacteria (PGPRs), and nanotechnology further reduce dependency on chemical antibacterial agents. This review highlights the urgent need for sustainable disease management to safeguard ecosystem and human health while ensuring food security. Full article
(This article belongs to the Special Issue New Insights into Stress Tolerance of Horticultural Crops)
Show Figures

Figure 1

31 pages, 3600 KiB  
Review
Emerging Electron Beam Technology Targeting Hazardous Micropollutants as Quaternary Treatment in Wastewater Treatment Plants
by Andrzej G. Chmielewski, Yongxia Sun, Jianlong Wang and Shizong Wang
Sustainability 2025, 17(13), 5963; https://doi.org/10.3390/su17135963 - 28 Jun 2025
Viewed by 870
Abstract
Wastewater treatment plays a very important role in striving to reach the internationally agreed United Nations (UN) sustainable development goals. One of the critical challenges in achieving Sustainable Development Goal 6 is the effective removal of micropollutants (MPs), including microplastics, organic contaminants, and [...] Read more.
Wastewater treatment plays a very important role in striving to reach the internationally agreed United Nations (UN) sustainable development goals. One of the critical challenges in achieving Sustainable Development Goal 6 is the effective removal of micropollutants (MPs), including microplastics, organic contaminants, and pharmaceuticals, from wastewater. Additionally, the presence of biological hazards such as antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARBs), parasites, and their eggs poses significant risks to public health and aquatic ecosystems. The forthcoming European Union (EU) wastewater directive mandates the implementation of quaternary treatment processes to effectively remove micropollutants (MPOs) from wastewater. This regulatory shift underscores the need for advanced treatment technologies capable of addressing emerging contaminants to ensure environmental and public health protection. This paper presents a critical review of the present situation concerning the fate of MPOs and possible methods of their removal. Based on their experimental research, the authors propose electron beam (EB) technology as a universal solution for the treatment of wastewater and sludge. The findings demonstrate that this approach effectively meets the emerging regulatory requirements for the removal of micropollutants and biological hazards. Full article
(This article belongs to the Special Issue Water Pollution and Risk Assessment)
Show Figures

Figure 1

17 pages, 2430 KiB  
Article
Analysis of Hotspots in the Field of Sulfonamides Treatment: A Bibliometric Review
by Jian Wang, Xinyao Liu, Feng Qian and Jie Su
Water 2025, 17(12), 1792; https://doi.org/10.3390/w17121792 - 15 Jun 2025
Viewed by 371
Abstract
Sulfonamide drugs (SAs) are a class of emerging contaminants widely present in water environments, which has gradually attracted attention from scholars worldwide. Based on the Web of Science core collection database, this study employs bibliometric methods and visualization tools, such as CiteSpace, Bibliometrix, [...] Read more.
Sulfonamide drugs (SAs) are a class of emerging contaminants widely present in water environments, which has gradually attracted attention from scholars worldwide. Based on the Web of Science core collection database, this study employs bibliometric methods and visualization tools, such as CiteSpace, Bibliometrix, and VOSviewer, to systematically analyze the literature on the treatment of SAs from 2004 to 2024, exploring the research status, hotspots, and development trends in this field. The results indicate that research on SAs in the past 20 years can be categorized into three stages: initial exploration (2004–2008), slow development (2009–2016), and in-depth research (2017–2024), with an overall increasing trend in number of publications. China and the United States have published the most articles on SAs, with 2266 and 592 articles respectively, and the collaborative ties between the two countries are the strongest. The Chinese Academy of Sciences is the most prolific institution, having published 348 articles. Science of the Total Environment is the journal with the highest publication volume. Among the many SAs, sulfamethoxazole has garnered the greatest research interest, and its primary entry route into the water environment is through the discharge of sewage treatment plants. The research focus has gradually shifted from the source analysis of SAs in the environment to seeking efficient methods for removing SAs. Future research should prioritize investigations into antibiotic-resistant bacteria and antibiotic resistance genes associated with SAs. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 7353 KiB  
Article
Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities
by Guanzheng Yang, Lei Gao, Weishang Kong, Xiaoqing Wang, Chuangchuang Wei, Yawei Cao, Mingxiang Pan, Qingguo Meng, Wei Gu and Qing Wang
Water 2025, 17(12), 1780; https://doi.org/10.3390/w17121780 - 13 Jun 2025
Viewed by 453
Abstract
During intensive aquaculture of Eriocheir sinensis (E. sinensis), wastewater containing feed additives, heavy metals, and antibiotics can cause water eutrophication and lead to the accumulation of complex pollutants in sediments. In this study, heavy metals and antibiotic resistance genes (ARGs) were [...] Read more.
During intensive aquaculture of Eriocheir sinensis (E. sinensis), wastewater containing feed additives, heavy metals, and antibiotics can cause water eutrophication and lead to the accumulation of complex pollutants in sediments. In this study, heavy metals and antibiotic resistance genes (ARGs) were analyzed for their distribution and accumulation patterns via ICP-OES and qPCR, and their correlations with bacterial communities in sediments from E. sinensis ponds were evaluated using co-occurrence network and redundancy analysis. Our results demonstrated that aquaculture activities significantly elevated the concentrations of heavy metals such as Cadmium (Cd) and Manganese (Mn) in the sediments, and Cd was identified as the dominant factor contributing to the increase in the potential ecological risk index (RI). The abundance of ARGs significantly increased, with sulfonamide resistance genes (sul1, sul2), β-lactam resistance genes (blaTEM), and integron-associated genes (intl1) showing the highest levels. Correlation and redundancy analyses showed that most ARGs were positively correlated with and linked to Proteobacteria, Bacteroidetes, and Dechloromonas as potential hosts. Positive correlations were generally observed among heavy metals, suggesting a common source, namely aquaculture wastewater, and some showed positive associations with Acidobacteria. This study provides a theoretical basis for further understanding the distribution, accumulation patterns, and coupling relationships of heavy metals and ARGs, as well as their relation and effects on bacterial communities in the sediment of E. sinensis ponds. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

25 pages, 6878 KiB  
Article
Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight
by Irina Zarafu, Irina Mușat, Carmen Limban, Diana C. Nuță, Ioana Daniela Dulama, Cristiana Radulescu, Raluca Maria Stirbescu, Arnaud Tatibouet, Carmen M. Chifiriuc, Luminita Marutescu, Marcela Popa, Laura D. Dragu, Elena Radu, Ioana Nicolau, Coralia Bleotu and Petre Ionita
Molecules 2025, 30(12), 2585; https://doi.org/10.3390/molecules30122585 - 13 Jun 2025
Viewed by 523
Abstract
The clinical utility of sulfonamide antibiotics is increasingly challenged by antimicrobial resistance and pharmacokinetic limitations. In this study, we synthesized five graphene oxide–sulfonamide nanoconjugates (GO–S1 to GO–S5) via covalent functionalization, comprehensively characterized them by IR, Raman, SEM, EDS, etc., and evaluated their antimicrobial, [...] Read more.
The clinical utility of sulfonamide antibiotics is increasingly challenged by antimicrobial resistance and pharmacokinetic limitations. In this study, we synthesized five graphene oxide–sulfonamide nanoconjugates (GO–S1 to GO–S5) via covalent functionalization, comprehensively characterized them by IR, Raman, SEM, EDS, etc., and evaluated their antimicrobial, antibiofilm, cytotoxic, apoptotic, hemolytic and gene expression-modulating effects. While the free sulfonamides (S1–S5) exhibited superior antimicrobial activity in planktonic cultures (MICs as low as 19 μg/mL), their GO-functionalized counterparts demonstrated enhanced antibiofilm efficacy, particularly against Pseudomonas aeruginosa (MBIC: 78–312 μg/mL). Cytotoxicity studies using CellTiter assays and Incucyte live-cell imaging revealed low toxicity for all compounds below 250 μg/mL. Morphological and gene expression analyses indicated mild pro-apoptotic effects, predominantly via caspase-9 and caspase-7 activation, with minimal caspase-3 involvement. Hemolysis assays confirmed the improved blood compatibility of GO–Sx conjugates compared to GO alone. Furthermore, qRT-PCR analysis showed that GO–Sx modulated the expression of key xenobiotic metabolism genes (CYPs and NATs), highlighting potential pharmacokinetic implications. Among all tested formulations, GOS3, GOS4 and GOS5 emerged as the most promising candidates, balancing low cytotoxicity, high hemocompatibility and strong antibiofilm activity. These findings support the use of graphene oxide nanocarriers to enhance the therapeutic potential of sulfonamides, particularly in the context of biofilm-associated infections. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

13 pages, 274 KiB  
Article
Microbiological Quality and Safety of Fresh Pork Meat with Special Reference to Methicillin-Resistant S. aureus and Other Staphylococci
by Alba Martinez-Laorden, Celia Arraiz-Fernandez, Gonzalo Ibañez-Torija and Elena Gonzalez-Fandos
Vet. Sci. 2025, 12(6), 568; https://doi.org/10.3390/vetsci12060568 - 10 Jun 2025
Viewed by 1094
Abstract
Nowadays, there is a great concern about the prevalence of multidrug-resistant bacteria in meat, especially Staphylococcus aureus resistant to methicillin (MRSA). The aim of this work was to evaluate the microbiological quality of fresh pork meat and the presence and resistance of S. [...] Read more.
Nowadays, there is a great concern about the prevalence of multidrug-resistant bacteria in meat, especially Staphylococcus aureus resistant to methicillin (MRSA). The aim of this work was to evaluate the microbiological quality of fresh pork meat and the presence and resistance of S. aureus and other Staphylococcus spp., Mammaliicoccus spp., and Macrococcus spp. to methicillin and other antibiotics. A total of 39 fresh pork meat samples were analyzed. MRSA was isolated from one sample, being resistant to eight antimicrobial families, including aminoglycosides, β-lactams, lincosamides, macrolides, sulfonamides, tetracycline, and others such as fusidic acid, and mupirocin. Also, other multidrug-resistant strains with resistance to 5 or 6 antimicrobial families were isolated including Staphylococcus succinus, Mammaliicoccus sciuri, and Macrococcus caseolyticus. Additional measures should be taken to control MRSA in pork meat. Full article
11 pages, 257 KiB  
Article
Antibiotic Resistance Profiles of Diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea
by Úrsula-Eva Eñeso Efuá, Silvia Herrera-León, Fátima Patabobe, Pascual Erasmo Owono and Agustín Benito
Acta Microbiol. Hell. 2025, 70(2), 24; https://doi.org/10.3390/amh70020024 - 10 Jun 2025
Viewed by 966
Abstract
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among [...] Read more.
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea, offering novel epidemiological insights into an understudied region. This study investigated the antibiotic resistance profiles of pathogenic bacteria isolated from diarrhoeal samples on Bioko Island. A total of 153 clinical isolates were collected between 1 February and 30 May 2014, and antimicrobial susceptibility testing was performed at Loeri Comba Polyclinic (Malabo) using the Kirby–Bauer method. The molecular characterisation of β-lactamase-associated genes was performed on different isolates of diarrhoeagenic pathotypes—144 Escherichia coli, 7 Salmonella enterica, and 2 Shigella flexneri—at the National Centre for Microbiology (Majadahonda, Spain). High resistance rates were detected against ampicillin (98%), tetracycline (93.5%), sulfonamides (94.8%), sulfamethoxazole–trimethoprim (88.2%), and cefotaxime (78.8%), while moderate rates of resistance were noted for ciprofloxacin (26.7%), and all isolates remained susceptible to imipenem. Of the isolates, 107 (69.9%) produced either single or multiple β-lactamases. Among these, 73 (68.2%) harbored classical β-lactamases, specifically TEM and OXA-1 types, representing 47.7% of the total sample. Additionally, 34 (31.8%) of the isolates were identified as producers of extended-spectrum β-lactamases (ESBLs), specifically CTX-M enzymes. Sequencing identified CTX-M-15 and CTX-M-55 variants. The predominant ESBL-producing bacteria were enteroaggregative Escherichia coli (56.2%), followed by enteropathogenic and enterotoxigenic E. coli. These findings confirm the circulation of multidrug-resistant diarrhoeagenic Enterobacterales in Equatorial Guinea, raising concerns about limited treatment options due to widespread resistance to multiple antibiotic classes, including third-generation cephalosporins and quinolones. The most important conclusion drawn from this study is that a high percentage of diarrhoeagenic bacteria have an antibiotic resistance and multi-resistance profile, especially to beta-lactams and other groups of antibiotics such as tetracyclines and sulphonamides. There is also a moderate prevalence of isolates carrying ESBLs on Bioko Island, Equatorial Guinea, which could indicate the inappropriate use of antimicrobials. Full article
21 pages, 11119 KiB  
Article
Virulence and Antibiotic Resistance of Pathogenic Aeromonas caviae from Diseased Macrobrachium rosenbergii
by Xinhai Zhu, Qieqi Qian, Anting Chen, Liying Zhou, Yao Zhang, Xiaojian Gao, Qun Jiang and Xiaojun Zhang
Microorganisms 2025, 13(6), 1343; https://doi.org/10.3390/microorganisms13061343 - 10 Jun 2025
Viewed by 488
Abstract
In recent years, viral and bacterial diseases have posed serious challenges to the sustainable development of Macrobrachium rosenbergii (giant freshwater prawn) aquaculture, resulting in considerable economic losses across China. Among the bacterial pathogens, Aeromonas caviae has emerged as a notable opportunistic agent capable [...] Read more.
In recent years, viral and bacterial diseases have posed serious challenges to the sustainable development of Macrobrachium rosenbergii (giant freshwater prawn) aquaculture, resulting in considerable economic losses across China. Among the bacterial pathogens, Aeromonas caviae has emerged as a notable opportunistic agent capable of causing large-scale mortality in various aquatic species. In this study, a highly virulent strain of A. caviae (designated GMRS4) was isolated from diseased M. rosenbergii exhibiting mass mortality in Yangzhou, Jiangsu Province. The isolate, a Gram-negative bacillus, was identified as the causative agent based on morphological, molecular, and histopathological analyses. Pathogenicity was confirmed through experimental infection, with the strain displaying marked virulence, evidenced by an LD50 of 1.91 × 106 CFU/mL at 96 h. Whole-genome sequencing of GMRS4 revealed 4078 coding sequences, including a suite of virulence-associated genes encoding extracellular enzymes (DNase, hemolysin, caseinase, and lecithinase) and toxins (serine protease, elastase, and flagellin). Antimicrobial susceptibility testing indicated resistance to several antibiotics, particularly those in the penicillin and sulfonamide classes, while maintaining sensitivity to quinolones. Genomic analysis further revealed multiple antibiotic resistance genes and virulence genes, offering insights into the pathogenic mechanisms and resistance profile of the strain. This study underscores the threat posed by A. caviae to freshwater prawn aquaculture and provides a genetic basis for developing targeted disease management strategies. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

23 pages, 3013 KiB  
Review
Recent Advances in Antibiotic Degradation by Ionizing Radiation Technology: From Laboratory Study to Practical Application
by Yuening Song, Yulin Wang and Jianlong Wang
Water 2025, 17(12), 1719; https://doi.org/10.3390/w17121719 - 6 Jun 2025
Cited by 2 | Viewed by 729
Abstract
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) [...] Read more.
The widespread presence of antibiotics in aquatic environments poses significant ecological and public health risks due to their persistence, antimicrobial activity, and contribution to resistance gene proliferation. This review systematically evaluated the advancements in antibiotic degradation using ionizing radiation (γ-rays and electron beam) from laboratory studies to practical applications. By using keywords such as “antibiotic degradation” and “ionizing irradiation OR gamma radiation OR electron beam,” 328 publications were retrieved from Web of Science, with China contributing 33% of the literature, and a number of global representative studies were selected for in-depth discussion. The analysis encompassed mechanistic insights into oxidative (•OH) and reductive (eaq) pathways, degradation kinetics influenced by absorbed dose (1–10 kGy), initial antibiotic concentration, pH, and matrix complexity. The results demonstrated ≥90% degradation efficiency for major antibiotic classes (macrolides, β-lactams, quinolones, tetracyclines, and sulfonamides), though mineralization remains suboptimal (<50% TOC removal). Synergistic integration with peroxymonosulfate (PMS), H2O2, or O3 enhances mineralization rates. This review revealed that ionizing radiation is a chemical-free, compatible, and highly efficient technology with effective antibiotic degradation potential. However, it still faces several challenges in practical applications, including incomplete mineralization, matrix complexity in real wastewater, and operating costs. Further improvements and optimization, such as hybrid system development (e.g., coupling electron beam with other conventional technologies, such as flocculation, membrane separation, anaerobic digestion, etc.), catalytic enhancement, and life-cycle assessments of this emerging technology would be helpful for promoting its practical environmental application. Full article
Show Figures

Figure 1

17 pages, 2295 KiB  
Article
The Prevalence of Antimicrobial Resistance Genes in the Environments of Small Ruminant Farms from Central Portugal
by Jaqueline T. Bento, Sara Gomes-Gonçalves, Rita Cruz, Fernando Esteves, Alexandra Lameira Baptista, Maria Aires Pereira, Pedro Caseiro, Pedro Carreira, Luís Figueira, João R. Mesquita, Adriano A. Bordalo and Ana Machado
Antibiotics 2025, 14(6), 576; https://doi.org/10.3390/antibiotics14060576 - 4 Jun 2025
Viewed by 565
Abstract
Background: Antimicrobial resistance is a pressing global concern affecting both human and animal health, with environment playing a key role in the dissemination of resistance determinants. This study aimed to investigate the presence of antimicrobial resistance genes (ARGs) associated with tetracyclines, β-lactams, macrolides, [...] Read more.
Background: Antimicrobial resistance is a pressing global concern affecting both human and animal health, with environment playing a key role in the dissemination of resistance determinants. This study aimed to investigate the presence of antimicrobial resistance genes (ARGs) associated with tetracyclines, β-lactams, macrolides, and sulfonamides in environmental matrices collected from 65 sheep and goat farms in central Portugal. Methods: Environmental samples, including water, soil, pasture, and bedding, were analyzed through qPCR for the detection of clinically relevant ARGs. Results: ARGs were detected in 83% of the samples, with over half exhibiting genes from three or more antibiotic classes, suggesting potential multidrug resistance. β-lactamase genes were the most prevalent, followed by those conferring resistance to tetracycline and sulfonamide resistance, while macrolide resistance genes were least frequent. The distribution of ARGs varied by farm type, host species, and municipality. Conclusions: These findings suggest that small ruminant farms serve as important reservoirs for ARGs. The results underscore the need for systematic surveillance and further research into the ecological and genetic factors driving ARG persistence and dissemination in extensive livestock systems, including proper waste management strategies to limit the spread and persistence of antibiotic resistance and mitigate broader public health risks. Full article
Show Figures

Figure 1

17 pages, 3037 KiB  
Article
The Occurrence Characteristics and Ecological Risks of Antibiotics in Surface Water and Groundwater of the Huixian Wetland
by Dunqiu Wang, Min Li, Chenchen Liao, Kun Dong and Yi Yao
Toxics 2025, 13(6), 460; https://doi.org/10.3390/toxics13060460 - 30 May 2025
Viewed by 431
Abstract
The concentrations of 17 antibiotics in the surface water and groundwater of a typical river in the Huixian Wetland were measured, and the ecological and health risks of these antibiotics to surface water and groundwater were assessed. The three types of antibiotics measured [...] Read more.
The concentrations of 17 antibiotics in the surface water and groundwater of a typical river in the Huixian Wetland were measured, and the ecological and health risks of these antibiotics to surface water and groundwater were assessed. The three types of antibiotics measured included quinolones, tetracyclines, and sulphonamides. The results showed that the mean values of the three antibiotics in surface water were sulfonamides > quinolones > tetracyclines and in groundwater were sulfonamides > tetracyclines > quinolones, and the antibiotic residues were associated with aquaculture and livestock breeding in the wetland, which indicated that antibiotics had a very high rate of use in the Huixian Wetland. The results of the ecological risk evaluation showed that the potential risk of five antibiotics, namely ofloxacin, sulfadiazine, sulfamethoxazole, enrofloxacin, and doxycycline, was high. The results of the health risk evaluation indicated that most of the residual antibiotics were of a medium and low risk to humans. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
β-Cyclodextrin Functionalization of Nitrogen-Doped Graphene to Enhance Dispersibility and Activate Persulfate for Trace Antibiotic Degradation in Water
by Min Yao and Nan Wu
Catalysts 2025, 15(6), 541; https://doi.org/10.3390/catal15060541 - 29 May 2025
Viewed by 542
Abstract
The functionalization of nitrogen-doped graphene with β-Cyclodextrin (designated β/N-rGO) was employed to enhance the dispersibility of graphene materials and to establish an adsorption-catalytic oxidation system using peroxymonosulfate (PMS) for the removal of trace antibiotics from water. The experimental results indicated that β-Cyclodextrin was [...] Read more.
The functionalization of nitrogen-doped graphene with β-Cyclodextrin (designated β/N-rGO) was employed to enhance the dispersibility of graphene materials and to establish an adsorption-catalytic oxidation system using peroxymonosulfate (PMS) for the removal of trace antibiotics from water. The experimental results indicated that β-Cyclodextrin was effectively dispersed on the support structure of nitrogen-doped graphene, which enhanced the specific surface area and dispersibility of the material. The adsorption-catalytic oxidation system comprising β/N-rGO and PMS degraded 92.35% of sulfamethoxazole within 12 min and exhibited significant removal efficiency for sulfonamides, quinolones, macrolides, tetracyclines, β-lactams, and chloramphenicol antibiotics across a pH range of 3–12. The reaction time was reduced by over 10% compared to the unmodified material, with a more pronounced improvement in treatment efficiency, particularly under low-pH conditions. The activation energy of β/N-rGO was estimated to be approximately 4.5 kJ/mol, and elevated temperatures accelerated the reaction, with the removal rate remaining above 85% after five regeneration cycles. Quenching experiments and EPR spectra confirmed that the primary pathway for PMS activation by β/N-rGO was a non-radical process dominated by singlet oxygen. These findings broaden the research and application scope of cyclodextrin–graphene interactions and provide a feasible approach for the removal of trace antibiotics from water. Full article
Show Figures

Graphical abstract

15 pages, 2264 KiB  
Article
Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation
by Boris Tende Kengne, Yongxia Sun, Shizong Wang, Jianlong Wang, Sylwester Bulka, Marta Pyszynska and Marcin Sudlitz
Water 2025, 17(11), 1596; https://doi.org/10.3390/w17111596 - 25 May 2025
Cited by 1 | Viewed by 683
Abstract
Sulfamethoxazole (SMX), a widely used antibiotic, persists in aquatic environments due to its resistance to conventional wastewater treatments. This work examined the breakdown of SMX in both purified water and urban wastewater through the application of electron beam irradiation (EBI). Experiments were conducted [...] Read more.
Sulfamethoxazole (SMX), a widely used antibiotic, persists in aquatic environments due to its resistance to conventional wastewater treatments. This work examined the breakdown of SMX in both purified water and urban wastewater through the application of electron beam irradiation (EBI). Experiments were conducted across doses of 0.5–3.0 kGy and varying pHs (2.70, 6.13, 9.00 and 11.10) and initial concentrations (5, 10, 15, 20 and 30 mg/L), and the role of reactive species was investigated with the help of scavengers. The results showed that SMX degradation followed pseudo-first-order kinetics and was most efficient at lower pH and concentrations. The scavenger experiments confirmed hydroxyl radicals as the dominant oxidizing agents responsible for SMX degradation, while wastewater constituents slightly inhibited the process. Nevertheless, over 99% SMX degradation was achieved at higher doses (1.5–3.0 kGy). TOC analysis revealed the partial mineralization of SMX, indicating the persistence of intermediate by-products despite high degradation efficiency. LC-MS analysis revealed multiple transformation products including hydroxylated sulfonamides and nitro-substituted derivatives, reflecting diverse degradation pathways. These results demonstrate that EBI is a highly effective laboratory-scale method for degrading SMX from water and wastewater, with promising potential for practical application. Full article
Show Figures

Figure 1

17 pages, 2331 KiB  
Article
No Genomic Signatures Were Found in Escherichia coli Isolates from Camels With or Without Clinical Endometritis
by Haitham Elbir
Vet. Sci. 2025, 12(5), 457; https://doi.org/10.3390/vetsci12050457 - 10 May 2025
Viewed by 687
Abstract
Clinical endometritis is a leading cause of infertility in she-camels. We commonly isolate E. coli from camel uteri with and without endometritis during our routine diagnosis of conception failure. From an epidemiological standpoint, it is critical to know if certain E. coli genotypes [...] Read more.
Clinical endometritis is a leading cause of infertility in she-camels. We commonly isolate E. coli from camel uteri with and without endometritis during our routine diagnosis of conception failure. From an epidemiological standpoint, it is critical to know if certain E. coli genotypes and virulence factors are specifically associated with endometritis. Thus, we aimed to compare the abundance of virulence elements and genotypes in uterine E. coli from camels with and without endometritis and understand their evolution. For this investigation, we retrieved data from the genomes of 28 E. coli isolates from humans, cats, dogs, horses, cows, and birds and 14 sequenced genomes of camel uterine E. coli isolates. We found no specific E. coli genotype or virulence factor associated with endometritis. Instead, multiple genotypes and high genomic diversity were observed. Moreover, horizontal gene transfer driven by genomic islands and plasmids contributed to the genetic diversity of the isolates, resulting in the acquisition of virulence genes, metabolic characteristics, and antibiotic resistance determinants to trimethoprim, sulfonamide, streptomycin, and tetracycline. Additionally, the phylogenetic position of the E. coli isolates from camel uteri suggests that they originated from intestinal strains. In conclusion, there was no evidence of E. coli specialization, and E. coli alone may not be able to develop endometritis, as other factors are required. Also, we elucidated the mechanism behind the diversity of the gene repertoire of E. coli isolated from camel uteri. These findings provide insight into the evolutionary origins of E. coli isolates from camel uteri. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

Back to TopTop