Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = sulfite oxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 303 KiB  
Article
Plasma, Urinary, Erythrocyte, and Platelet Concentrations of Manganese and Molybdenum in Football Players: Differences between Sexes and during the Season
by Victor Toro-Román, Fco Javier Grijota, Marcos Maynar-Mariño, Amalia Campos, Almudena Martínez-Sánchez and María C. Robles-Gil
Appl. Sci. 2024, 14(20), 9370; https://doi.org/10.3390/app14209370 - 14 Oct 2024
Cited by 1 | Viewed by 900
Abstract
Physical activity induces modifications in the concentrations of trace mineral elements. However, studies exploring sex-related differences in manganese (Mn) and molybdenum (Mo) levels among athletes are scarce. Mn and Mo are essentials metals required for a variety of metabolic functions, including those involved [...] Read more.
Physical activity induces modifications in the concentrations of trace mineral elements. However, studies exploring sex-related differences in manganese (Mn) and molybdenum (Mo) levels among athletes are scarce. Mn and Mo are essentials metals required for a variety of metabolic functions, including those involved in normal human development, the activation of certain metalloenzymes, energy metabolism, and immune system function. They are important cofactors for a variety of enzymes, including those involved in neurotransmitter synthesis and metabolism. The presence of molybdenum (Mo) is essential for several enzymes, including xanthine oxidase (XO), aldehyde oxidase, sulfite oxidase (SO), and the mitochondrial amidoxime reductase component (mARC). This study aimed to: (a) analyse changes in plasma, urine, erythrocyte, and platelet Mn and Mo concentrations throughout a competitive season in men’s and women’s football players, and (b) investigate sex-based discrepancies. A total of 46 football players (22 men: age; 20.62 ± 2.66 years; height; 1.76 ± 0.061 m; weight; 71.50 ± 5.93 kg, and 24 women: age; 23.21 ± 4.11 years; height; 1.65 ± 0.06 m; weight; 59.58 ± 7.17 kg) participated in this study. Three assessments were conducted throughout the competitive season. Data were collected on anthropometry, body composition, nutritional intake, physical fitness, female hormones, haematology, and the determination of Mn and Mo in different biological compartments. Regarding Mn, significant sex differences were observed in plasma, urine, and erythrocyte concentrations (p < 0.05). Moreover, significant variations were observed throughout the season in all analysed biological compartments (p < 0.05). Regarding Mo, significant sex differences were reported in plasma concentrations (p < 0.05). Similarly, there were variations throughout the season in all analysed biological compartments (p < 0.05). Plasma, urine, erythrocyte, and platelet Mn and Mo concentrations could change during a competitive season in football players. On the other hand, sex differences could exist in plasma, urine, and erythrocyte Mn concentrations in football players. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
16 pages, 3601 KiB  
Review
Molybdenum’s Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review
by Jakub Piotr Adamus, Anna Ruszczyńska and Aleksandra Wyczałkowska-Tomasik
Biomolecules 2024, 14(7), 869; https://doi.org/10.3390/biom14070869 - 19 Jul 2024
Cited by 16 | Viewed by 4017
Abstract
Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes [...] Read more.
Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism, generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs’ inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins. Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research highlights SOX’s potential as a diagnostic marker for HCC, offering promising sensitivity and specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles of molybdenum-containing enzymes in human physiology and disease pathology is essential for advancing diagnostic and therapeutic strategies for various health conditions, particularly those related to liver dysfunction. Further research into the molecular mechanisms underlying these enzymes’ functions could lead to novel treatments and improved patient outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3219 KiB  
Article
Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles
by Antônio A. C. Cruz, Natália D. G. Souza, João P. B. de Souza, Samuel V. Carneiro, Claudenilson S. Clemente, Jeanlex S. Sousa, Lillian M. U. D. Fechine, Sebastián Michea, Pierre B. A. Fechine and Rafael M. Freire
C 2024, 10(3), 57; https://doi.org/10.3390/c10030057 - 22 Jun 2024
Cited by 1 | Viewed by 1882
Abstract
Trace elements such as cobalt (Co), molybdenum (Mo), and zinc (Zn) play necessary roles in different biological functions. Co is a microelement that influences the vascular system. Mo works as an enzymatic cofactor of three enzymes (aldehyde oxidase, sulfite oxidase, and xanthine oxidase [...] Read more.
Trace elements such as cobalt (Co), molybdenum (Mo), and zinc (Zn) play necessary roles in different biological functions. Co is a microelement that influences the vascular system. Mo works as an enzymatic cofactor of three enzymes (aldehyde oxidase, sulfite oxidase, and xanthine oxidase dehydrogenase). However, these elements are difficult to detect, since the analytical methods developed have a high cost, which restrict their applicability. In this sense, fluorescent sensors are an alternative for detecting trace elements, such as Mo4+ ions. Herein, a new multichannel trace elements sensor has been proposed to detect Mo entities. In this sense, two different N-CQDs were synthesized and fully characterized. The N-CQDs presented quantum yield values of 25.93% and 6.02% and excellent solubility in water. Also, a mixture of these two carbon-based nanoparticles was used to identify and to quantify Mo in water between seven different trace elements. The method was found to reach 1.28 and 3.88 ppm for limit of detection (LOD) and quantification (LOQ), respectively. To further verify the potential of the detection platform, the multichannel sensor was applied to identify the different concentrations of metal ions (Fe2+, Co2+, Mn2+, Cu2+, Zn2+, Mg2+, and Mo4+) in water. The data matrix was treated using different algorithms, such as K-Means and Discriminant Analysis (DA). The detection strategy has successfully identified the molybdenum ions at 5 ppm. This result shows the potential application of a multichannel sensor toward the detection of Mo entities, since it is comparable with the molybdenum test already available on the market. Full article
Show Figures

Graphical abstract

12 pages, 1930 KiB  
Article
Purification and Biochemical Characterization of Polyphenol Oxidase Extracted from Wheat Bran (Wan grano)
by Kun Yu, Wei He, Xiaoli Ma, Qi Zhang, Chunxu Chen, Peiyan Li and Di Wu
Molecules 2024, 29(6), 1334; https://doi.org/10.3390/molecules29061334 - 17 Mar 2024
Cited by 4 | Viewed by 1923
Abstract
Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO [...] Read more.
Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL−1·min−1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of −5.28 kcal/mol, −4.65 kcal/mol, −4.21 kcal/mol, and −5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Food)
Show Figures

Figure 1

14 pages, 2208 KiB  
Review
The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana
by Jan-Niklas Weber, Rieke Minner-Meinen and David Kaufholdt
Molecules 2024, 29(1), 40; https://doi.org/10.3390/molecules29010040 - 20 Dec 2023
Cited by 5 | Viewed by 2159
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in [...] Read more.
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

19 pages, 3426 KiB  
Review
The History of Animal and Plant Sulfite Oxidase—A Personal View
by Ralf R. Mendel and Günter Schwarz
Molecules 2023, 28(19), 6998; https://doi.org/10.3390/molecules28196998 - 9 Oct 2023
Cited by 11 | Viewed by 3041
Abstract
Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme [...] Read more.
Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

21 pages, 1875 KiB  
Review
From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus
by Ana Ibáñez, Sonia Garrido-Chamorro, Juan J. R. Coque and Carlos Barreiro
Genes 2023, 14(9), 1772; https://doi.org/10.3390/genes14091772 - 8 Sep 2023
Cited by 14 | Viewed by 4335
Abstract
Sulfur oxidation stands as a pivotal process within the Earth’s sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic [...] Read more.
Sulfur oxidation stands as a pivotal process within the Earth’s sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

23 pages, 4312 KiB  
Review
Bringing Nitric Oxide to the Molybdenum World—A Personal Perspective
by Luisa B. Maia
Molecules 2023, 28(15), 5819; https://doi.org/10.3390/molecules28155819 - 2 Aug 2023
Cited by 5 | Viewed by 2213
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse [...] Read more.
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the “reverse” reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the “molybdenum community” noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes’ ability to form NO from nitrite. Herein, integrated in a collection of “personal views” edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Graphical abstract

15 pages, 1134 KiB  
Review
Chlamydomonas reinhardtii—A Reference Microorganism for Eukaryotic Molybdenum Metabolism
by Manuel Tejada-Jimenez, Esperanza Leon-Miranda and Angel Llamas
Microorganisms 2023, 11(7), 1671; https://doi.org/10.3390/microorganisms11071671 - 27 Jun 2023
Cited by 13 | Viewed by 3286
Abstract
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, [...] Read more.
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. Chlamydomonas reinhardtii is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase–mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using C. reinhardtii as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1913 KiB  
Review
The History of mARC
by Bernd Clement and Michel A. Struwe
Molecules 2023, 28(12), 4713; https://doi.org/10.3390/molecules28124713 - 12 Jun 2023
Cited by 18 | Viewed by 3562
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC’s discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model [...] Read more.
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC’s discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

13 pages, 3913 KiB  
Article
Myelin Disruption, Neuroinflammation, and Oxidative Stress Induced by Sulfite in the Striatum of Rats Are Mitigated by the pan-PPAR agonist Bezafibrate
by Nícolas Manzke Glänzel, Belisa Parmeggiani, Mateus Grings, Bianca Seminotti, Morgana Brondani, Larissa D. Bobermin, César A. J. Ribeiro, André Quincozes-Santos, Jerry Vockley and Guilhian Leipnitz
Cells 2023, 12(12), 1557; https://doi.org/10.3390/cells12121557 - 6 Jun 2023
Cited by 7 | Viewed by 2382
Abstract
Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms [...] Read more.
Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1β, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pre-treatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders. Full article
Show Figures

Graphical abstract

17 pages, 4393 KiB  
Article
Biofunctionalisation of Polypyrrole Nanowires Array with Sulfite Oxidase Coupled with the Integration of Platinum Nanoparticles for Ultrasensitive Amperometric Detection of Sulfite
by Shahid Hussain and Samuel B. Adeloju
Biosensors 2023, 13(6), 621; https://doi.org/10.3390/bios13060621 - 5 Jun 2023
Cited by 4 | Viewed by 1748
Abstract
Sulfite determination in foods and alcoholic beverages is a common requirement by food and drug administration organisations in most countries. In this study, the enzyme, sulfite oxidase (SOx), is used to biofunctionalise a platinum-nanoparticle-modified polypyrrole nanowire array (PPyNWA) for the ultrasensitive amperometric detection [...] Read more.
Sulfite determination in foods and alcoholic beverages is a common requirement by food and drug administration organisations in most countries. In this study, the enzyme, sulfite oxidase (SOx), is used to biofunctionalise a platinum-nanoparticle-modified polypyrrole nanowire array (PPyNWA) for the ultrasensitive amperometric detection of sulfite. A dual-step anodisation method was used to prepare the anodic aluminum oxide membrane used as a template for the initial fabrication of the PPyNWA. PtNPs were subsequently deposited on the PPyNWA by potential cycling in a platinum solution. The resulting PPyNWA-PtNP electrode was then biofuntionalised by adsorption of SOx onto the surface. The confirmation of the adsorption of SOx and the presence of PtNPs in the PPyNWA-PtNPs-SOx biosensor was verified by scanning electron microscopy and electron dispersive X-ray spectroscopy. Cyclic voltammetry and amperometric measurements were used to investigate the properties of the nanobiosensor and to optimise its use for sulfite detection. Ultrasensitive detection of sulfite with the PPyNWA-PtNPs-SOx nanobiosensor was accomplished by use of 0.3 M pyrrole, 10 U mL−1 of SOx, adsorption time of 8 h, a polymerisation period of 900 s, and an applied current density of 0.7 mA cm−2. The response time of the nanobiosensor was 2 s, and its excellent analytical performance was substantiated with a sensitivity of 57.33 μA cm−2 mM−1, a limit of detection of 12.35 nM, and a linear response range from 0.12 to 1200 μM. Application of the nanobiosensor to sulfite determination in beer and wine samples was achieved with a recovery efficiency of 97–103%. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in Australia)
Show Figures

Figure 1

23 pages, 3473 KiB  
Article
The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells
by Moses Olalekan Ogunkola, Gaelle Guiraudie-Capraz, Francois Feron and Silke Leimkühler
Biomolecules 2023, 13(1), 144; https://doi.org/10.3390/biom13010144 - 10 Jan 2023
Cited by 2 | Viewed by 2942
Abstract
Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA [...] Read more.
Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics. Full article
(This article belongs to the Collection RNA Modifications)
Show Figures

Figure 1

20 pages, 2024 KiB  
Review
Molybdenum Cofactor Deficiency in Humans
by Lena Johannes, Chun-Yu Fu and Günter Schwarz
Molecules 2022, 27(20), 6896; https://doi.org/10.3390/molecules27206896 - 14 Oct 2022
Cited by 38 | Viewed by 5670
Abstract
Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic–ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. [...] Read more.
Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic–ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. Accumulating toxic sulfite causes a secondary increase of metabolites such as S-sulfocysteine and thiosulfate as well as a decrease in cysteine and its oxidized form, cystine. Moco is synthesized by a three-step biosynthetic pathway that involves the gene products of MOCS1, MOCS2, MOCS3, and GPHN. Depending on which synthetic step is impaired, MoCD is classified as type A, B, or C. This distinction is relevant for patient management because the metabolic block in MoCD type A can be circumvented by administering cyclic pyranopterin monophosphate (cPMP). Substitution therapy with cPMP is highly effective in reducing sulfite toxicity and restoring biochemical homeostasis, while the clinical outcome critically depends on the degree of brain injury prior to the start of treatment. In the absence of a specific treatment for MoCD type B/C and SOX deficiency, we summarize recent progress in our understanding of the underlying metabolic changes in cysteine homeostasis and propose novel therapeutic interventions to circumvent those pathological changes. Full article
(This article belongs to the Special Issue State-of-the-Art in Molybdenum Cofactor Research)
Show Figures

Figure 1

13 pages, 2706 KiB  
Article
Validation of Appropriate Reference Genes for qRT–PCR Normalization in Oat (Avena sativa L.) under UV-B and High-Light Stresses
by Hang Yin, Danni Yin, Mingzhi Zhang, Zhiqiang Gao, Muzhapaer Tuluhong, Xiaoming Li, Jikai Li, Bing Li and Guowen Cui
Int. J. Mol. Sci. 2022, 23(19), 11187; https://doi.org/10.3390/ijms231911187 - 23 Sep 2022
Cited by 12 | Viewed by 2530
Abstract
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B [...] Read more.
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT–PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses. Full article
(This article belongs to the Special Issue Environmental Stress and Plants 2.0)
Show Figures

Figure 1

Back to TopTop