Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = sulfide solid-state electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 160
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
16 pages, 3577 KB  
Article
Design and Experimental Evaluation of Polyimide Film Heater for Enhanced Output Characteristics Through Temperature Control in All-Solid-State Batteries
by Soo-Man Park, Chae-Min Lim, Soon-Hyung Lee, Kyung-Min Lee and Yong-Sung Choi
Energies 2026, 19(2), 297; https://doi.org/10.3390/en19020297 - 6 Jan 2026
Viewed by 214
Abstract
This paper presents a practical thermal control strategy to enhance the output performance of oxide-based all-solid-state batteries (ASSBs), which typically exhibit low ionic conductivity at room temperature. A lightweight polyimide (PI) film heater was designed, fabricated, and integrated into the cell stack to [...] Read more.
This paper presents a practical thermal control strategy to enhance the output performance of oxide-based all-solid-state batteries (ASSBs), which typically exhibit low ionic conductivity at room temperature. A lightweight polyimide (PI) film heater was designed, fabricated, and integrated into the cell stack to locally maintain the optimal operating temperature range (≈65–75 °C) for electrolyte activation. Unlike previous studies limited to liquid or sulfide-based batteries, this work demonstrates the direct integration and coupled numerical–experimental validation of a PI film heater within oxide-based ASSBs. The proposed design achieves high heating efficiency (~92%) with minimal thickness (<100 μm) and long-term stability, enabling reliable and scalable thermal management. Finite-element simulations and experimental verification confirmed that the proposed heater achieved rapid and uniform heating with less than a 10 °C temperature deviation between the cell and heater surfaces. These findings provide a foundation for smart battery management systems with distributed temperature sensing and feedback control, supporting the development of high-performance and reliable solid-state battery platforms. Full article
Show Figures

Figure 1

35 pages, 3497 KB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Cited by 1 | Viewed by 9980
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Graphical abstract

15 pages, 4358 KB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Cited by 1 | Viewed by 1183
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

23 pages, 3253 KB  
Review
Overcoming Challenges in Silicon Anodes: The Role of Electrolyte Additives and Solid-State Electrolytes
by Jinsik Nam, Hanbyeol Lee and Oh B. Chae
Micromachines 2025, 16(7), 800; https://doi.org/10.3390/mi16070800 - 9 Jul 2025
Cited by 6 | Viewed by 6252
Abstract
Silicon-based anodes have emerged as promising candidates for advanced lithium-ion batteries (LIBs) owing to their outstanding lithium storage capacity; however, the commercial implementation of silicon-based anodes is hindered primarily by their significant volumetric changes and the resulting solid electrolyte interphase (SEI) instability during [...] Read more.
Silicon-based anodes have emerged as promising candidates for advanced lithium-ion batteries (LIBs) owing to their outstanding lithium storage capacity; however, the commercial implementation of silicon-based anodes is hindered primarily by their significant volumetric changes and the resulting solid electrolyte interphase (SEI) instability during the lithiation/delithiation process. To overcome these issues, electrolyte optimization, particularly through the use of functional additives and solid-state electrolytes, has attracted significant research attention. In this paper, we review the recent developments in electrolyte additives, such as vinylene carbonate, fluoroethylene carbonate, and silane-based additives, and new additives, such as dimethylacetamide, that improve the SEI stability and overall electrochemical performance of silicon-based anodes. We also discuss the role of solid electrolytes, including oxides, sulfides, and polymer-based systems, in mitigating the volume changes in Si and improving safety. Such approaches can effectively enhance both the longevity and capacity retention of silicon-based anodes. Despite significant progress, further studies are essential to optimize electrolyte formulation and solve interfacial problems. Integrating these advances with improved electrode designs and anode materials is critical for realizing the full potential of silicon-based anodes in high-performance LIBs, particularly in electric vehicles and portable electronics. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices, 2nd Edition)
Show Figures

Figure 1

15 pages, 9578 KB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Cited by 1 | Viewed by 1715
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

15 pages, 3928 KB  
Article
Environmental Stability of Li6PS5Cl0.5Br0.5 Electrolyte During Lithium Battery Manufacturing and a Simplified Test Protocol
by Eman Hassan and Siamak Farhad
Energies 2025, 18(13), 3391; https://doi.org/10.3390/en18133391 - 27 Jun 2025
Viewed by 1550
Abstract
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical [...] Read more.
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical properties. Despite its potential, the material’s sensitivity to ambient air humidity presents challenges for large-scale battery manufacturing. Moisture exposure leads to performance degradation and the release of toxic hydrogen sulfide (H2S) gas, raising concerns for workplace safety. The objectives of this study are to validate the electrolyte synthesis process, evaluate the effects of air humidity exposure on its reactivity and ionic conductivity, and establish a standardized protocol for assessing environmental stability. We report a synthesis method based on ball milling and heat treatment that achieves an ionic conductivity of 2.11 mS/cm, along with a fundamental study incorporating modeling and formulation approaches to evaluate the electrolyte’s environmental stability. Furthermore, we introduce a simplified testing method for assessing environmental stability, which may serve as a benchmark protocol for the broader class of argyrodite solid electrolytes. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Recycling of Energy Systems)
Show Figures

Figure 1

31 pages, 8151 KB  
Review
A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges
by Bin Man, Yulong Zeng, Qingrui Liu, Yinwen Chen, Xin Li, Wenjing Luo, Zikang Zhang, Changliang He, Min Jie and Sijie Liu
Crystals 2025, 15(6), 492; https://doi.org/10.3390/cryst15060492 - 22 May 2025
Cited by 7 | Viewed by 14662
Abstract
Traditional lithium-ion batteries (LIBs) utilize liquid electrolytes, which pose significant safety risks. To address these concerns and enhance energy density, all-solid-state batteries (ASSBs) have emerged as a safer and more efficient alternative to conventional liquid electrolyte-based systems. ASSBs offer notable advantages, including higher [...] Read more.
Traditional lithium-ion batteries (LIBs) utilize liquid electrolytes, which pose significant safety risks. To address these concerns and enhance energy density, all-solid-state batteries (ASSBs) have emerged as a safer and more efficient alternative to conventional liquid electrolyte-based systems. ASSBs offer notable advantages, including higher energy density and improved safety, driving growing interest from both industry and academia. A key component in all-solid-state battery (ASSB) development is the solid-state electrolyte (SSE), which plays a crucial role in determining the overall performance and safety of these batteries. Sulfide SSEs are characterized by distinctive attributes, including notably high ionic conductivity and remarkably low interfacial resistance with lithium metal anodes, which renders them particularly advantageous for advancing ASSB technology. This paper systematically examines sulfide-based SSEs, with particular emphasis on their underlying physicochemical properties, structural characteristics, and essential functional attributes relevant to ASSB applications. Additionally, we explore preparation methods for sulfide SSEs and analyze their potential applications in next-generation ASSBs. Considering current challenges (e.g., interfacial instability or air sensitivity) we summarize strategies to address these obstacles, aiming to facilitate their integration into future energy storage systems. Full article
(This article belongs to the Special Issue Advances in Materials for Energy Conversion and Storage)
Show Figures

Figure 1

14 pages, 3551 KB  
Article
Influence of Germanium Sulfide on the Structure, Ag-Ion Conductivity and Stability of Glasses in the GeS2-Sb2S3-AgI System
by Viktor Markov, Talib Farziev and Nikita Dybin
Solids 2025, 6(2), 22; https://doi.org/10.3390/solids6020022 - 9 May 2025
Viewed by 1563
Abstract
This article discusses the superionic glassy GeS2-Sb2S3-AgI system with mobile silver ions as a material for creating new energy-efficient solid-state ion emitters. The effect of replacing silver iodide with germanium sulfide on the structure of the electrolyte, [...] Read more.
This article discusses the superionic glassy GeS2-Sb2S3-AgI system with mobile silver ions as a material for creating new energy-efficient solid-state ion emitters. The effect of replacing silver iodide with germanium sulfide on the structure of the electrolyte, activation energy of diffusion, and specific ionic conductivity was studied. Electrolytes (2.5 + x)GeS2-27.5Sb2S3-(70 − x)AgI, x = 0, 5, 10, 15 were synthesized using the melt-quenching technique in evacuated quartz ampoules. The temperature dependence of conductivity and glass stability parameters (Hruby’s, Weinberg’s and Lu–Liu’s) were determined for them, and the mechanism for increasing glass-forming ability was clarified. It was shown that the presence of iodine in a germanium structural unit is more preferable than in an antimony structural unit; germanium structural units compete for iodine, reducing the number of SbI3 crystallization centers and chain terminations, resulting in additional structural connectivity and stability. It was shown that when silver iodide was replaced by germanium sulfide, the decrease in conductivity due to the reduction in charge carriers was less than expected due to the expansion of the conduction channels. Full article
Show Figures

Graphical abstract

34 pages, 8692 KB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Cited by 2 | Viewed by 2457
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 7914 KB  
Review
Applications of Laser Material Processing for Solid-State Lithium Batteries
by Dongfang Yang
Batteries 2025, 11(4), 128; https://doi.org/10.3390/batteries11040128 - 26 Mar 2025
Cited by 1 | Viewed by 2771
Abstract
Laser material processing is emerging as a critical manufacturing technology in the advancement of solid-state lithium batteries (SSLBs), offering numerous advantages in precision, efficiency, and versatility. This mini-review explores the applications and benefits of laser material-processing techniques, such as laser sintering, laser cutting, [...] Read more.
Laser material processing is emerging as a critical manufacturing technology in the advancement of solid-state lithium batteries (SSLBs), offering numerous advantages in precision, efficiency, and versatility. This mini-review explores the applications and benefits of laser material-processing techniques, such as laser sintering, laser cutting, laser surface cleaning, laser ablation for nanoparticle generation, and pulsed laser deposition, in the fabrication and performance enhancement of SSLBs’ materials and components. It will demonstrate that laser material processing can enhance material properties such as density and surface morphology, improve ionic conductivity and reduce interfacial resistance. Laser material-processing techniques are adaptable to a variety of materials, including polymers, metal oxides, metal sulfides, and metals, making them suitable for processing various SSLB components like electrolytes, electrodes, and current collectors. In addition, the use of laser material-processing technologies reduces manufacturing costs by minimizing material waste and streamlining production processes. Looking forward, integrating laser material processing with other advanced manufacturing technologies, such as roll-to-roll (R2R) manufacturing, for SSLBs holds promise for further scalability and efficiency. It is expected that laser material processing will be positioned to significantly contribute to the development of safer, more efficient, and cost-effective SSLBs, supporting their broader adoption across industries and paving the way for future innovations in energy storage technology. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

10 pages, 9975 KB  
Article
Fabrication and Electrochemical Performance of Br-Doped Na3PS4 Solid-State Electrolyte for Sodium–Sulfur Batteries via Melt-Quenching and Hot-Pressing
by Ao Ma, Shuhui Liu, Degui Li, Bin Gu, Sheng Li and Jing Wang
Inorganics 2025, 13(3), 73; https://doi.org/10.3390/inorganics13030073 - 28 Feb 2025
Cited by 2 | Viewed by 1846
Abstract
Room-temperature all-solid-state sodium–sulfur (Na-S) batteries are being regarded as a promising technology for large-scale energy storage. However, the low ionic conductivity of existing sulfide solid electrolytes has been hindering the potential and commercialization of Na-S batteries. Na3PS4 has garnered extensive [...] Read more.
Room-temperature all-solid-state sodium–sulfur (Na-S) batteries are being regarded as a promising technology for large-scale energy storage. However, the low ionic conductivity of existing sulfide solid electrolytes has been hindering the potential and commercialization of Na-S batteries. Na3PS4 has garnered extensive attention among sulfide solid electrolytes due to its potential ionic conductivity (primarily predominated by vacancies) and ease of fabrication. Herein, we demonstrated a combined melt-quenching with Br doping technique to pre-generate abundant defects (vacancies) in the Na3PS4, which expanded ion transport channels and facilitated Na+ migration. The quenched Na2.9PS3.9Br0.1 holds an ionic conductivity of 8.28 × 10−4 S/cm at room temperature. Followed by the hot-pressed fabrication at 450 °C was conducted on the quenched Na2.9PS3.9Br0.1 to reduce interface resistance, the resultant Na2.9PS3.9Br0.1 pellet shows an ionic conductivity up to 1.15 × 10−3 S/cm with a wide electrochemical window and chemical stability towards Na alloy anodes. The assembled all-solid-state Na2S/Na2.9PS3.9Br0.1/Na15Sn4 cell delivers an initial reversible capacity of 550 mAh/g at a current density of 0.1 mA/cm2. After 50 cycles, it still maintains 420 mAh/g with a capacity retention of 76.4%. The integration of melt-quenching, doping, and hot-pressing provides a new strategy to enable sulfide electrolytes with high ionic conductivity and all-solid-state Na-S batteries with high performance. Full article
Show Figures

Figure 1

39 pages, 9018 KB  
Review
Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges
by Shun Ai, Xianli Wu, Jintao Wang, Xu Li, Xiaofeng Hao and Yuezhong Meng
Nanomaterials 2024, 14(22), 1773; https://doi.org/10.3390/nano14221773 - 5 Nov 2024
Cited by 19 | Viewed by 15939
Abstract
Solid-state lithium batteries exhibit high-energy density and exceptional safety performance, thereby enabling an extended driving range for electric vehicles in the future. Solid-state electrolytes (SSEs) are the key materials in solid-state batteries that guarantee the safety performance of the battery. This review assesses [...] Read more.
Solid-state lithium batteries exhibit high-energy density and exceptional safety performance, thereby enabling an extended driving range for electric vehicles in the future. Solid-state electrolytes (SSEs) are the key materials in solid-state batteries that guarantee the safety performance of the battery. This review assesses the research progress on solid-state electrolytes, including polymers, inorganic compounds (oxides, sulfides, halides), and organic–inorganic composites, the challenges related to solid-state batteries in terms of their interfaces, and the status of industrialization research on solid-state electrolytes. For each kind of solid-state electrolytes, details on the preparation, properties, composition, ionic conductivity, ionic migration mechanism, and structure–activity relationship, are collected. For the challenges faced by solid-state batteries, the high interfacial resistance, the side reactions between solid-state electrolytes and electrodes, and interface instability, are mainly discussed. The current industrialization research status of various solid electrolytes is analyzed in regard to relevant enterprises from different countries. Finally, the potential development directions and prospects of high-energy density solid-state batteries are discussed. This review provides a comprehensive reference for SSE researchers and paves the way for innovative advancements in regard to solid-state lithium batteries. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

9 pages, 2505 KB  
Article
Influence of Solid Fraction on Particle Size during Wet-Chemical Synthesis of β-Li3PS4 in Tetrahydrofuran
by Aurelia Gries, Frederieke Langer, Julian Schwenzel and Matthias Busse
Batteries 2024, 10(4), 132; https://doi.org/10.3390/batteries10040132 - 16 Apr 2024
Cited by 2 | Viewed by 3208
Abstract
For all-solid-state batteries, the particle size distribution of the solid electrolyte is a critical factor. Small particles are preferred to obtain a high active mass loading of cathode active material and a small porosity in composite cathodes. In this work, the influence of [...] Read more.
For all-solid-state batteries, the particle size distribution of the solid electrolyte is a critical factor. Small particles are preferred to obtain a high active mass loading of cathode active material and a small porosity in composite cathodes. In this work, the influence of the solid fraction in the wet-chemical synthesis of β-Li3PS4 in tetrahydrofuran (THF) is investigated. The solid fraction is varied between 50 and 200 mg/mL, and the obtained samples are evaluated using X-ray diffraction, SEM and electrochemical impedance measurements. The sizes of the resulting particles show a significant dependency on the solid fraction, while a good ionic conductivity is maintained. For the highest concentration, the particle sizes do not exceed 10 µm, but for the lowest concentration, particles up to ~73 µm can be found. The ionic conductivities at room temperature are determined to be 0.63 ± 0.01 × 10−4 S/cm and 0.78 ± 0.01 × 10−4 S/cm for the highest and lowest concentrations, respectively. These findings lead to an improvement towards the production of tailored sulfide solid electrolytes. Full article
Show Figures

Graphical abstract

16 pages, 10654 KB  
Review
Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes
by Hanbyeol Lee, Taeho Yoon and Oh B. Chae
Micromachines 2024, 15(4), 453; https://doi.org/10.3390/mi15040453 - 28 Mar 2024
Cited by 9 | Viewed by 4811
Abstract
The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance [...] Read more.
The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance arise due to Li’s dendritic growth, which needs to be addressed. Owing to these critical issues in Li metal batteries, all-solid-state lithium-ion batteries (ASSLIBs) have attracted considerable interest due to their superior energy density and enhanced safety features. Among the key components of ASSLIBs, solid-state electrolytes (SSEs) play a vital role in determining their overall performance. Various types of SSEs, including sulfides, oxides, and polymers, have been extensively investigated for Li metal anodes. Sulfide SSEs have demonstrated high ion conductivity; however, dendrite formation and a limited electrochemical window hinder the commercialization of ASSLIBs due to safety concerns. Conversely, oxide SSEs exhibit a wide electrochemical window, but compatibility issues with Li metal lead to interfacial resistance problems. Polymer SSEs have the advantage of flexibility; however their limited ion conductivity poses challenges for commercialization. This review aims to provide an overview of the distinctive characteristics and inherent challenges associated with each SSE type for Li metal anodes while also proposing potential pathways for future enhancements based on prior research findings. Full article
(This article belongs to the Special Issue Energy Conversion Materials/Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop