A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges
Abstract
:1. Introduction
1.1. Background of SSEs
1.2. Significance of Research on Sulfide SSEs
2. Properties of Sulfide SSEs
2.1. Types and Chemical Compositions of Sulfide SSEs
2.1.1. Glassy Sulfide SSEs
2.1.2. Glass–Ceramic Sulfide SSEs
2.1.3. Crystalline Sulfide SSEs
2.2. Physical and Chemical Properties
2.2.1. Ionic Conductivity
2.2.2. Mechanical Strength
2.2.3. Thermal and Electrochemical Stability
2.3. Ionic Conduction Mechanism of Sulfide SSEs
2.3.1. Thio-LISICON Mechanism
2.3.2. Structure Mechanism of Li11−xM2−xP1+xS12 (M = Ge, Sn, Si)
2.3.3. Ionic Conduction Mechanism in Li6PS5X (X = Cl, Br and I) Argyrodites
3. Synthesis Methods for Sulfide SSEs
3.1. Mechanical Ball Milling
3.2. High-Temperature Solid-State Reaction
3.3. Liquid-Phase Synthesis
4. Synthesis and Application Strategies for Sulfide SSEs
5. Challenges and Solutions for Sulfide SSEs
5.1. Interface Stability of Sulfide SSEs
5.2. Conductivity Optimization of Sulfide SSEs
5.3. Mechanical Stability of Sulfide SSEs
5.4. Emerging Research Directions and Opportunities
6. Conclusions
6.1. Research Status and Challenges
6.2. Future Perspectives
6.3. Challenges and Prospects for Commercialization
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Goodenough, J.B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Kim, K.J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J.L.M. Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Adv. Energy Mater. 2020, 11, 2002689. [Google Scholar] [CrossRef]
- Yang, X.; Luo, J.; Sun, X. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195. [Google Scholar] [CrossRef]
- Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Xiao, Y.; Turcheniuk, K.; Narla, A.; Song, A.-Y.; Ren, X.; Magasinski, A.; Jain, S.; Huang, S.; Lee, H.; Yushin, G. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 2021, 20, 984–990. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Cheng, L.; Zuo, F.; Yang, S. Safety performance and failure prediction model of cylindrical lithium-ion battery. J. Power Sources 2020, 451, 227755. [Google Scholar] [CrossRef]
- Lau, J.; DeBlock, R.H.; Butts, D.M.; Ashby, D.S.; Choi, C.S.; Dunn, B.S. Sulfide Solid Electrolytes for Lithium Battery Applications. Adv. Energy Mater. 2018, 8, 1800933. [Google Scholar] [CrossRef]
- Park, K.H.; Bai, Q.; Kim, D.H.; Oh, D.Y.; Zhu, Y.; Mo, Y.; Jung, Y.S. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Adv. Energy Mater. 2018, 8, 1800035. [Google Scholar] [CrossRef]
- Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J.P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58–74. [Google Scholar] [CrossRef]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef]
- Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: An Affordable Lithium Superionic Conductor. J. Am. Chem. Soc. 2013, 135, 15694–15697. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.A.; Cortes, F.J.Q.; Liu, Y.; Miers, J.C.; Verma, A.; Vishnugopi, B.S.; Tippens, J.; Prakash, D.; Marchese, T.S.; Han, S.Y.; et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 2021, 20, 503–510. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Wu, E.A.; Nguyen, H.; Chen, Z.; Marple, M.A.T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y.S. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Lett. 2019, 4, 2418–2427. [Google Scholar] [CrossRef]
- Wang, S.; Tang, M.; Zhang, Q.; Li, B.; Ohno, S.; Walther, F.; Pan, R.; Xu, X.; Xin, C.; Zhang, W.; et al. Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solid-State Batteries with Long Cycle Life. Adv. Energy Mater. 2021, 11, 2101370. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858. [Google Scholar] [CrossRef]
- Quintero, M.A.; Hao, S.; Patel, S.V.; Bao, J.-K.; Zhou, X.; Hu, Y.-Y.; Wolverton, C.; Kanatzidis, M.G. Lithium Thiostannate Spinels: Air-Stable Cubic Semiconductors. Chem. Mater. 2021, 33, 2080–2089. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, S.; Xin, G.; Xue, C.; Richter, F.; Li, L.; Fan, L.; Lin, Y.; Shen, Y. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 6, 70–76. [Google Scholar] [CrossRef]
- Zhang, S.M.; Zhao, F.P.; Su, H.; Zhong, Y.; Liang, J.W.; Chen, J.T.; Zheng, M.L.; Liu, J.; Chang, L.Y.; Fu, J.M.; et al. Cubic Iodide LixYI3+x Superionic Conductors through Defect Manipulation for All-Solid-State Li Batteries. Angew. Chem. Int. Ed. 2024, 63, e202316360. [Google Scholar] [CrossRef]
- Jin, H.; Lei, J.; Hussain, F.; Tang, W.; Zhao, C.; Yu, P.; Li, Y.; Liu, M.; Zhang, J.; Yin, W.; et al. Regulating Chemical Bonds in Halide Frameworks for Lithium Superionic Conductors. ACS Nano 2025, 19, 6399–6411. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Münch, K.; Liu, X.; Shen, K.; Zhang, R.; Weintraut, T.; Yusim, Y.; Jiang, D.; Hong, X.; Meng, J.; et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction. Nature 2025, 637, 846–853. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility. Angew. Chem. Int. Ed. 2008, 47, 755–758. [Google Scholar] [CrossRef]
- Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 10, 1039. [Google Scholar] [CrossRef]
- Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L.F. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. J. Am. Chem. Soc. 2019, 141, 19002–19013. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. An Iodide-Based Li7P2S8I Superionic Conductor. J. Am. Chem. Soc. 2015, 137, 1384–1387. [Google Scholar] [CrossRef]
- Li, Y.; Song, S.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53. [Google Scholar] [CrossRef]
- Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X(X=Cl,Br,I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 2012, 221, 1–5. [Google Scholar] [CrossRef]
- Adeli, P.; Bazak, J.D.; Park, K.H.; Kochetkov, I.; Huq, A.; Goward, G.R.; Nazar, L.F. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew. Chem. Int. Ed. 2019, 58, 8681–8686. [Google Scholar] [CrossRef]
- Lee, Y.; Jeong, J.; Lee, H.J.; Kim, M.; Han, D.; Kim, H.; Yuk, J.M.; Nam, K.-W.; Chung, K.Y.; Jung, H.-G.; et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity andair stability for all-solid-state Li-ion batteries. ACS Energy Lett. 2022, 7, 171–179. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, H.; Liu, B.; Li, X.; Ju, J.; Li, J.; Zhang, S.; Ma, J.; Li, C.; Hu, Z.; et al. Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics. Nat. Commun. 2023, 14, 669. [Google Scholar] [CrossRef]
- Su, H.; Zhong, Y.; Wang, C.; Liu, Y.; Hu, Y.; Li, J.; Wang, M.; Jiao, L.; Zhou, N.; Xiao, B.; et al. Deciphering the critical role of interstitial volume in glassy sulfide superionic conductors. Nat. Commun. 2024, 15, 2552. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Deng, M.; Li, S.W.; Jiang, Z.L.; Li, L.; Lu, Z.Y.; Luo, Q.Y.; Yang, J.; Cui, Z.H.; Yu, C. Reviving the ionic conductivity of air-instable solid-state electrolytes via a facile heat treatment. Chin. Chem. Lett. 2025, 111114, 1001–8417. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Liu, H.; Zhao, C.-Z.; Lu, Y.; Cheng, X.-B.; Hang, J.-Q.; Zhang, Q. Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Sus Mat. 2021, 1, 38–50. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Wang, L.; Yi, S.; Liu, Q.; Li, Y.; Hu, Y.; Tu, H.; Wang, Y.; Sun, A.; Zhu, F.; Mushtaq, F.; et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy Storage Mater. 2023, 63, 102961. [Google Scholar] [CrossRef]
- Fan, X.; Wang, C. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566. [Google Scholar] [CrossRef]
- Zhang, W.; Seo, D.-H.; Chen, T.; Wu, L.; Topsakal, M.; Zhu, Y.; Lu, D.; Ceder, G.; Wang, F. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020, 367, 1030–1034. [Google Scholar] [CrossRef]
- Cheng, Y.; Shu, J.; Xu, L.; Xia, Y.; Du, L.; Zhang, G.; Mai, L. Flexible Nanowire Cathode Membrane with Gradient Interfaces and Rapid Electron/Ion Transport Channels for Solid-State Lithium Batteries. Adv. Energy Mater. 2021, 11, 2100026. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Zuo, D.; Yang, L.; Zou, Z.; Li, S.; Feng, Y.; Harris, S.J.; Shi, S.; Wan, J. Ultrafast Synthesis of NASICON Solid Electrolytes for Sodium-Metal Batteries. Adv. Energy Mater. 2023, 13, 2301540. [Google Scholar] [CrossRef]
- Ferrer-Nicomedes, S.; Mormeneo-Segarra, A.; Vicente-Agut, N.; Barba-Juan, A. Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3- based composite solid electrolyte to enhance the electrical properties. J. Power Sources 2023, 581, 233494. [Google Scholar] [CrossRef]
- Anderson, E.; Zolfaghar, E.; Jonderian, A.; Khaliullin, R.Z.; McCalla, E. Comprehensive Dopant Screening in Li7La3Zr2O12 Garnet Solid Electrolyte. Adv. Energy Mater. 2024, 14, 2304025. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, K.; Xu, R.; Tang, P.; Cheng, H.-M.; Sun, Z.; Li, F. Adaptive ion diffusion in a highly crystalline pure polymer for stable solid-state batteries. Energy Storage Mater. 2025, 74, 103941. [Google Scholar] [CrossRef]
- Dai, C.; Weng, M.; Cai, B.; Liu, J.; Guo, S.; Xu, H.; Yao, L.; Stadler, F.J.; Li, Z.-M.; Huang, Y.-F. Ion-Conductive Crystals of Poly (vinylidene fluoride) Enables Fast Charging Solid-State Lithium Metal Batteries. Energy Environ. Sci. 2024, 17, 8243–8253. [Google Scholar] [CrossRef]
- Tufail, M.K.; Ahmad, N.; Yang, L.; Zhou, L.; Naseer, M.A.; Chen, R.; Yang, W. A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries. Chin. J. Chem. Eng. 2021, 39, 16–36. [Google Scholar] [CrossRef]
- Zheng, Q.; Song, Y.; Huang, W.; Yang, J.; Li, T.; Xu, Y. Challenges and strategies towards the interface between lithium anode and Li10GeP2S12 electrolyte in all-solid-state lithium metal batteries. Energy Storage Mater. 2023, 63, 103038. [Google Scholar] [CrossRef]
- Bonsu, J.O.; Bhadra, A.; Kundu, D. Wet Chemistry Route to Li3InCl6: Microstructural Control Render High Ionic Conductivity and Enhanced All-Solid-State Battery Performance. Adv. Sci. 2024, 11, 2403208. [Google Scholar] [CrossRef]
- Geng, J.; Yan, Z.; Zhu, Y. Elucidating Anisotropic Ionic Diffusion Mechanism in Li3YCl6 with Molecular Dynamics Simulations. ACS Appl. Energy Mater. 2024, 7, 7019–7024. [Google Scholar] [CrossRef]
- Liang, J.; van der Maas, E.; Luo, J.; Li, X.; Chen, N.; Adair, K.R.; Li, W.; Li, J.; Hu, Y.; Liu, J.; et al. A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries. Adv. Energy Mater. 2022, 12, 2103921. [Google Scholar] [CrossRef]
- Lennartz, P.; Paren, B.A.; Herzog-Arbeitman, A.; Chen, X.C.; Johnson, J.A.; Winter, M.; Shao-Horn, Y.; Brunklaus, G. Practical considerations for enabling Li|polymer electrolyte batteries. G. Joule 2023, 7, 1471–1495. [Google Scholar] [CrossRef]
- Kang, J.; Yan, Z.; Gao, L.; Zhang, Y.; Liu, W.; Yang, Q.; Zhao, Y.; Deng, N.; Cheng, B.; Kang, W. Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 2022, 53, 192–203. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Guo, S.; Zhou, H. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application. Acta Phys.-Chim. Sin. 2023, 39, 2301027. [Google Scholar] [CrossRef]
- Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F.H.; Nan, C.-W. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. J. Mater. 2021, 7, 209–218. [Google Scholar] [CrossRef]
- Liang, J.; Chen, D.; Adair, K.; Sun, Q.; Holmes, N.G.; Zhao, Y.; Sun, Y.; Luo, J.; Li, R.; Zhang, L.; et al. Insight into Prolonged Cycling Life of 4 V All-Solid-State Polymer Batteries by a High-Voltage Stable Binder. Adv. Energy Mater. 2021, 11, 2002455. [Google Scholar] [CrossRef]
- Jones, G.R.; Whitfield, R.; Wang, H.S.; Watuthanthrige, A.N.D.; Antonopoulou, M.-N.; Lohmann, V.; Anastasaki, A. Harnessing Non-Thermal External Stimuli for Polymer Recycling. Macromolecules 2025, 58, 2210–2223. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhou, L.; Tufail, M.K.; Yang, L.; Chen, R.; Yang, W. Advances in air stability of sulfide solid electrolytes with high ion conductivity. Sci. Sin. Chim. 2020, 50, 1031–1044. [Google Scholar]
- Chen, S.J.; Nie, L.; Hu, X.; Zhang, Y.; Zhang, Y.; Yu, Y.; Liu, W. Ultrafast Sintering for Ceramic-Based All-Solid-State Lithium-Metal Batteries. Adv. Mater. 2022, 34, 2200430. [Google Scholar] [CrossRef]
- Mills, A.; Yang, G.; Tsai, W.Y.; Chen, X.C.; Sacci, R.L.; Armstrong, B.L.; Hallinan Jr, D.T.; Nanda, J. Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separators. J. Electrochem. Soc. 2023, 170, 080513. [Google Scholar] [CrossRef]
- Ahmad, N.; Sun, S.; Yu, P.; Yang, W. Design Unique Air-Stable and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All-Solid-State Lithium–Metal Batteries. Adv. Funct. Mater. 2022, 32, 2201528. [Google Scholar] [CrossRef]
- Hayashi, A.; Komiya, R.; Tatsumisago, M.; Minami, T. Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries. Solid State Ion. 2002, 152–153, 285–290. [Google Scholar] [CrossRef]
- Yamauchi, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Preparation and ionic conductivities of (100-x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. J. Power Sources 2013, 244, 707–710. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Shen, Y.; Lin, Y.; Nan, C.-W. Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes. Solid State Ion. 2017, 305, 1–6. [Google Scholar] [CrossRef]
- Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 2016, 286, 24–33. [Google Scholar] [CrossRef]
- Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chem. Mater. 2016, 28, 2400–2407. [Google Scholar] [CrossRef]
- Schlem, R.; Burmeister, C.F.; Michalowski, P.; Ohno, S.; Dewald, G.F.; Kwade, A.; Zeier, W.G. Energy Storage Materials for Solid-State Batteries: Design by Mechanochemistry. Adv. Energy Mater. 2021, 11, 2101022. [Google Scholar] [CrossRef]
- Balaish, M.; Gonzalez-Rosillo, J.C.; Kim, K.J.; Zhu, Y.; Hood, Z.D.; Rupp, J.L.M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239. [Google Scholar] [CrossRef]
- Xu, J.; Liu, L.; Yao, N.; Wu, F.; Li, H.; Chen, L. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Mater. Today Nano 2019, 8, 100048. [Google Scholar] [CrossRef]
- Wang, J.; Hao, J.; Duan, C.; Wang, X.; Wang, K.; Ma, C. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. Small 2022, 18, 2104508. [Google Scholar] [CrossRef]
- Peng, J.; Wu, D.; Jiang, Z.; Lu, P.; Wang, Z.; Ma, T.; Yang, M.; Li, H.; Chen, L.; Wu, F. Stable Interface between Sulfide Solid Electrolyte and Room-Temperature Liquid Lithium Anode. ACS Nano 2023, 17, 12706–12722. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Lu, L.; Hua, R.; Zhu, G.; Liu, X.; Mao, Y.; Rui, X.; Wang, S.; Zhao, B.; Cui, H.; et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries. Etransportation. 2023, 18, 100272. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Seo, S.-D.; Kim, D.-W. A Novel Time-Saving Synthesis Approach for Li-Argyrodite Superionic Conductor. Adv. Sci. 2023, 10, 2301707. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Park, K.-H.; Kim, J.C.; Wi, T.-U.; Ha, A.R.; Song, Y.B.; Oh, D.Y.; Woo, J.; Kweon, S.H.; Yeom, S.J.; et al. Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All-Solid-State Batteries. Adv. Mater. 2022, 34, 2200083. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Kim, H.; Kim, K.S.; Kim, H.S.; Han, S.H.; Yu, J.S.; Hah, H.J.; Moon, J.; Cho, W.; Kim, K.J. Interface Design Considering Intrinsic Properties of Dielectric Materials to Minimize Space-Charge Layer Effect between Oxide Cathode and Sulfide Solid Electrolyte in All-Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201208. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kim, I.; Bornamehr, B.; Presser, V.; Ueda, H.; Lee, H.J.; Cheong, J.Y.; Jung, J.W. Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries. Energy Environ. Mater. 2024, 7, e12622. [Google Scholar] [CrossRef]
- Chen, X.; Mu, Y.; Liao, Z.; Chu, Y.; Kang, S.; Wu, B.; Liao, R.; Han, M.; Li, Y.; Zeng, L. Advancing high-performance one-dimensional Si/carbon anodes: Current status and challenges. Carbon Neutralization 2024, 3, 199–221. [Google Scholar] [CrossRef]
- Hatzell, K.B.; Chen, X.C.; Cobb, C.L.; Dasgupta, N.P.; Dixit, M.B.; Marbella, L.E.; McDowell, M.T.; Mukherjee, P.P.; Verma, A.; Viswanathan, V.; et al. Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Lett. 2020, 5, 922–934. [Google Scholar] [CrossRef]
- Lu, P.; Wu, D.; Chen, L.; Li, H.; Wu, F. Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochem. Energy Rev. 2022, 5, 3. [Google Scholar] [CrossRef]
- Chen, Y.T.; Duquesnoy, M.; Tan, D.H.S.; Doux, J.M.; Yang, H.; Deysher, G.; Ridley, P.; Franco, A.A.; Meng, Y.S.; Chen, Z. Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning. ACS Energ Lett. 2021, 6, 1639–1648. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, J.; Dong, S.; Yan, Y.; Jiang, F.; Cui, L.; Wang, Q.; Han, X.; Cui, G. Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton. Adv. Funct. Mater. 2021, 31, 2101523. [Google Scholar] [CrossRef]
- Zhu, G.L.; Zhao, C.Z.; Peng, H.J.; Yuan, H.; Hu, J.K.; Nan, H.X.; Lu, Y.; Liu, X.Y.; Huang, J.Q.; He, C.X.; et al. A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2021, 31, 2101985. [Google Scholar] [CrossRef]
- Ren, Y.; Cui, Z.; Bhargav, A.; He, J.; Manthiram, A. A Self-Healable Sulfide/Polymer Composite Electrolyte for Long-Life, Low-Lithium-Excess Lithium-Metal Batteries. Adv. Funct. Mater. 2021, 32, 2106680. [Google Scholar] [CrossRef]
- Park, S.H.; Ayyaswamy, A.; Gjerde, J.; Andrews, W.B.; Vishnugopi, B.S.; Drakopoulos, M.; Vo, N.T.; Zhong, Z.; Thornton, K.; Mukherjee, P.P.; et al. Filament-Induced Failure in Lithium-Reservoir-Free Solid-State Batteries. ACS Energy Lett. 2025, 10, 1174–1182. [Google Scholar] [CrossRef]
- Jiang, T.; He, P.; Liang, Y.; Fan, L.-Z. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chem. Eng. J. 2021, 421, 129965. [Google Scholar] [CrossRef]
- Minafra, N.; Culver, S.P.; Krauskopf, T.; Senyshyn, A.; Zeier, W.G. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 2018, 6, 645–651. [Google Scholar] [CrossRef]
- Ye, L.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nat. Vol. 2021, 593, 218–222. [Google Scholar] [CrossRef]
- Kim, J.; Eom, M.; Noh, S.; Shin, D. Performance optimization of all-solid-state lithium ion batteries using a Li2S-P2S5 solid electrolyte and LiCoO2 cathode. Electron. Mater. Lett. 2012, 8, 209–213. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. Challenges in speeding up solid-state battery development. Nat. Rev. Mater. 2025, 10, 1038. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; et al. Super Long-Cycling All-Solid-State Battery with Thin Li6PS5Cl-Based Electrolyte. Adv. Energy Mater. 2022, 12, 2200660. [Google Scholar] [CrossRef]
- Ye, Q.; Li, X.; Zhang, W.; Xia, Y.; He, X.; Huang, H.; Gan, Y.; Xia, X.; Zhang, J. Slurry-Coated LiNi0.8Co0.1Mn0.1O2–Li3InCl6 Composite Cathode with Enhanced Interfacial Stability for Sulfide-Based All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2023, 15, 18878–18888. [Google Scholar] [CrossRef]
- Xiao, Y.; Miara, L.J.; Wang, Y.; Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 2019, 3, 1252–1275. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design Principles for Solid-State Lithium Superionic Conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Zhong, T.; Wu, X.; Neyts, K. Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2024, 14, 2403602. [Google Scholar] [CrossRef]
- Yuan, H.; Tian, C.; Song, M.; Lin, W.; Huang, T.; Yu, A. Regulating and understanding the compatibility of sulfide composite solid-state electrolyte in nickel-rich lithium metal batteries. J. Power Sources 2024, 602, 234366. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Hama, S.; Hayashi, A.; Morimoto, H.; Minami, T. New Lithium Ion Conducting Glass-Ceramics Prepared from Mechanochemical Li2S–P2S5 Glasses. Solid State Ion. 2002, 154, 635–640. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Pank, K.S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid State Ion. 2006, 177, 2721–2725. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.; Huang, J.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.; Xu, R.; Zhao, C.; Hou, L.; et al. Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 2020, 5, 833–8433. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q. Elucidating the Kinetic Root of the Evolution of the Oriented Nanoporous Metal from Reduction-Induced Decomposition. Chem. Mater. 2021, 33, 2604–2610. [Google Scholar] [CrossRef]
- Nagao, M.; Hayashi, A.; Tatsumisago, M.; Kanetsuku, T.; Tsuda, T.; Kuwabata, S. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 2013, 15, 18600–18606. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308. [Google Scholar] [CrossRef]
- Grill, J.; Popovic-Neuber, J. Cation Conducting Binders: From Liquid to Solid-State Batteries. ACS Energy Lett. 2024, 9, 4465–4474. [Google Scholar] [CrossRef]
- Jung, S.-K.; Gwon, H.; Yoon, G.; Miara, L.J.; Lacivita, V.; Kim, J.-S. Pliable Lithium Superionic Conductor for All-Solid-State Batteries. ACS Energy Lett. 2021, 6, 2006–2015. [Google Scholar] [CrossRef]
- Huo, H.; Janek, J. Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Lett. 2022, 7, 4005–4016. [Google Scholar] [CrossRef]
- Panchal, A.A.; Pennebaker, T.N.T.; Sebti, E.; Li, Y.; Li, Y.; Clément, R.J.; Canepa, P. Compatibility of Halide Bilayer Separators for All-Solid-State Batteries. ACS Energy Lett. 2024, 9, 5935–5944. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Wang, C.; Yan, C.; Zhang, Q.; Nan, C.-W.; Fan, L.-Z. High Ionic Conductive, Mechanical Robust Sulfide Solid Electrolyte Films and Interface Design for All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2024, 34, 2315555. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Chen, X.; Liu, X.-R.; Liu, Y.; Liu, P.; Zha, H.; Qu, G.; Hong, C.; Li, J.; Jiang, Z. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 2024, 626, 523–528. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Y.; Anderson, A.; Lu, W.; Zhu, H. Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes. Adv. Mater. 2022, 34, 2200401. [Google Scholar] [CrossRef]
- Shi, J.; Ma, Z.H.; Han, K.; Wan, Q.; Wu, D.; Qu, X.; Li, P. Coupling novel Li7TaO6 surface buffering with bulk Ta-doping to achieve long-life sulfide-based all-solid-state lithium batteries. J. Mater. Chem. A 2022, 10, 21336–21348. [Google Scholar] [CrossRef]
- Wenzel, S.; Leichtweiss, T.; Kruger, D.; Sann, J.; Janek, J. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 2015, 278, 98–105. [Google Scholar] [CrossRef]
- Tseng, K.-T.; Lee, K.; Sakamoto, J. Enabling “Sodium-Metal-Free” Manufacturing of Solid-State Batteries. ACS Energy Lett. 2024, 9, 4544–4549. [Google Scholar] [CrossRef]
- Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification. Adv. Mater. 2006, 18, 2226–2229. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Ji, X.; Fu, J.; Feng, G. Progress on predicting the electrochemical stability window of electrolytes. Curr. Opin. Electrochem. 2022, 34, 101030. [Google Scholar] [CrossRef]
- Ye, Q.; Liang, H.; Wang, S.; Cui, C.; Zeng, C.; Zhai, T.; Li, H. Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. J. Energy Chem. 2022, 70, 356–362. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Z.; Leung, K.; Chen, L.; Lu, P.; Qi, Y. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 2016, 309, 221–230. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Yamamoto, K. Advanced Characterization Techniques for Sulfide-Based Solid-State Lithium Batteries. Adv. Energy Mater. 2023, 13, 2203883. [Google Scholar] [CrossRef]
- Qi, X.; Jin, X.; Xu, H.; Pan, Y.; Yang, F.; Zhu, Z.; Ji, J.; Jiang, R.; Du, H.; Ji, Y.; et al. Air-Stable Li2S Cathodes Enabled by an In Situ-Formed Li+ Conductor for Graphite-Li2S Pouch Cells. Adv. Mater. 2024, 36, 2310756. [Google Scholar] [CrossRef]
- Roh, J.; Kim, H.; Lee, H.; Bu, H.; Manjón-Sanz, A.; Kim, H.; Hong, S.-T. Unraveling Polymorphic Crystal Structures of Li4SiS4 for All-Solid-State Batteries: Enhanced Ionic Conductivity via Aliovalent Sb Substitution. Chem. Mater. 2024, 36, 6973–6984. [Google Scholar] [CrossRef]
- Hikima, K.; Kusaba, I.; Gamo, H.; Phuc, N.H.H.; Muto, H.; Matsuda, A. High Ionic Conductivity with Improved Lithium Stability of CaS- and CaI2- Doped Li7P3S11 Solid Electrolytes Synthesized by Liquid-Phase Synthesis. ACS Omega 2022, 7, 16561–16567. [Google Scholar] [CrossRef]
- Lu, P.; Xia, Y.; Sun, G.; Wu, D.; Wu, S.; Yan, W.; Zhu, X.; Lu, J.; Niu, Q.; Shi, S. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nat. Commun. 2023, 14, 4077. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, L.; Wu, Y.; He, Y.; Ren, D.; Song, Y.; Zhang, B.; Xu, H.; He, X. Uncovering the Effect of Solid Electrolyte Interphase on Ion Desolvation for Rational Interface Design in Li-Ion Batteries. Adv. Energy Mater. 2023, 13, 2300626. [Google Scholar] [CrossRef]
- Murayama, M.; Kanno, R.; Irie, M.; Ito, S.; Hata, T.; Sonoyama, N.; Kawamoto, Y. Synthesis of New Lithium Ionic Conductor Thio-LISICON—Lithium Silicon Sulfides System. J. Solid State Chem. 2002, 168, 140–148. [Google Scholar] [CrossRef]
- Ong, S.P.; Mo, Y.; Richards, W.D.; Miara, L.; Lee, H.S.; Ceder, G. Phase Stability, Electrochemical Stability and Ionic Conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) Family of Superionic Conductors. Energy Environ. Sci. 2013, 6, 148–156. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Zheng, X.; Zhao, W.; Wang, H.; Gu, J.; Cheng, Y.; Lin, Y.; Su, Y.; Ren, F.; et al. High Energy Sulfide-Based All-Solid-State Lithium Batteries Enabled by Single-Crystal Li-Rich Cathodes. ACS Energy Lett. 2024, 9, 5156–5165. [Google Scholar] [CrossRef]
- Hanghofer, I.; Brinek, M.; Eisbacher, S.L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H.M.R. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys. Chem. Chem. Phys. 2019, 21, 8489–8507. [Google Scholar] [CrossRef]
- Pecher, O.; Tong, S.; Goebel, T.; Nickel, V.; Weichert, K.; Reiner, C.; Deiseroth, H.-J.; Maier, J.; Haarmann, F.; Zahn, D. Atomistic Characterisation of Li+ Mobility and Conductivity in Li7−xPS6−xIx Argyrodites from Molecular Dynamics Simulations, Solid-State NMR, and Impedance Spectroscopy. Chem. Eur. J. 2010, 16, 8347–8354. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, H.; Zhang, H.; Zhao, D.; Huang, L.; Lee, J.Y. The beneficial effects of black phosphorous modification of the anode current collector in Li-metal free Li2S-based batteries. Mater. Today Energy 2022, 30, 101179. [Google Scholar] [CrossRef]
- Ma, Z.; Xue, H.; Guo, S. Recent achievements on sulfide-type solid electrolytes: Crystal structures and electrochemical performance. J. Mater. Sci. 2018, 53, 3927–3938. [Google Scholar] [CrossRef]
- Karabelli, D.; Birke, K.P.; Weeber, M. A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. J. Batter. 2021, 7, 18. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett. 2021, 21, 5233–5239. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; He, J.; Xu, D.; Hu, J.; Luo, Q.; Ouyang, Y.; Wan, C. Mechanical and thermal behavior of PBAT matrix composites filled with lignin. J. Polym. Res. 2025, 32, 56. [Google Scholar] [CrossRef]
- Qian, X.; Lyu, Y.; Zhou, S.; Qiu, Y.; Sun, Y.; Yuan, Y.; Shao, M. Enhancing Long Stability of Solid-State Batteries Through High-Energy Ball Milling-Induced Decomposition of Sulfide-Based Electrolyte to Sulfur. Adv. Mater. 2024, 36, 2412319. [Google Scholar] [CrossRef] [PubMed]
- Lyu, N.; Sun, Z.; Hu, Y.; Li, B.; Jing, S.; Zhang, Z.; Jiang, L.; Jia, M.; Liu, F. Preparation and properties of sulfide solid state electrolyte Li6PS5Cl by ball milling-solid phase sintering. J. Mater. Eng. 2022, 50, 103–110. [Google Scholar]
- Serbessa, G.G.; Nikodimos, Y.; Taklu, B.W.; Merso, S.K.; Muche, Z.B.; Dandena, B.D.; Vallal, S.A.; Yeh, T.-I.; Valencia, F.; Hung, Y.-F.; et al. Stabilizing the interface between Li6PS5Cl argyrodite sulfide solid electrolyte and Li via in situ formed LiF-Li3Bi lithiophobic-lithiophilic bifunctional layer. J. Energy Storage Mater. 2025, 73, 104103. [Google Scholar] [CrossRef]
- Salam, S.A.; George, C.S.; Al Abdulsalam, N.K.; Abdel-Moneim, A.M.; Essawy, A.E. Ginkgo biloba attenuates complete Freund’s adjuvant-induced inflammatory pain by suppressing the NF-κB-CXCL1/CXCR2 signaling cascade in the rat spinal cord. J. Redox Rep. 2025, 30, 2447778. [Google Scholar] [CrossRef]
- Liu, S.; Tian, G.; Chen, J.; Zhang, X.; Wu, A.; Li, M.; Sun, Y.; Liu, B.; Xing, Y.; Shang, H. Traditional Chinese Medicine for Bradyarrhythmia: Evidence and Potential Mechanisms. Front Pharmacol. 2018, 9, 324. [Google Scholar] [CrossRef]
- Shao, Z.; Zhou, W.; Zhu, Z. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. J. Prog. Mater. Sci. 2012, 57, 804–874. [Google Scholar] [CrossRef]
- Miller, J.E.; Allendorf, M.D.; Diver, R.B.; Evans, L.R.; Siegel, N.P.; Stuecker, J.N. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J. Mater. Sci. 2008, 43, 4714–4728. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. J. Adv. Mater. 2011, 23, 1044–1060. [Google Scholar] [CrossRef]
- Bayer, E.; Mutter, M. Liquid phase synthesis of peptides. J. Nat. 1972, 237, 512–513. [Google Scholar] [CrossRef]
- Miao, W.; Chan, T. Ionic-liquid-supported synthesis: A novel liquid-phase strategy for organic synthesis. Acc. Chem. Res. 2006, 39, 897–908. [Google Scholar] [CrossRef]
- Wang, M.; Chen, M.; Xu, G.; Wu, S. Photoinduced Reversible Solid-to-liquid Transitions of Azopolymers. Chemistry 2020, 83, 600–609. [Google Scholar]
- Calpa, M.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K. Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. J. RSC Adv. 2017, 7, 46499–46504. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater. 2021, 33, 2000751. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, J.; He, C.; Fu, Y.; Zhou, T.; Li, X.; Kang, S.; Tan, L.; Jiao, Q.; Dai, S.; et al. Unveiling the Growth Mechanism of the Interphase between Lithium Metal and Li2S-P2S5-B2S3 Solid-State Electrolytes. Adv. Energy Mater. 2023, 13, 2204386. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Chen, X.; Wei, Y.; Yu, H.; Zhang, J.; Zheng, C. Plasma-Liquid-Induced Synthesis of Scandium-Metalloporphyrin Frameworks for Boosted Sensing and Photosensitization. Adv. Mater. 2025, 37, 2412071. [Google Scholar] [CrossRef]
- Oh, D.Y.; Nam, Y.J.; Park, K.H.; Jung, S.H.; Kim, K.T.; Ha, A.R.; Jung, Y.S. Slurry-Fabricable Li+-Conductive Polymeric Binders for Practical All-Solid-State Lithium-Ion Batteries Enabled by Solvate Ionic Liquids. Adv. Energy Mater. 2019, 9, 1802927. [Google Scholar] [CrossRef]
- Lee, K.L.; Lee, J.U.; Choi, S.H.; Char, K.; Choi, J.W. Thiol-Ene Click Reaction for Fine Polarity Tuning of Polymeric Binders in Solution-Processed All-Solid-State Batteries. ACS Energy Lett. 2019, 4, 94–101. [Google Scholar] [CrossRef]
- Cho, W.; Park, J.; Kim, K.; Yu, J.-S.; Jeong, G. Sulfide-Compatible Conductive and Adhesive Glue-Like Interphase Engineering for Sheet-Type All-Solid-State Battery. Small 2021, 17, 1902138. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Zeng, F.L.; Zhou, X.Y.; Wang, A.; Wang, W.; Yuan, N.; Ding, J. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries. J. Energy Chem. 2020, 48, 267–276. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Xu, J.; Wu, J.; Yin, X.; Chen, S.; Zhu, Z.; Wang, L.; Li, Z. Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. J. Membr. Sci. 2020, 597, 117622. [Google Scholar] [CrossRef]
- Li, M.; Frerichs, J.E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C.J.; Hwang, B.J.; Hansen, M.R.; Bieker, P. Solid-State Lithium-Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode. Adv. Funct. Mater. 2020, 30, 1910123. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B.; et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499. [Google Scholar] [CrossRef]
- Yan, W.; Wu, F.; Li, H.; Chen, L. Application of Si-based anodes in sulfide solid-state batteries. J. Energy Storage Sci. Technol. 2021, 10, 821–835. [Google Scholar]
- Li, H.; Lin, Q.; Wang, J.; Hu, L.; Chen, F.; Zhang, Z.; Ma, C. A Cost-Effective Sulfide Solid Electrolyte Li7P3S7.5O3.5 with Low Density and Excellent Anode Compatibility. Angew. Chem. Int. Ed. 2024, 63, e202407892. [Google Scholar] [CrossRef]
- Shao, B.; Das, R.; Huang, Y.; Deng, R.; Seelman, S.; Han, F. Structural evolution during solution-based synthesis of Li7P3S11 solid electrolyte by synchrotron X-ray total scattering. J. Mater. Chem. A 2023, 11, 17035–17044. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, X.; Shang, W.; Fu, K.; Li, X.; Zhang, Z.; Gong, L.; Tan, P. Unveiling the Interplay Between Silicon and Graphite in Composite Anodes for Lithium-Ion Batteries. Small 2024, 20, 2405674. [Google Scholar] [CrossRef]
- Ma, R.; Chang, L.; Ye, S.; Xie, H.; Xiao, Q.; Zhang, L.; Si, J.; Yu, P. Magnetic properties of soft magnetic composites fabricated from amorphous Fe73Si11B11C3Cr2 powder by hot pressing under a low pressure. Powder Technol. 2023, 426, 118639. [Google Scholar] [CrossRef]
- Nikodimos, Y.; Huang, C.-J.; Taklu, B.W.; Su, W.-N.; Hwang, B.J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci. 2022, 15, 991–1033. [Google Scholar] [CrossRef]
- Hirano, M.; Inagaki, M.; Mizutani, Y.; Nomura, K.; Kawai, M.; Nakamura, Y. Mechanical and electrical properties of Sc2O3-doped zirconia ceramics improved by postsintering with HIP. Solid State Ion. 2000, 133, 1–9. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.; Lai, C.; Zhao, R.; Li, Y.; Zhou, Y.; Huang, Y.; Zhu, L.; Feng, W.; Wang, W.; et al. Comparative study on self-discharge rate of new CF x lithium primary batteries and recommendations for their use. Energy Storage Sci. Technol. 2024, 13, 3742–3753. [Google Scholar]
- Cao, D.; Zhao, Y.; Sun, X.; Natan, A.; Wang, Y.; Xiang, P.; Wang, W.; Zhu, H. Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond. ACS Energy Lett. 2020, 5, 3468–3489. [Google Scholar] [CrossRef]
- Song, Y.B.; Baeck, K.H.; Kwak, H.; Lim, H.; Jung, Y.S. Dimensional Strategies for Bridging the Research Gap between Lab-Scale and Potentially Practical All-Solid-State Batteries: The Role of Sulfide Solid Electrolyte Films. Adv. Energy Mater. 2023, 13, 2301142. [Google Scholar] [CrossRef]
- Pei, F.; Huang, Y.; Wu, L.; Zhou, S.; Kang, Q.; Lin, W.; Liao, Y.; Zhang, Y.; Huang, K.; Shen, Y.; et al. Multisite Crosslinked Poly(ether-urethane)-Based Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries. Adv. Mater. 2024, 36, 2409269. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, K.; Zhao, W.; Hu, Z.; Li, S.; Zhong, Y.; Yang, R.; Wang, X.; Wang, J.; Wu, C.; et al. Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries. Energy Mater Adv. 2023, 4, 0022. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Z.; Zhai, G.; Zhang, X.; Zhuang, X. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries. Energy Storage Sci. Technol. 2023, 12, 2412–2423. [Google Scholar]
- Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 2020, 11, 5889. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, S.; Liu, T.; Li, D.; Ci, L. Long cycle life all-solid-state batteries enabled by solvent-free approach for sulfide solid electrolyte and cathode films. Chem. Eng. J. 2023, 455, 140605. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials-Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef]
- Gao, B.; Jalem, R.; Ma, Y.; Tateyama, Y. Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chem. Mater. 2020, 32, 85–96. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Unraveling the Intra and Intercycle Interfacial Evolution of Li6PS5Cl-Based All-Solid-State Lithium Batteries. Adv. Energy Mater. 2020, 10, 1903311. [Google Scholar] [CrossRef]
- Yang, X.; Yin, Q.; Wang, C.; Doyle-Davis, K.; Sun, X.; Li, X. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Prog. Mater. Sci. 2023, 140, 101193. [Google Scholar] [CrossRef]
- Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. Chem. Mater. 2014, 26, 4248–4255. [Google Scholar] [CrossRef]
- Gao, B.; Jalem, R.; Tateyama, Y. First-Principles Study of Microscopic Electrochemistry at the LiCoO2 Cathode/LiNbO3 Coating/β-Li3PS4 Solid Electrolyte Interfaces in an All-Solid-State Battery. ACS Appl. Mater. Interfaces 2021, 13, 11765–11773. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Ohno, T.; Ohta, N.; Ohnishi, T.; Tanaka, Y. Positive and Negative Aspects of Interfaces in Solid-State Batteries. ACS Energy Lett. 2018, 3, 98–103. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Song, D.; Zhang, H.; Shi, X.; Wang, Z.; Zhang, L.; Zhu, L. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 2020, 40, 39–45. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693. [Google Scholar] [CrossRef]
- Wang, C.; Hwang, S.; Jiang, M.; Liang, J.; Sun, Y.; Adair, K.; Zheng, M.; Mukherjee, S.; Li, X.; Li, R.; et al. Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfide-Based All-Solid-State Batteries. Adv. Energy Mater. 2021, 11, 2100210. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Weng, S.; Wu, S.; Liu, Q.; Cao, M.; Li, Y.; Wang, Z.; Zhu, L.; Xiao, R.; et al. Spontaneous gas-solid reaction on sulfide electrolytes for high-performance all-solid-state batteries. Energy Environ. Sci. 2023, 16, 1091–1099. [Google Scholar] [CrossRef]
- Sakuda, A.; Hayashi, A.; Tatsumisago, M. Interfacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chem. Mater. 2010, 22, 949–956. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S.L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Designing Cathodes and Cathode Active Materials for Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201425. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266. [Google Scholar] [CrossRef]
- Dietrich, C.; Weber, D.A.; Culver, S.; Senyshyn, A.; Sedlmaier, S.J.; Indris, S.; Janek, J.; Zeier, W.G. Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6. Inorg. Chem. 2017, 56, 6681–6687. [Google Scholar] [CrossRef]
- Lu, T.; Meng, S.; Liu, M. Electrochemically and chemically stable electrolyte-electrode interfaces for lithium iron phosphate all-solid-state batteries with sulfide electrolytes. J. Mater. Chem. A 2024, 12, 3954–3966. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J. An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries. ETransportation 2021, 7, 100105. [Google Scholar] [CrossRef]
- Porz, L.; Swamy, T.; Sheldon, B.W.; Rettenwander, D.; Frömling, T.; Thaman, H.L.; Berendts, S.; Uecker, R.; Carter, W.C.; Chiang, Y.M. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017, 7, 1701003. [Google Scholar] [CrossRef]
- Swamy, T.; Park, R.; Sheldon, B.W.; Rettenwander, D.; Porz, L.; Berendts, S.; Uecker, R.; Carter, W.C.; Chiang, Y.M. Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet. J. Electrochem. Soc. 2018, 165, A3648. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.Z.; Hu, J.K.; Sun, S.; Yuan, H.; Fu, Z.H.; Chen, X.; Huang, J.Q.; Ouyang, M.; Zhang, Q. The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 2022, 8, add0510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, W.; Zhang, L.; Fang, W.; Ruan, Q.; Li, J.; Zhang, F.; Zhang, H.; Quan, T.; Zhang, S. Electrode/electrolyte interphases in high-temperature batteries: A review. Energy Environ. Sci. 2023, 16, 2825–2855. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5, 74–96. [Google Scholar] [CrossRef]
- Larink, D.; Eckert, H.; Martin, S.W. Structure and Ionic Conductivity in the Mixed-Network Former Chalcogenide Glass System [Na2S]2/3[(B2S3)x(P2S5)1-x]1/3. J. Phys. Chem. C 2012, 116, 22698–22710. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619. [Google Scholar] [CrossRef]
- Kaup, K.; Bazak, J.D.; Vajargah, S.H.; Wu, X.; Kulisch, J.; Goward, G.R.; Nazar, L.F. A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity. Adv. Energy Mater. 2020, 10, 1902783. [Google Scholar] [CrossRef]
- See, K.A.; Wu, H.-L.; Lau, K.C.; Shin, M.; Cheng, L.; Balasubramanian, M.; Gallagher, K.G.; Curtiss, L.A.; Gewirth, A.A. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. ACS Appl. Mater. Interfaces 2016, 8, 34360–34371. [Google Scholar] [CrossRef]
- Feng, X.; Chien, P.-H.; Patel, S.; Zheng, J.; Immediato-Scuotto, M.; Xin, Y.; Hung, I.; Gan, Z.; Hu, Y.-Y. Synthesis and Characterizations of Highly Conductive and Stable Electrolyte Li10P3S12I. Energy Storage Mater. 2019, 22, 397–401. [Google Scholar] [CrossRef]
- Liu, M.; Hong, J.J.; Sebti, E.; Zhou, K.; Wang, S.; Feng, S.; Pennebaker, T.; Hui, Z.; Miao, Q.; Lu, E.; et al. Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air. Nat. Commun. 2025, 16, 213. [Google Scholar] [CrossRef]
- Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011, 182, 116–119. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Wu, D.; Wei, H.; Guo, Y.; Chen, H.; Li, Z.; Wang, L.; Xiong, C.; Meng, Q.; et al. High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li2S-S8 Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries. Adv. Sci. 2022, 9, 2200840. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, C.; Duan, Y.; Zhao, X.; Wang, J.; Sun, X. Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility. Energy Environ. Mater. 2024, 7, e12753. [Google Scholar] [CrossRef]
- Yu, N.; Huang, C.; Liu, H.; Liang, Y.; Fan, L.-Z. A High Air-Stability and Li-Metal-Compatible Li3+2xP1-xBixS4−1.5xO1.5x Sulfide Electrolyte for All-Solid-State Li–Metal Batteries. Adv. Funct. Mater. 2022, 32, 2205998. [Google Scholar]
- Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J. Solid State Electrochem. 2013, 17, 2551–2557. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Q.; Nazar, L.F. Li-rich and halide-deficient argyrodite fast ion conductors. Chem. Mater. 2022, 34, 9634–9643. [Google Scholar] [CrossRef]
- Kraft, M.A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S.P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B.J.; Zeier, W.G. Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1-xGexS5I for All-Solid-State Batteries. J. Am. Chem. Soc. 2018, 140, 16330–16339. [Google Scholar] [CrossRef]
- Xu, R.; Xia, X.; Wang, X.; Xia, Y.; Tu, J. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 2829–2834. [Google Scholar] [CrossRef]
- Xie, D.; Chen, S.; Zhang, Z.; Ren, J.; Yao, L.; Wu, L.; Yao, X.; Xu, X. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 2018, 389, 140–147. [Google Scholar] [CrossRef]
- Bai, W.; Gao, J.; Li, K.; Wang, G.; Zhou, T.; Li, P.; Qin, S.; Zhang, G.; Guo, Z.; Xiao, C.; et al. Natural Soft/Rigid Superlattices as Anodes for High-Performance Lithium-Ion Batteries. Angew. Chem. 2020, 59, 17494–17498. [Google Scholar] [CrossRef]
- Gautam, A.; Sadowski, M.; Ghidiu, M.; Minafra, N.; Senyshyn, A.; Albe, K.; Zeier, W.G. Engineering the Site-Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br. Adv. Energy Mater. 2020, 11, 2003369. [Google Scholar] [CrossRef]
- Paul, P.P.; Chen, B.R.; Langevin, S.A.; Dufek, E.J.; Weker, J.N.; Ko, J.S. Interfaces in all solid-state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. Energy Storage Mater. 2022, 45, 969–1001. [Google Scholar] [CrossRef]
- Lee, K.-J.; Byeon, Y.-W.; Lee, H.-J.; Lee, Y.; Park, S.; Kim, H.-R.; Kim, H.-K.K.; Oh, S.J.; Ahn, J.-P. Revealing crack-healing mechanism of NCM composite cathode for sustainable cyclability of sulfide-based solid-state batteries. Energy Storage Mater. 2023, 57, 326–333. [Google Scholar] [CrossRef]
- Gu, J.; Zhong, H.; Chen, Z.; Shi, J.; Gong, Z.; Yang, Y. Advances in sulfide-based all-solid-state lithium-sulfur battery: Materials, composite electrodes and electrochemo-mechanical effects. Chem. Eng. J. 2023, 454, 139923. [Google Scholar] [CrossRef]
- Jiang, Z.; Peng, H.; Liu, Y.; Li, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. A Versatile Li6.5In0.25P0.75S5I Sulfide Electrolyte Triggered by Ultimate-Energy Mechanical Alloying for All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2021, 11, 2101521. [Google Scholar] [CrossRef]
- Wang, J.; Yang, K.; Sun, S.; Ma, Q.; Yi, G.; Chen, X.; Wang, Z.; Yan, W.; Liu, X.; Cai, Q.; et al. Advances in thermal-related analysis techniques for solid-state lithium batteries. J. InfoMat. 2023, 5, e12401. [Google Scholar] [CrossRef]
- Gao, J.; Kedir, N.; Kirk, C.D.; Hernandez, J.; Wang, J.; Paulson, S.; Zhai, X.; Horn, T.; Kim, G.; Gao, J.; et al. Real-time damage characterization for GFRCs using high-speed synchrotron X-ray phase contrast imaging. J. Compos. Part B Eng. 2021, 207, 108565. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Li, H.; Wu, F. Solid-state lithium batteries: From fundamental research to industrial progress. Prog. Mater. Sci. 2023, 139, 101182. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, Y.; Jeong, W.J.; Chen, T.; Lu, M.; Nelson, D.L.; Alsaç, E.P.; Yoon, S.G.; Cavallaro, K.A.; Das, S.; et al. The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries. Nat. Mater. 2025, 1–10. [Google Scholar] [CrossRef]
- Lu, T.; Chen, X.; Wang, H.; Zhang, L.; Zhou, Y. Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope. J. Polym. Test. 2020, 91, 106730. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-state lithium batteries: Safety and prospects. EScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Zhang, Q.; Yan, L.; Wang, T.-B.; Hou, P.-Y. A review of interfaces within solid-state electrolytes: Fundamentals, issues and advancements. J. Chem. Eng. J. 2022, 437, 135179. [Google Scholar] [CrossRef]
- McCue, I.; Karma, A.; Erlebacher, J. Pattern formation during electrochemical and liquid metal dealloying. MRS Bull. 2018, 43, 27–34. [Google Scholar] [CrossRef]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Ann. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, G.; Liu, P.; Chen, Q. Monolithic nanoporous Zn anode for rechargeable alkaline batteries. ACS Nano 2020, 14, 2404–2411. [Google Scholar] [CrossRef]
- McDowell, M.T.; Lee, S.W.; Nix, W.D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, K.; Fan, Y.; Zhao, L.; Cheng, Z.X.; Yu, P.; Peng, J.; Wan, M. Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies. Molecules 2024, 29, 3624. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiong, X.; Peng, J.; Wu, W.; Fan, W.; Yang, H.; Wang, T.; Ma, Y.; Wang, F.; Wu, Y. Tailored Engineering on the Interface Between Lithium Metal Anode and Solid-State Electrolytes. Energy Environ. Mater. 2025, 8, e12831. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, S.; He, X.; Zhou, H.; Ning, J.; Li, H.; Wang, K.; Jiang, K. Low-temperature, high cycling stability, and high Coulombic efficiency liquid metal batteries enabled by lithium halide-potassium halide molten salt electrolytes. Energy Storage Mater. 2023, 61, 102889. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Bai, Z.; Lu, J.; Wu, T. Sulfide-Based All-Solid-State Lithium-Sulfur Batteries: Challenges and Perspectives. Nano-Micro Lett. 2023, 15, 75. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Matios, E.; Wang, H.; Wang, C.; Li, W. Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. Ind. Eng. Chem. Res. 2019, 58, 9758–9780. [Google Scholar] [CrossRef]
- Leng, J.; Liang, H.; Wang, H.; Xiao, Z.; Wang, S.; Zhang, Z.; Tang, Z. A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy 2022, 101, 107603. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; Zhang, M.; Liu, B.; Zhang, C. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse. Energy 2023, 263, 126027. [Google Scholar] [CrossRef]
- Schmidt, C.P.; Sinzig, S.; Gravemeier, V.; Wall, W.A. A three-dimensional finite element formulation coupling electrochemistry and solid mechanics on resolved microstructures of all-solid-state lithium-ion batteries. Comput. Methods Appl. Mech. Eng. 2023, 417, 116468. [Google Scholar] [CrossRef]
- Zou, X.; Ma, C.; Xu, T.; Li, R.; Wang, H.; Chen, F. Evolution mechanism and response strategy of interface mechanics in all solid-state lithium metal batteries. J. Energy Storage 2023, 74, 109483. [Google Scholar] [CrossRef]
- Sun, Q.; Zeng, G.; Xu, X.; Li, J.; Biendicho, J.J.; Wang, S.; Tian, Y.; Ci, L.; Cabot, A. Are Sulfide-Based Solid-State Electrolytes the Best Pair for Si Anodes in Li-Ion Batteries? Adv. Energy Mater. 2024, 14, 2470176. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Zhang, Q.; Zhang, Z.; Li, J.; Liu, M.; Li, H.; Chen, L.; Wu, F. Industrialization challenges for sulfide-based all solid state battery. eTransportation 2024, 22, 100371. [Google Scholar] [CrossRef]
- Yu, P.; Ahmad, N.; Yang, J.; Zeng, C.; Liang, X.; Huang, W.; Ni, M.; Mao, P.; Yang, W. Dual-doping for enhancing chemical stability of functional anionic units in sulfide for high-performance all-solid-state lithium batteries. J. Energy Chem. 2023, 86, 382–390. [Google Scholar] [CrossRef]
- Zeng, D.; Yao, J.; Zhang, L.; Xu, R.; Wang, S.; Yan, X.; Yu, C.; Wang, L. Promoting Favorable Interfacial Properties in Lithium-Based Batteries Using Chlorine-Rich Sulfide Inorganic Solid-State Electrolytes. Nat. Commun. 2022, 13, 1909. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, X.; Wang, L.; Lu, J.; Wu, T. Insights into interfacial physiochemistry in sulfide solid-state batteries: A review. Mater. Chem. Front. 2023, 7, 4810–4832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, B.; Zeng, Y.; Liu, Q.; Chen, Y.; Li, X.; Luo, W.; Zhang, Z.; He, C.; Jie, M.; Liu, S. A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges. Crystals 2025, 15, 492. https://doi.org/10.3390/cryst15060492
Man B, Zeng Y, Liu Q, Chen Y, Li X, Luo W, Zhang Z, He C, Jie M, Liu S. A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges. Crystals. 2025; 15(6):492. https://doi.org/10.3390/cryst15060492
Chicago/Turabian StyleMan, Bin, Yulong Zeng, Qingrui Liu, Yinwen Chen, Xin Li, Wenjing Luo, Zikang Zhang, Changliang He, Min Jie, and Sijie Liu. 2025. "A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges" Crystals 15, no. 6: 492. https://doi.org/10.3390/cryst15060492
APA StyleMan, B., Zeng, Y., Liu, Q., Chen, Y., Li, X., Luo, W., Zhang, Z., He, C., Jie, M., & Liu, S. (2025). A Comprehensive Review of Sulfide Solid-State Electrolytes: Properties, Synthesis, Applications, and Challenges. Crystals, 15(6), 492. https://doi.org/10.3390/cryst15060492