Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = sulfate weathering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 2134 KiB  
Article
Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties
by Patrícia Gomes, Teresa Valente and Eric Font
Minerals 2025, 15(8), 786; https://doi.org/10.3390/min15080786 - 26 Jul 2025
Viewed by 245
Abstract
Acid mine drainage, a consequence of exposure of sulfide mining waste to weathering processes, results in significant water, sediment, and soil contamination. This contamination results in acidophilic ecosystems, with low pH values and elevated concentrations of sulfate and potentially toxic elements. The São [...] Read more.
Acid mine drainage, a consequence of exposure of sulfide mining waste to weathering processes, results in significant water, sediment, and soil contamination. This contamination results in acidophilic ecosystems, with low pH values and elevated concentrations of sulfate and potentially toxic elements. The São Domingos mine, an abandoned site in the Iberian Pyrite Belt, lacks remediation measures and has numerous waste dumps, which are a major source of contamination to local water systems. Therefore, this study examines sediment accumulation in five mine dams along the São Domingos stream that traverses the entire mine complex. Decades of sediment and waste transport since mine closure have resulted in dam-clogging processes. The geochemical, mineralogical, and magnetic properties of the sediments were analyzed to evaluate the mineralogical controls on the mobilization of potentially toxic elements. The sediments are dominated by iron oxides, oxyhydroxides, and hydroxysulfates, with jarosite playing a key role in binding high concentrations of iron and toxic elements. However, no considerable correlation was found between potentially toxic elements and magnetic parameters, highlighting the complex behavior of these contaminants in acid mine drainage-affected systems. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 293
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 327
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 765
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

14 pages, 1726 KiB  
Article
An Ammonite Preserved in the Upper Pliocene Lower Tejo River Deposits of Quinta Do Conde (Southwest Portugal)
by Carlos Neto de Carvalho, Miguel Barroso and Sofia Soares
Foss. Stud. 2025, 3(2), 8; https://doi.org/10.3390/fossils3020008 - 3 Jun 2025
Viewed by 1572
Abstract
A cast is an object that results from a fossilization process that is considerably rare in nature. For a cast to be produced, secondary diagenetic processes during and after fossilization are normally involved. Natural casts are formed when minerals are deposited within the [...] Read more.
A cast is an object that results from a fossilization process that is considerably rare in nature. For a cast to be produced, secondary diagenetic processes during and after fossilization are normally involved. Natural casts are formed when minerals are deposited within the fossil mold. Here we describe an exceptional example of the natural cast by gypsum of an ammonite presumably preserved as a limestone-made “half” mold that had previously been transported as an extraclast, deposited and dissolved within Upper Pliocene quartz sandstones of the ancestral Tejo river. Portable X-ray fluorescence was used to analyze and compare the geochemical composition of the ammonite fossil with that of the nodules found within the same bed, reflecting different diagenetic timings. The composition of the ammonite cast reflects the in situ dissolution of limestone and the precipitation of calcium sulfate. High δ34S‰ and Sr values obtained from the ammonite show that the cast was produced by percolating acidic waters in the vadose zone, under marine influence, during the Late Pliocene or already in the Pleistocene. The waters being rich in sulfur resulted more likely from a marine water-influenced water table. Alternatively, it may have resulted from the weathering concentration of sulfur from the Marco Furado ferricretes overlying Santa Marta sandstone. This is, so far, the only testimony of the enormous temporal discontinuity that occurred during the taphonomic history of an ammonite, with a final preservation in the form of a cast made of gypsum, the most didactic example of this type of fossilization ever found in Portugal. Full article
(This article belongs to the Special Issue Continuities and Discontinuities of the Fossil Record)
Show Figures

Figure 1

28 pages, 59439 KiB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Viewed by 521
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 2087 KiB  
Article
Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
by Yu Qu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An and Fanyeqi Yang
Atmosphere 2025, 16(6), 656; https://doi.org/10.3390/atmos16060656 - 29 May 2025
Viewed by 550
Abstract
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results [...] Read more.
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results showed that five trace elements (Mn, Cu, As, Zn and Pb) had high enrichment in PM10 and were closely related with anthropogenic combustion and vehicle emissions; organic and element carbon had a high correlation due to the same primary sources and similar evolution; nitrate dominated SNA (sulfate, nitrate, ammonium) and nitrate/sulfate ratios reached 2.35 on the polluted days owing to the significant contribution of motor vehicle emissions. Positive matrix factorization analysis indicated that secondary source, traffic, biomass burning, industry, coal combustion and crustal dust were the main sources of PM10, contributing 32.5%, 20.9%, 15.0%, 13.9%, 9.4% and 8.3%, respectively; backward trajectories and potential source contribution function analysis showed that short-distance airflow was the dominant cluster and accounted for nearly 50% of total trajectories. The Weather Research and Forecasting model with Chemistry, with integrated process rate analysis, showed that dominant gas-phase reactions (heterogeneous reaction) during daytime (nighttime) in presence of ammonia led to a significant enhancement of nitrate in Zhuozhou, contributing 12.6 μg/m3 in episode 1 and 22.9 μg/m3 in episode 2. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

18 pages, 2870 KiB  
Article
Preparation and Properties of Environmentally Friendly Carboxyl Graphene Oxide/Silicone Coatings
by Zhenhua Chu, Jiahao Lu, Wan Tang, Yuchen Xu, Quantong Jiang and Jingxiang Xu
Materials 2025, 18(9), 2122; https://doi.org/10.3390/ma18092122 - 5 May 2025
Viewed by 435
Abstract
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix [...] Read more.
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix via mechanical blending, the microstructure, corrosion resistance, and long-term corrosion kinetics of the coatings were systematically investigated. The results demonstrate that the coating with 0.15 wt.% CGO (designated as KCG15) exhibited optimal comprehensive performance: its corrosion current density (Icorr = 4.37 × 10−8 A/cm2) was two orders of magnitude lower than that of the pure resin coating, while its low-frequency impedance modulus (∣Z0.1Hz = 4.99 × 106 Ω⋅cm2) is significantly enhanced, accompanied by improved surface compactness. The coating achieved a 97% inhibition rate against sulfate-reducing bacteria (SRB) through synergistic physical disruption and electrostatic repulsion mechanisms. Long-term corrosion kinetics analysis via 60-day seawater immersion identified three degradation phases—permeation (0–1 day), blockage (1–4 days), and failure (7–60 days)—with structural evolution from microcrack networks to foam-like blistering ultimately reducing by 97.8%. Furthermore, a 180-day atmospheric exposure test confirms the superior weatherability and adhesion of the KCG15 coating, with only minor discoloration observed due to its hydrophobic surface. This work provides theoretical and technical foundations for developing marine anti-corrosion coatings that synergize environmental sustainability with long-term protective performance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

23 pages, 8252 KiB  
Article
Analysis of Rammed Earth Wall Erosion in Traditional Village Dwellings in Zhuhai City
by Yanjun Wang, Junxin Song, Jiahao Zhang, Yue Huang and Shuai Yang
Coatings 2025, 15(5), 526; https://doi.org/10.3390/coatings15050526 - 28 Apr 2025
Viewed by 661
Abstract
(1) Background: this article focuses on the durability decline problem of rammed earth buildings in Paishan Village, Zhuhai City under the influence of complex environments. It aims to reveal the erosion mechanisms of rammed earth walls caused by different environmental factors (acid rain, [...] Read more.
(1) Background: this article focuses on the durability decline problem of rammed earth buildings in Paishan Village, Zhuhai City under the influence of complex environments. It aims to reveal the erosion mechanisms of rammed earth walls caused by different environmental factors (acid rain, salt spray, humidity, biological activities, etc.), and provide a scientific basis for formulating targeted remediation strategies. (2) Methods: a technical framework combining macroscopic investigation and microscopic analysis was adopted. Ion chromatography, scanning electron microscopy (SEM), and characterization (XRD) were used to study the damage to buildings in Paishan Village under the influence of different environmental factors. (3) Results: The acid rain and sulfate buildup could cause cracks and peeling on the south wall of the rammed earth wall. Salt spray and high humidity conditions exacerbated surface weathering on the west wall. Vibrant biological activity and high humidity made the north wall’s minerals easily dissolve, leaving the structure loose. The east wall was affected by the changing dynamics of carbonate rocks, which made it more vulnerable to weathering. (4) Conclusion: according to the analysis of different walls, specific steps should be taken during future restoration to improve the durability of rammed-earth buildings. Full article
Show Figures

Graphical abstract

23 pages, 7707 KiB  
Article
Unraveling Aerosol and Low-Level Cloud Interactions Under Multi-Factor Constraints at the Semi-Arid Climate and Environment Observatory of Lanzhou University
by Qinghao Li, Jinming Ge, Yize Li, Qingyu Mu, Nan Peng, Jing Su, Bo Wang, Chi Zhang and Bochun Liu
Remote Sens. 2025, 17(9), 1533; https://doi.org/10.3390/rs17091533 - 25 Apr 2025
Viewed by 430
Abstract
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for [...] Read more.
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for Research and Applications Version 2, and European Centre for Medium-Range Weather Forecasts Reanalysis v5 to evaluate aerosol’s effects on low-level clouds under the constrains of meteorological conditions and liquid water path (LWP) over the Semi-Arid Climate and Environment Observatory of Lanzhou University during 2014–2019. To better constrain meteorological variability, we apply Principal Component Analysis to derive the first principal component (PC1), which strongly correlates with cloud properties, thereby enabling more accurate assessment of aerosol–cloud interaction (ACI) under constrained meteorological conditions delineated by PC1. Analysis suggests that under favorable meteorological conditions for low-level cloud formation (low PC1) and moderate LWP levels (25–150 g/m2), ACI is characterized by a significantly negative ACI index, with the cloud effective radius (CER) increasing in response to rising aerosol concentrations. When constrained by both PC1 and LWP, the relationship between CER and the aerosol optical depth shows a distinct bifurcation into positive and negative correlations. Different aerosol types show contrasting effects: dust aerosols increase CER under favorable meteorological conditions, whereas sulfate, organic carbon, and black carbon aerosols consistently decrease it, even under high-LWP conditions. Full article
Show Figures

Figure 1

23 pages, 4214 KiB  
Article
The Impacts of Ethanol and Freeze–Thaw Cycling on Arsenic Mobility in a Contaminated Boreal Wetland
by Joseph Radford, Kimber E. Munford, Nadia Mykytczuk and Susan Glasauer
Soil Syst. 2025, 9(2), 37; https://doi.org/10.3390/soilsystems9020037 - 21 Apr 2025
Viewed by 509
Abstract
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation [...] Read more.
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation and release of organic matter and accelerated mineral weathering. In boreal zones, wetlands are common recipients of mine-waste run-off, and microbial processes in wetland soil may promote the retention of mobilized elements, such as arsenic. We investigated the impacts of freeze–thaw cycling and ethanol amendment on soil from an arsenic-contaminated wetland in anoxic microcosms. Ethanol-amended microcosms exhibited enhanced microbial sulfate reduction, leading to sulfide precipitation and increased retention of arsenic in the soil. Sequential extraction studies indicated a shift of arsenic into more stable sulfide-bound fractions. The addition of ethanol significantly increased the growth of Geobacter spp. and other select sulfate-reducing bacteria. Freeze–thaw cycling increased dissolved arsenic over short time periods only and had no detectable impacts on microbial activity. These findings suggest that the use of ethanol as an amendment to wetlands during spring thaw may enhance arsenic sequestration in mining-impacted soils and may provide a viable remediation strategy for cold-climate environments, where seasonal freeze–thaw cycling could otherwise contribute to arsenic mobilization. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

32 pages, 20574 KiB  
Article
Alteration of Sulfur-Bearing Silicate–Phosphate (Agri)Glasses in Soil Environment: Chemical Interactions and Biological Response
by Anna Berezicka, Agnieszka Wojteczko, Justyna Sułowska and Magdalena Szumera
Molecules 2025, 30(8), 1790; https://doi.org/10.3390/molecules30081790 - 16 Apr 2025
Viewed by 492
Abstract
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to [...] Read more.
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to replicate the complexities of nutrient leaching in real soil conditions. To address this, the degradation behavior of nutrient-bearing glasses (41SiO2·6(10)P2O5·20K2O·33(29)MgO/CaO/MgO + CaO) with increasing sulfate contents was investigated through a soil incubation experiment simulating Central European weather variability. A comprehensive approach, combining SEM observations and EDS semi-quantitative analysis, revealed that acidic peat strongly promoted ion exchange, where protons from the medium replaced network cations. The glass composition played a crucial role in the fracture behavior: sulfate incorporation increased the network rigidity, making the glasses more prone to mechanical degradation and accelerating the reaction front advancement. The P2O5 content was also a key factor in modulating the reactivity, with higher concentrations intensifying interactions with the soil medium. Limited water availability accelerated the solution saturation, leading to secondary phase precipitation and temporary nutrient immobilization. These findings demonstrate that glass reactivity can be fine-tuned through composition adjustments and highlight the dynamic nature of glass–soil interactions, including seasonal variations in nutrient release under acidic conditions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Graphical abstract

20 pages, 19377 KiB  
Article
Ancient Egyptian Granite Graffiti of Bigeh Island, Philae Archaeological Site (Aswan, Egypt): An Archaeometric and Decay Assessment for Their Conservation
by Abdelrhman Fahmy, Salvador Domínguez-Bella and Eduardo Molina-Piernas
Heritage 2025, 8(4), 137; https://doi.org/10.3390/heritage8040137 - 12 Apr 2025
Cited by 1 | Viewed by 1209
Abstract
This study investigates the deterioration of granite graffiti at the Philae Archaeological Site on Bigeh Island (Aswan, Egypt), attributed to Khaemwaset (1281–1225 BCE, 19th Dynasty). These graffiti, despite being carved into durable Aswan granite, are experiencing progressive degradation due to environmental and hydrological [...] Read more.
This study investigates the deterioration of granite graffiti at the Philae Archaeological Site on Bigeh Island (Aswan, Egypt), attributed to Khaemwaset (1281–1225 BCE, 19th Dynasty). These graffiti, despite being carved into durable Aswan granite, are experiencing progressive degradation due to environmental and hydrological factors. This research aims to analyze the mineralogical and chemical transformations affecting the graffiti to provide a comparative assessment of submerged and unsubmerged granite surfaces. A multi-analytical approach was employed, combining petrographical examination, X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) to identify compositional changes and deterioration patterns. The results indicate mineralogical transformations in submerged and periodically exposed surfaces. The granite primarily consists of quartz, feldspar, and biotite, with notable alterations including kaolinization and illitization and dissolution of feldspar minerals and biotite oxidation. These processes are directly linked to prolonged exposure to fluctuating water levels and recurrent wet–dry cycles, which accelerate granular disintegration, exfoliation, and surface loss. Additionally, salt crystallization, particularly halite, contributes to granite weathering, while sulfate interactions promote chemical weathering. In addition, biofilm colonization, facilitated by high moisture retention, further exacerbates surface deterioration by producing organic acids that weaken the mineral matrix. Finally, the results confirm the need for conservation interventions to mitigate ongoing damage. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

32 pages, 2425 KiB  
Review
Development, Challenges, and Applications of Concrete Coating Technology: Exploring Paths to Enhance Durability and Standardization
by Hongbin Zhao, Qingzhou Wang, Ruipeng Shang and Shengkai Li
Coatings 2025, 15(4), 409; https://doi.org/10.3390/coatings15040409 - 30 Mar 2025
Cited by 2 | Viewed by 1087
Abstract
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, [...] Read more.
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, and sulfate corrosion. The applicability of existing testing methods and standard systems is also evaluated. This study shows that surface-film-forming coatings can create a dense barrier, reducing chloride ion diffusion coefficients by more than 50%, making them suitable for humid and high-chloride environments. Pore-sealing coatings fill capillary pores, improving the concrete’s impermeability and making them ideal for highly corrosive environments. Penetrating hydrophobic coatings form a water-repellent layer, reducing water absorption by over 75%, which is particularly beneficial for coastal and underwater concrete structures. Additionally, composite coating technology is becoming a key approach to addressing multi-environment adaptability challenges. Experimental results have indicated that combining penetrating hydrophobic coatings with surface-film-forming coatings can enhance concrete’s resistance to chloride ion penetration while ensuring weather resistance and wear resistance. However, this study also reveals that there are several challenges in the standardization, engineering application, and long-term performance assessment of coating technology. The lack of globally unified testing standards leads to difficulties in comparing the results obtained from different test methods, affecting the practical application of these coatings in engineering. Moreover, construction quality control and long-term service performance monitoring remain weak points in their use in engineering applications. Some engineering case studies indicate that coating failures are often related to an insufficient coating thickness, improper interface treatment, or lack of maintenance. To further improve the effectiveness and long-term durability of coatings, future research should focus on the following aspects: (1) developing intelligent coating materials with self-healing, high-temperature resistance, and chemical corrosion resistance capabilities; (2) optimizing multilayer composite coating system designs to enhance the synergistic protective capabilities of different coatings; and (3) promoting the creation of global concrete coating testing standards and establishing adaptability testing methods for various environments. This study provides theoretical support for the optimization and standardization of concrete coating technology, contributing to the durability and long-term service safety of infrastructure. Full article
(This article belongs to the Special Issue Recent Progress in Reinforced Concrete and Building Materials)
Show Figures

Figure 1

Back to TopTop