Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = subzero temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 372
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

36 pages, 3682 KiB  
Article
Enhancing s-CO2 Brayton Power Cycle Efficiency in Cold Ambient Conditions Through Working Fluid Blends
by Paul Tafur-Escanta, Luis Coco-Enríquez, Robert Valencia-Chapi and Javier Muñoz-Antón
Entropy 2025, 27(7), 744; https://doi.org/10.3390/e27070744 - 11 Jul 2025
Viewed by 288
Abstract
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, [...] Read more.
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, and Alaska—due to the proximity to the fluid’s critical point. This study investigates the behavior of the recompression Brayton cycle (RBC) under subzero ambient temperatures through the incorporation of low-critical-temperature additives to create CO2-based binary mixtures. The working fluids examined include methane (CH4), tetrafluoromethane (CF4), nitrogen trifluoride (NF3), and krypton (Kr). Simulation results show that CH4- and CF4-rich mixtures can achieve thermal efficiency improvements of up to 10 percentage points over pure CO2. NF3-containing blends yield solid performance in moderately cold environments, while Kr-based mixtures provide modest but consistent efficiency gains. At low compressor inlet temperatures, the high-temperature recuperator (HTR) becomes the dominant performance-limiting component. Optimal distribution of recuperator conductance (UA) favors increased HTR sizing when mixtures are employed, ensuring effective heat recovery across larger temperature differentials. The study concludes with a comparative exergy analysis between pure CO2 and mixture-based cycles in RBC architecture. The findings highlight the potential of custom-tailored working fluids to enhance thermodynamic performance and operational stability of s-CO2 power systems under cold-climate conditions. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

16 pages, 1892 KiB  
Article
Evolutionary Characteristics of Sulphate Ions in Condensable Particulate Matter Following Ultra-Low Emissions from Coal-Fired Power Plants During Low Winter Temperatures
by Yun Xu, Haixiang Lu, Kai Zhou, Ke Zhuang, Yaoyu Zhang, Chunlei Zhang, Liu Yang and Zhongyi Sheng
Sustainability 2025, 17(14), 6342; https://doi.org/10.3390/su17146342 - 10 Jul 2025
Viewed by 326
Abstract
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3 [...] Read more.
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3) is the main pathway for sulphate formation by homogeneous or non-homogeneous reactions. For the sustainability of the world, in this paper, the effects of condensation temperature, H2O, NOX and NH3 on the SO42− generation characteristics under low-temperature rapid condensation conditions are investigated. With lower temperatures, especially from 0 °C cooling to −20 °C, the concentration of SO42− was as high as 26.79 mg/m3. With a greater proportion of H2SO4 in the aerosol state, and a faster rate of sulphate formation, H2O vapour condensation can provide a reaction site for sulphuric acid aerosol generation. SO42− in CPM is mainly derived from the non-homogeneous reaction of SO2. SO3 is an important component of CPM and provides a reaction site for the formation of SO42−. SO2 and SO3, in combination with Stefan flow, jointly play a synergistic role in the generation of SO42−. The content of SO42− was as high as 36.18 mg/m3. While NOX sometimes inhibits the formation of SO42−, NH3 has a key role in the nucleation process of CPM. NH3, SO2 and NOX have been found to rapidly form sulphate with particle sizes up to 5 µm at sub-zero temperatures and promote the formation of sulphuric acid aerosols. Full article
Show Figures

Graphical abstract

13 pages, 1764 KiB  
Article
Functionalization of Oligosiloxane for Polyester Comonomer
by Satoru Saotome, Jiaorong Kuang, Reina Akashi, Momoko Takahashi, Yujia Liu, Takayuki Iijima and Masafumi Unno
Molecules 2025, 30(13), 2775; https://doi.org/10.3390/molecules30132775 - 27 Jun 2025
Viewed by 322
Abstract
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of [...] Read more.
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of not only polymers but also monomers is crucial for enhancing the intrinsic performance of the resin. However, little is known about oligosiloxane monomers for polyester that can provide oligosiloxane-like properties such as hydrophobicity and flexibility at low temperatures. Here, we report the functional design of a polyester material through silicone copolymerization. A novel comonomer was designed and synthesized to optimize both the molecular structure and the compatibility of the silicone segments, promoting uniform copolymer formation. Incorporating silicone into the polymer matrix reduced surface energy, thereby improving water repellency. Furthermore, the flexibility imparted by the silicone components effectively mitigated the brittleness of polyester at sub-zero temperatures, resulting in superior impact resistance. Structural analysis, contact angle measurements, and low-temperature impact tests were conducted on the copolymers. The results confirmed that optimizing comonomer design enables significant enhancement of both hydrophobicity and impact durability, contributing to the development of high-performance polyester materials suitable for demanding environments. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

24 pages, 6677 KiB  
Article
Investigation into the Performance of TDR and FDR Techniques for Measuring the Water Content of Biochar-Amended Loess
by Nan Zhou, Ziyi Zhao, Ming Li, Junping Ren, Ping Li and Qiang Su
Sensors 2025, 25(13), 3970; https://doi.org/10.3390/s25133970 - 26 Jun 2025
Viewed by 358
Abstract
Biochar has garnered considerable attention for its potential to improve soil properties due to its unique characteristics. However, the precise measurement of soil water content using electromagnetic sensors becomes challenging after biochar is incorporated. This study investigated the impact of biochar on soil [...] Read more.
Biochar has garnered considerable attention for its potential to improve soil properties due to its unique characteristics. However, the precise measurement of soil water content using electromagnetic sensors becomes challenging after biochar is incorporated. This study investigated the impact of biochar on soil water content measurement by adding biochar of varying dosages and particle sizes to a typical loess, under both room and subzero temperature conditions by using time domain reflectometry (TDR) and frequency domain reflectometry (FDR) techniques. The results demonstrate that biochar amendment significantly influenced the measurement accuracy of both TDR and FDR. A clear dosage-dependent relationship was observed, with measurement errors exhibiting progressive escalation as biochar addition rates increased. At room temperature, the root mean square error (RMSE) values for loess were remarkably low (TDR: 0.029; FDR: 0.093). In contrast, the 9% coarse-grained biochar-amended soil (BAS-9%C) showed substantially elevated RMSE values (TDR: 0.2006; FDR: 0.1468). Furthermore, comparative analysis revealed that particle size significantly affected measurement precision, with coarse-grained biochar demonstrating more pronounced interference effects than fine-grained biochar at equivalent application rates. At subzero temperatures, BAS-6%C exhibited significantly higher RMSE values (TDR: 0.1753; FDR: 0.2022) compared to BAS-6%F (TDR: 0.079; FDR: 0.1872). A dielectric mixing model was established for calculating the dielectric constant of BAS. In addition, calibration equations for accurately determining the water content of biochar-amended loess under both room and subzero temperature conditions were established. Furthermore, the mechanisms by which biochar influenced the performance of the TDR and FDR sensors are comprehensively discussed. These findings can provide valuable theoretical foundation and practical guidance for future soil improvement with biochar and accurate water content measurement in BAS. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

14 pages, 6415 KiB  
Article
On the Wear Mechanism and Subsurface Deformation of Zr-Based Metallic Glass at Subzero Temperature
by Xin Li, Jianan Fu, Zhen Li, Fei Sun, Kaikai Song and Jiang Ma
Materials 2025, 18(13), 3012; https://doi.org/10.3390/ma18133012 - 25 Jun 2025
Viewed by 420
Abstract
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical [...] Read more.
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical properties and wear behaviors of MGs at subzero temperatures have rarely been explored. In this work, the wear properties and wear mechanisms of Zr-based MG were systematically evaluated at a subzero temperature of −50 °C. Compared to the wear results at room temperature, MG in a subzero environment shows a ~60% reduction in wear rate. The main contributing factor is that MG at room temperature will easily forms a thin, brittle oxide layer at the sliding interface, which will lead to oxidation, adhesive and abrasive wear on its surface, whereas these wear behaviors do not occur in subzero conditions where only abrasive wear occurs. Meanwhile, MG at subzero temperatures has a higher elastic modulus. These properties make MG more wear-resistant in subzero environments. The current study will provide new perspectives on the wear mechanisms and subsurface deformation of MG in subzero environments and valuable insights into the use of MG in subzero engineering applications, such as deep space and polar exploration. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 845 KiB  
Article
Designing a Waste Heat Recovery Heat Exchanger for Polymer Electrolyte Membrane Fuel Cell Operation in Medium-Altitude Unmanned Aerial Vehicles
by Juwon Jang, Jaehyung Choi, Seung-Jun Choi and Seung-Gon Kim
Energies 2025, 18(13), 3262; https://doi.org/10.3390/en18133262 - 22 Jun 2025
Viewed by 376
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. [...] Read more.
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. Therefore, an effective preheating system is required to ensure stable PEMFC operation in high-altitude environments. This study aimed to mathematically model a shell-and-tube heat exchanger that utilizes waste heat recovery to prevent internal and external PEMFC damage in cold, high-altitude conditions. The waste heat from the PEMFC is estimated based on the thrust of the MQ-9 Reaper, and the proposed heat exchanger must be capable of heating air to −5 °C. As the heat exchanger utilizes only waste heat, the primary energy consumption arises from the coolant pumping process. Calculation results indicated that the proposed heat exchanger design improved the overall system efficiency by up to 15.7%, demonstrating its effectiveness in utilizing waste heat under aviation conditions. Full article
Show Figures

Figure 1

14 pages, 2967 KiB  
Article
Gradient Joule Heating Curing Performance of Steel-Fiber-Reinforced High-Performance Concrete in Severe Cold Environments: A Preliminary Attempt for Deep-Cold Concrete Construction
by Xinyu Liu, Jinghui Wang, Zheng Zhou, Lei Zhang and Qiang Fu
Materials 2025, 18(12), 2909; https://doi.org/10.3390/ma18122909 - 19 Jun 2025
Viewed by 327
Abstract
Winter concrete construction in cold regions faces significant challenges due to extreme subzero temperatures, and the harsh environment presents new requirement for cement-based materials to resist this hostile external condition. To address this gap, this study proposes gradient Joule heating (GJH) curing for [...] Read more.
Winter concrete construction in cold regions faces significant challenges due to extreme subzero temperatures, and the harsh environment presents new requirement for cement-based materials to resist this hostile external condition. To address this gap, this study proposes gradient Joule heating (GJH) curing for steel-fiber-reinforced high-performance concrete (SFR-HPC) in subzero environments (−20 °C to −60 °C). Compared to room-temperature (RT) curing, GJH enabled specimens at −20 °C to −50 °C to achieve equivalent mechanical properties within a short curing duration; the compressive strength of the specimens cured at such low environmental temperature still reached up to that of the specimen cured by RT curing. Moreover, the compressive strength of the specimens cured at −60 °C retained >60 MPa despite reduced performance. Specifically, the specimens cured at −20 °C, −30 °C, −40 °C, and −50 °C for 2 days exhibited compressive strengths of 75.8 MPa, 79.2 MPa, 77.6 MPa, and 75.4 MPa, respectively. FTIR/XRD confirmed that the specimens cured by GJH showed hydration product integrity akin to RT-cured specimens. Moreover, it should be noted that early pore structure deteriorated with decreasing temperatures, but prolonged curing mitigated these differences. These results validate GJH as a viable method for in situ HPC production in extreme cold, addressing critical limitations of conventional winter construction techniques. Full article
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 479
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 1950 KiB  
Article
Experimental Study on Carbon Nanotube Heating for Li-Ion Batteries in Extremely Low-Temperature Environments
by Junbo Jia, Gucheng Wang, Zuchang Gao and Ming Han
Energies 2025, 18(11), 2958; https://doi.org/10.3390/en18112958 - 4 Jun 2025
Viewed by 606
Abstract
This study introduced and evaluated a new Carbon Nanotube (CNT) sheet-based method for battery temperature management, aimed at enhancing the performance of Li-ion batteries in subzero environments. This method addressed critical challenges such as startup failures, capacity loss, and the poor performance of [...] Read more.
This study introduced and evaluated a new Carbon Nanotube (CNT) sheet-based method for battery temperature management, aimed at enhancing the performance of Li-ion batteries in subzero environments. This method addressed critical challenges such as startup failures, capacity loss, and the poor performance of the Li-ion battery in extreme cold conditions, particularly for industrial applications like forklifts operating at temperatures as low as −30 °C. Without CNT heating, the battery performance dropped significantly in low-temperature environments. At −20 °C, the battery delivered only 63.4% of its capacity, with minimal self-heating. At −30 °C, it failed almost entirely, shutting down after just 45 s. In contrast, CNT heating greatly enhanced performance. The CNT sheet quickly warmed the battery to 0 °C—within 97 s at −20 °C and 141 s at −30 °C—allowing it to recover up to 90% of its capacity. These improvements resulted in enhanced capacity and energy output compared to batteries without CNT heating, which suffered from severe performance losses, including a negligible capacity and energy output under −30 °C. It can be concluded that the CNT sheet-based approach provides superior thermal conductivity, rapid heating, and exceptional energy conversion efficiency, enabling extended battery life and enhanced operational reliability in subzero environments. Its scalability and affordability position it as a transformative innovation for industrial applications reliant on efficient battery performance in extreme cold environments. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

16 pages, 3057 KiB  
Article
Ferroelectric Smectic Liquid Crystalline Materials with Different Degree of Chirality
by Michał Czerwiński, Mateusz Filipow, Klaudia Łuczak and Dorota Węgłowska
Materials 2025, 18(10), 2343; https://doi.org/10.3390/ma18102343 - 17 May 2025
Viewed by 665
Abstract
Ferroelectric liquid crystals (FLCs) are key materials for high-speed electro-optical applications, yet achieving optimal properties over a broad temperature range down below room temperature remains a challenge. This study presents a novel series of systematically designed FLC mixtures, incorporating components with three degrees [...] Read more.
Ferroelectric liquid crystals (FLCs) are key materials for high-speed electro-optical applications, yet achieving optimal properties over a broad temperature range down below room temperature remains a challenge. This study presents a novel series of systematically designed FLC mixtures, incorporating components with three degrees of chirality—achiral systems, with one center of chirality and with two centers of chirality—to optimize the mesomorphic stability, electro-optical response, and physicochemical properties. The strategic doping by chiral components up to a 0.2 weight fraction extends the temperature range of the ferroelectric phase while lowering the melting temperature. Notably, mixtures containing two chiral centers exhibit shorter helical pitches, while increasing chirality enhances the tilt angle of the director and spontaneous polarization. However, in a mixture containing all three types of chirality (CchM), spontaneous polarization decreases due to opposing vector contributions. Switching time analysis reveals that a system with achiral components and those with two centers of chirality (A-BchM) exhibits the fastest response, while CchM demonstrates only intermediary behavior, caused by its high rotational viscosity. Among all formulations, those containing compounds with two centers of chirality display the most favorable balance of functional properties for deformed helix ferroelectric liquid crystal (DHFLC) applications. One such mixture achieves the lowest melting temperature reported for DHFLC-compatible FLCs, enabling operation at sub-zero temperatures. These findings pave the way for next-generation electro-optical devices with enhanced performance and appropriate environmental stability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 3210 KiB  
Article
Performance Improvement of Steel Fiber Reinforced High-Performance Concrete Cured by Electric-Induced Heating Under Negative Temperature by Mix Proportion Optimization
by Yishu Zhang, Han Wang and Wei Wang
Materials 2025, 18(10), 2231; https://doi.org/10.3390/ma18102231 - 12 May 2025
Cited by 1 | Viewed by 394
Abstract
To address the insufficient early strength development of steel-fiber-reinforced high-performance concrete (SF-HPC) under subzero temperatures, this study proposes an electric-induced heating curing method for SF-HPC fabrication at −20 °C. The effects of mix parameters, including steel fiber content, water-to-binder ratio, silica fume dosage, [...] Read more.
To address the insufficient early strength development of steel-fiber-reinforced high-performance concrete (SF-HPC) under subzero temperatures, this study proposes an electric-induced heating curing method for SF-HPC fabrication at −20 °C. The effects of mix parameters, including steel fiber content, water-to-binder ratio, silica fume dosage, and fine aggregate gradation, on the curing temperature and mechanical properties of SF-HPC were systematically investigated. The optimal mix proportion was identified through the curing temperature and compressive strength development for the specimens. Results revealed that compressive strength initially increased and then decreased with higher silica fume content and fine aggregate replacement ratios, while increased water-to-binder ratios positively influenced curing efficiency and strength development. The optimal mix comprised 2.0 vol% steel fibers, a water-to-binder ratio of 0.22, 20% silica fume, and 60% fine aggregate replacement. Further, comparative analyses of electric-induced heating curing, room-temperature curing, and high-temperature steam curing revealed that electric-induced heating curing can promote the strength formation of SF-HPC in a negative-temperature environment. Microstructural characterization via BET analysis demonstrated that electric-induced heating curing refined the pore structure of SF-HPC. These findings highlight the benefits of electric-induced heating as an efficient strategy for fabricating SF-HPC in cold climates, providing theoretical and practical insights for winter construction. Full article
(This article belongs to the Special Issue Advances in Low Carbon Concrete and Structures)
Show Figures

Figure 1

18 pages, 2410 KiB  
Article
Revisiting the Thermal Behavior and Infrared Absorbance Bands of Anhydrous and Hydrated DL-Tartaric Acid
by Costas Tsioptsias, Sevasti Matsia, Athanasios Salifoglou, Konstantinos E. Georgiadis, Kyriaki Kyriakouli, Christos Ritzoulis, Ioannis Tsivintzelis and Costas Panayiotou
Molecules 2025, 30(8), 1732; https://doi.org/10.3390/molecules30081732 - 12 Apr 2025
Viewed by 500
Abstract
In this work, we studied the thermal behavior and infrared fingerprint of anhydrous and hydrated DL-tartaric acid via conventional and modulated Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Fourier Transform Infrared Spectroscopy (FTIR), nuclear magnetic resonance (NMR), pH measurements, and ab initio density functional [...] Read more.
In this work, we studied the thermal behavior and infrared fingerprint of anhydrous and hydrated DL-tartaric acid via conventional and modulated Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Fourier Transform Infrared Spectroscopy (FTIR), nuclear magnetic resonance (NMR), pH measurements, and ab initio density functional theory (DFT) calculations. Six samples were examined in total (raw, recrystallized from D2O solution, freeze-dried, and three heated samples). The results reveal that both forms (anhydrous and hydrated) do not exhibit melting prior to decomposition. It is also shown that the so-called DL-tartaric acid does not exist in the solid state in pure form, but it contains water and a tartaric acid oligomer, which is produced through esterification. Alteration of the chemical structure (reflected through decomposition) is initiated at quite low temperatures and is more pronounced for the hydrated form. Up to 75 °C, decomposition proceeds through esterification, while at higher temperatures it seems to be reversed due to the increase in water and decrease in COOH groups emerging through anhydride formation. Either upon heating or at sub-zero temperatures during freeze-drying, the hydrated form decomposes, and although some water is removed, new water is produced due to esterification. The conclusions are also supported by DFT calculations. Full article
Show Figures

Figure 1

15 pages, 3069 KiB  
Article
A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C
by Bitao Zhang, Yongkang Du, Dong Liu and Yanyan Hu
Coatings 2025, 15(4), 371; https://doi.org/10.3390/coatings15040371 - 22 Mar 2025
Cited by 1 | Viewed by 494
Abstract
Construction in cold regions faces significant challenges due to delayed cement hydration and frost damage caused by sub-zero temperatures. This study investigated the effects of three antifreeze agents on the performance of composite cement under sub-zero temperatures. The setting time, compressive strength, freezing [...] Read more.
Construction in cold regions faces significant challenges due to delayed cement hydration and frost damage caused by sub-zero temperatures. This study investigated the effects of three antifreeze agents on the performance of composite cement under sub-zero temperatures. The setting time, compressive strength, freezing point, and hydration mechanisms were evaluated. The results revealed that CaCl2 optimally accelerated hydration, while achieving the continuous development of compressive strengths through freezing-point depression and dense microstructure formation. NaNO2 exhibited the lowest freezing point but delayed setting at high dosages, while Li2CO3 showed limited impact due to insufficient freezing point depression. Li2CO3 showed limited efficacy under continuous low temperatures but enabled strength recovery after the temperature transition from sub-zero to ambient conditions. This research provides a basis for the application of antifreeze agents in the composite cement system for construction in cold environments. Full article
Show Figures

Figure 1

27 pages, 21962 KiB  
Article
Experimental Analysis of Battery Cell Heating Through Electromagnetic Induction-Based Liquid System Considering Induction Power and Flow Rate Effects in Extreme-Cold Conditions
by Alirıza Kaleli and Bilal Sungur
Batteries 2025, 11(3), 105; https://doi.org/10.3390/batteries11030105 - 12 Mar 2025
Cited by 1 | Viewed by 855
Abstract
The performance of lithium-ion batteries deteriorates significantly under extreme-cold conditions due to increased internal resistance and decreased electrochemical activity. This study presents an experimental analysis of a battery thermal management system (BTMS) incorporating electromagnetic induction heating and a fluid-based heat transfer mechanism to [...] Read more.
The performance of lithium-ion batteries deteriorates significantly under extreme-cold conditions due to increased internal resistance and decreased electrochemical activity. This study presents an experimental analysis of a battery thermal management system (BTMS) incorporating electromagnetic induction heating and a fluid-based heat transfer mechanism to alleviate these problems. The experimental setup utilizes a closed-loop circulation system where ethylene glycol-based fluid flows through induction-heated copper tubes, ensuring efficient heat transfer to an 18650-cell battery. This study evaluates heating performance under varying ambient temperatures (−15 °C and −5 °C), fluid flow rates (0.22, 0.3, and 0.5 L/min), and induction power levels (150 W, 225 W, 275 W, and 400 W). The results indicate that lower flow rates (e.g., 0.22 L/min) provide faster heating due to longer thermal interaction time with the battery; however, localized boiling points were observed at these low flow rates, potentially leading to efficiency losses and thermal instability. At −15 °C and 400 W, the battery temperature reached 25 °C in 383 s at 0.22 L/min, while at 0.5 L/min, the same temperature was achieved in 463 s. Higher flow rates improved temperature uniformity but slightly reduced heating efficiency due to increased heat dissipation. Internal resistance measurements revealed a substantial decrease as battery temperature increased, further validating the effectiveness of the system. These findings present a viable alternative for heating electric vehicle batteries in sub-zero environments, thereby optimizing battery performance and extending operational lifespan. Full article
Show Figures

Figure 1

Back to TopTop