Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Synthesis of N-CQDs
2.4. Quantum Yield
2.5. Metallic Ions Sensing Study
2.6. Data Treatment
3. Results and Discussion
3.1. CQDs Characterization
3.2. N Doped-CQDs as “Nose”-Receptors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Tao, T.; Qiu, Y.; Guo, X.; Zhu, X.; Zhou, X. Copper-mediated novel cell death pathway in tumor cells and implications for innovative cancer therapies. Biomed. Pharmacother. 2023, 168, 115730. [Google Scholar] [CrossRef] [PubMed]
- Enemark, J.H. {Moco}n, (n = 0–8): A general formalism for describing the highly covalent molybdenum cofactor of sulfite oxidase and related Mo enzymes. J. Inorg. Biochem. 2022, 231, 111801. [Google Scholar] [CrossRef]
- Yong, W.; Huang, Q.-C.; Mu, H.-Y.; Shi, W.-X.; Dai, B.-L.; Kong, J.-J.; Chen, X.-R.; Huang, X.-C. A luminescent Zn(II) metal−organic framework assembled with a thiazolothiazole chromophore for sensing mainly cobalt(II) and nitrofuran antibiotics in aqueous solutions. J. Mol. Struct. 2024, 1301, 137424. [Google Scholar] [CrossRef]
- Amin, A.S.; El-Bahy, S.M.; Hassan, A.M.E. Construction of an optical sensor for molybdenum determination based on a new ionophore immobilized on a polymer membrane. J. King Saud Univ. Sci. 2023, 35, 102592. [Google Scholar] [CrossRef]
- Li, S.; Gao, X.; Nie, L.; Bu, L.; Dong, G.; Song, D.; Liu, W.; Meng, D.; Geng, X.; Zhou, Q. Strategy for establishing sensitive fluorescent sensor toward p-nitrophenol integrating magnetic molecularly imprinted materials and carbon dots. Talanta 2024, 272, 125749. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Ma, Y.; Zhao, D.; Luo, H.; Luo, X.; Hou, C.; Huo, D. On–Off–On fluorescent sensing platform based on nitrogen-doped carbon dots for biothiols detection. J. Photochem. Photobiol. A Chem. 2023, 439, 114595. [Google Scholar] [CrossRef]
- Saikia, M.; Hazarika, A.; Roy, K.; Khare, P.; Dihingia, A.; Konwar, R.; Saikia, B.K. Waste-derived high-yield biocompatible fluorescent carbon quantum dots for biological and nanofertiliser applications. J. Environ. Chem. Eng. 2023, 11, 111344. [Google Scholar] [CrossRef]
- Thakur, S.; Bains, A.; Sridhar, K.; Kaushik, R.; Chawla, P.; Sharma, M. Valorization of food industrial waste: Green synthesis of carbon quantum dots and novel applications. Chemosphere 2024, 347, 140656. [Google Scholar] [CrossRef] [PubMed]
- Al-Hetty, H.R.A.K.; Jalil, A.T.; Al-Tamimi, J.H.Z.; Shakier, H.G.; Kandeel, M.; Saleh, M.M.; Naderifar, M. Engineering and surface modification of carbon quantum dots for cancer bioimaging. Inorg. Chem. Commun. 2023, 149, 110433. [Google Scholar] [CrossRef]
- Benner, D.; Yadav, P.; Bhatia, D. Red emitting carbon dots: Surface modifications and bioapplications. Nanoscale Adv. 2023, 5, 4337–4353. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.; Liu, Q.; Chen, X. Nitrogen, sulfur-doped carbon quantum dots with large Stokes shift for real-time monitoring of pH in living cells. Talanta 2024, 269, 125479. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Zhang, Y.; Wang, X.; Xu, Q.; Li, Z.; Sheng, L.; Yan, L. Fluorescence probe based on boron-doped carbon quantum dots for high selectivity ‘on-off-on’ mercury ion sensing and cell imaging. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129150. [Google Scholar] [CrossRef]
- Miao, S.; Liang, K.; Zhu, J.; Yang, B.; Zhao, D.; Kong, B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020, 33, 100879. [Google Scholar] [CrossRef]
- Singh, R.; Kashayap, S.; Singh, V.; Kayastha, A.M.; Mishra, H.; Saxena, P.S.; Srivastava, A.; Singh, R.K. QPRTase modified N-doped carbon quantum dots: A fluorescent bioprobe for selective detection of neurotoxin quinolinic acid in human serum. Biosens. Bioelectron. 2018, 101, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dong, Y.; Yang, X.; Yao, C. N-doped carbon dots sensor for selective detection of hydroxylamine hydrochloride. Opt. Mater. 2019, 94, 121–129. [Google Scholar] [CrossRef]
- Elizabeth, A.T.; James, E.; Jesan, L.I.; Arockiaraj, S.D.; Vasu, A.E. Green synthesis of value-added nitrogen doped carbon quantum dots from Crescentia cujete fruit waste for selective sensing of Fe3+ ions in aqueous medium. Inorg. Chem. Commun. 2023, 149, 110427. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.; Zhang, Z.; Chen, J.; She, M.; Ji, Y.; Zheng, B.; Yang, Z.; Zhang, S.; Li, J. Photostable and printable fluorescence carbon quantum dots for advanced message encryption and specific reversible multiple sensing of Cu2+ and cysteine. Chem. Eng. J. 2023, 453, 139722. [Google Scholar] [CrossRef]
- Carneiro, S.V.; Oliveira, J.J.P.; Rodrigues, V.S.F.; Fechine, L.M.U.D.; Antunes, R.A.; Neto, M.L.A.; de Moura, T.A.; César, C.L.; de Carvalho, H.F.; Paschoal, A.R.; et al. Doped Carbon Quantum Dots/PVA Nanocomposite as a Platform to Sense Nitrite Ions in Meat. ACS Appl. Mater. Interfaces 2022, 14, 43597–43611. [Google Scholar] [CrossRef] [PubMed]
- Freire, R.M.; Le, N.D.B.; Jiang, Z.; Kim, C.S.; Rotello, V.M.; Fechine, P.B.A. NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sens. Actuators B Chem. 2018, 255, 2725–2732. [Google Scholar] [CrossRef]
- Carneiro Cruz, A.A.; Freire, R.M.; Froelich, D.B.; de Lima, A.C.A.; Muniz, A.R.; Ferreira, O.P.; Fechine, P.B.A. Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect 2019, 4, 5619–5627. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Zhang, G.; Chen, L.; Wu, Q.; Liu, X. Sensor array based on single carbon quantum dot for fluorometric differentiation of all natural amino acids. Microchim. Acta 2019, 186, 858. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, S.V.; de Queiroz, V.; Cruz, A.; Fechine, L.; Denardin, J.; Freire, R.; Nascimento, R.D.; Fechine, P. Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides. Sens. Actuators B Chem. 2019, 301, 127149. [Google Scholar] [CrossRef]
- Carneiro, S.V.; Holanda, M.; Cunha, H.; Oliveira, J.; Pontes, S.; Cruz, A.; Fechine, L.; Moura, T.; Paschoal, A.; Zambelli, R.; et al. Highly sensitive sensing of food additives based on fluorescent carbon quantum dots. J. Photochem. Photobiol. A Chem. 2021, 411, 113198. [Google Scholar] [CrossRef]
- Mercy, D.J.; Kiran, V.; Thirumalai, A.; Harini, K.; Girigoswami, K.; Girigoswami, A. Rice husk assisted carbon quantum dots synthesis for amoxicillin sensing. Results Chem. 2023, 6, 101219. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, K.; Qian, S.; Wang, Y.; Lin, H. Applying Carbon Dots-Metal Ions Ensembles as a Multichannel Fluorescent Sensor Array: Detection and Discrimination of Phosphate Anions. Anal. Chem. 2017, 89, 5542–5548. [Google Scholar] [CrossRef]
- Silva, E.C.; Gomes, C.G.; Pina, J.; Pereira, R.F.; Murtinho, D.; Fajardo, A.R.; Valente, A.J. Carbon quantum dots-containing poly(β-cyclodextrin) for simultaneous removal and detection of metal ions from water. Carbohydr. Polym. 2024, 323, 121464. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, S.; Liu, W.; Pei, H.; Liu, N.; Guo, R.; Mo, Z. Long wavelength emission multicolor fluorescent carbon quantum dots for the detection of pH, amino acids, and metal ions. J. Photochem. Photobiol. A Chem. 2023, 444, 114967. [Google Scholar] [CrossRef]
- Padmapriya, A.; Thiyagarajan, P.; Devendiran, M.; Kalaivani, R.A.; Shanmugharaj, A.M. Electrochemical sensor based on N,P–doped carbon quantum dots derived from the banana flower bract (Musa acuminata) biomass extract for selective and picomolar detection of dopamine. J. Electroanal. Chem. 2023, 943, 117609. [Google Scholar] [CrossRef]
- Geng, Y.; Peveler, W.J.; Rotello, V.M. Array-based ‘Chemical Nose’ Sensing in Diagnostics and Drug Discovery. Angew. Chem. Int. Ed. 2019, 58, 5190–5200. [Google Scholar] [CrossRef]
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, Y.; Lee, S.; Kang, H.; Kim, J.; Choi, J.; Ryu, J.; Joo, H.; Jung, H.-T.; Kim, J. Finding Hidden Signals in Chemical Sensors Using Deep Learning. Anal. Chem. 2020, 92, 6529–6537. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, Y.; Devaraj, V.; Nguyen, T.M.; Kim, Y.-J.; Kim, Y.H.; Kim, C.; Choi, E.J.; Han, D.-W.; Oh, J.-W. Investigation of colorimetric biosensor array based on programable surface chemistry of M13 bacteriophage towards artificial nose for volatile organic compound detection: From basic properties of the biosensor to practical application. Biosens. Bioelectron. 2021, 188, 113339. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Devaraj, V.; Jeong, N.-N.; Lee, Y.; Kim, Y.-J.; Kim, T.; Yi, S.H.; Kim, W.-G.; Choi, E.J.; Kim, H.-M.; et al. Neural mechanism mimetic selective electronic nose based on programmed M13 bacteriophage. Biosens. Bioelectron. 2022, 196, 113693. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ji, H.; Guan, Y.; Ran, X.; Ren, J.; Qu, X. A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. NPG Asia Mater. 2017, 9, e356. [Google Scholar] [CrossRef]
- Sun, Z.; Xing, H.H.; Qing, M.; Shi, Y.; Ling, Y.; Li, N.B.; Luo, H.Q. From the perspective of high-throughput recognition: Sulfur quantum dots-based multi-channel sensing platform for metal ions detection. Chem. Eng. J. 2023, 452, 139594. [Google Scholar] [CrossRef]
- Fu, L.; Liu, T.; Yang, F.; Wu, M.; Yin, C.; Chen, L.; Niu, N. A multi-channel array for metal ions discrimination with animal bones derived biomass carbon dots as sensing units. J. Photochem. Photobiol. A Chem. 2022, 424, 113638. [Google Scholar] [CrossRef]
- Zhu, L.; Mei, X.; Peng, Z.; Liu, J.; Yang, J.; Li, Y. A rotating paper-based microfluidic sensor array combining Michael acceptors and carbon quantum dots for discrimination of biothiols. Chem. Eng. J. 2023, 454, 140065. [Google Scholar] [CrossRef]
- Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. N. Y. 2012, 50, 4738–4743. [Google Scholar] [CrossRef]
- Chen, D.; Wu, W.; Yuan, Y.; Zhou, Y.; Wan, Z.; Huang, P. Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. J. Mater. Chem. C Mater. 2016, 4, 9027–9035. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, srep01473. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, J.; Zhai, Y.; Wang, H.; Bai, X.; Dong, B.; Wang, H.; Song, H. A novel mechanism for red emission carbon dots: Hydrogen bond dominated molecular states emission. Nanoscale 2017, 9, 13042–13051. [Google Scholar] [CrossRef]
- Zhou, C.; He, X.; Ya, D.; Zhong, J.; Deng, B. One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma. Sens. Actuators B Chem. 2017, 249, 256–264. [Google Scholar] [CrossRef]
- Han, Z.; Nan, D.; Yang, H.; Sun, Q.; Pan, S.; Liu, H.; Hu, X. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sens. Actuators B Chem. 2019, 298, 126842. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a ‘turn-off’ fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2014, 55, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.K.; Sundaram, C.; Ngo, Y.-L.T.; Choi, W.M.; Chung, J.S.; Kim, E.J.; Hur, S.H. Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determination of 4-nitrophenol. Dye. Pigment. 2019, 165, 327–334. [Google Scholar] [CrossRef]
- Paul, A.; Kurian, M. N-doped photoluminescent carbon dots from water hyacinth for tumour detection. Mater. Today Proc. 2020, 25, 213–217. [Google Scholar] [CrossRef]
- You, A.; Be, M.A.Y.; In, I. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Mater. 2015, 3, 086102. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B R. Soc. Chem. 2016, 4, 5772–5788. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2014, 44, 362–381. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, M.; Zhang, L.; Zhao, H.; Xie, Z.; Jing, X.; Haddad, R.E.; Fan, H.; Sun, Z. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294. [Google Scholar] [CrossRef]
- Liu, S.; Cui, J.; Huang, J.; Tian, B.; Jia, F.; Wang, Z. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Facile one-pot synthesis of highly fl uorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Li, X.; Yang, H.; Chen, X. Nitrogen-doped carbon dots rapid and selective detection of mercury ion and biothiol and construction of an IMPLICATION logic gate. Talanta 2019, 194, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Zhao, X.; Liang, Y.; Peng, L.; Dong, H.; Xiao, Y.; Hu, C.; Hu, H.; Liu, Y.; Zheng, M. Journal of Colloid and Interface Science Small nitrogen-doped carbon dots as efficient nanoenhancer for boosting the electrochemical performance of three-dimensional graphene. J. Colloid Interface Sci. 2019, 536, 628–637. [Google Scholar] [CrossRef]
- Mistry, B.; Machhi, H.K.; Vithalani, R.S.; Patel, D.S.; Modi, C.K.; Prajapati, M.; Surati, K.R.; Soni, S.S.; Jha, P.K.; Kane, S.R. Harnessing the N-dopant ratio in carbon quantum dots for enhancing the power conversion efficiency of solar cells. Sustain. Energy Fuels 2019, 3, 3182–3190. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Liu, S.; Liu, Z.; Li, Y.; Hu, X. Sensors and Actuators B: Chemical Fluorescent carbon dots for auramine O determination and logic gate operation. Sens. Actuators B Chem. 2015, 219, 261–267. [Google Scholar] [CrossRef]
- Konar, S.; Kumar, B.N.P.; Kr, M.; Samanta, D. Sensors and Actuators B: Chemical N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imaging. Sens. Actuators B Chem. 2019, 286, 77–85. [Google Scholar] [CrossRef]
- Wang, B. Concentration-induced multi-colored emissions in carbon dots: Origination from triple fluorescent centers. Nanoscale 2018, 10, 6734–6743. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Bai, X.; Bai, J.; Pan, G.; Zhu, Y. Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices. Nanotechnology 2018, 29, 085705. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Li, X.; Zhang, H.; Ji, X.; Sun, W.; Yu, Y.; Liu, Y.; Huang, J.; Sarshar, Z.; Sain, M. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta 2021, 222, 121663. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X.; Wang, M.; Huang, J.; Jiang, X.; Pang, J.; Xu, F.; Zhang, X. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. Int. J. Biol. Macromol. 2019, 128, 537–545. [Google Scholar] [CrossRef]
- Zheng, M.; Xie, Z. A carbon dots e based nanoprobe for intracellular Fe 3 þ detection. Mater. Today Chem. 2019, 13, 121–127. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Plenum Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Barbero, N.; Barni, E.; Barolo, C.; Quagliotto, P.; Viscardi, G.; Napione, L.; Pavan, S.; Bussolino, F. A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dye. Pigment. 2009, 80, 307–313. [Google Scholar] [CrossRef]
- Fraiji, L.K.; Hayes, D.M.; Werner, T.C. Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. J. Chem. Educ. 1992, 69, 424–428. [Google Scholar] [CrossRef]
Metal | λexc (nm) | R2 | KSV (M−1) | n |
---|---|---|---|---|
Co | 360 | 0.9839 | 4.00 × 102 ± 9.57 | 0.94 ± 0.06 |
420 | 0.9917 | 2.50 × 102 ± 4.34 | 0.93 ± 0.04 | |
Fe | 360 | 0.9874 | 4.94 × 102 ± 11.03 | 1.08 ± 0.06 |
420 | 0.9706 | 2.23 × 102 ± 7.51 | 1.06 ± 0.05 | |
Mn | 360 | 0.9806 | 2.42 × 102 ± 6.27 | 0.94 ± 0.03 |
420 | 0.9794 | 1.80 × 102 ± 4.78 | 0.87 ± 0.06 | |
Mg | 360 | 0.9841 | 2.92 × 102 ± 6.57 | 0.85 ± 0.02 |
420 | 0.9842 | 2.34 × 102 ± 5.12 | 0.84 ± 0.02 | |
Mo | 360 | 0.9728 | 61.67 × 102 ± 214.67 | 1.80 ± 0.17 |
420 | 0.9129 | 17.20 × 102 ± 115.89 | 1.96 ± 0.15 | |
Cu | 360 | 0.9925 | 8.07 × 102 ± 12.85 | 0.89 ± 0.04 |
420 | 0.9314 | 5.27 × 102 ± 31.37 | 1.51 ± 0.06 | |
Zn | 360 | 0.9935 | 12.55 × 102 ± 19.36 | 0.66 ± 0.02 |
420 | 0.9354 | 7.61 × 102 ± 32.11 | 0.97 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, A.A.C.; Souza, N.D.G.; de Souza, J.P.B.; Carneiro, S.V.; Clemente, C.S.; Sousa, J.S.; Fechine, L.M.U.D.; Michea, S.; Fechine, P.B.A.; Freire, R.M. Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles. C 2024, 10, 57. https://doi.org/10.3390/c10030057
Cruz AAC, Souza NDG, de Souza JPB, Carneiro SV, Clemente CS, Sousa JS, Fechine LMUD, Michea S, Fechine PBA, Freire RM. Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles. C. 2024; 10(3):57. https://doi.org/10.3390/c10030057
Chicago/Turabian StyleCruz, Antônio A. C., Natália D. G. Souza, João P. B. de Souza, Samuel V. Carneiro, Claudenilson S. Clemente, Jeanlex S. Sousa, Lillian M. U. D. Fechine, Sebastián Michea, Pierre B. A. Fechine, and Rafael M. Freire. 2024. "Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles" C 10, no. 3: 57. https://doi.org/10.3390/c10030057
APA StyleCruz, A. A. C., Souza, N. D. G., de Souza, J. P. B., Carneiro, S. V., Clemente, C. S., Sousa, J. S., Fechine, L. M. U. D., Michea, S., Fechine, P. B. A., & Freire, R. M. (2024). Multichannel Sensor for Detection of Molybdenum Ions Based on Nitrogen-Doped Carbon Quantum Dot Ensembles. C, 10(3), 57. https://doi.org/10.3390/c10030057