Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = subtropical lakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2695 KiB  
Article
Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height
by Yi Wu, Yu Chen, Chunhong Tian, Ting Yun and Mingyang Li
Remote Sens. 2025, 17(14), 2509; https://doi.org/10.3390/rs17142509 - 18 Jul 2025
Viewed by 381
Abstract
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest [...] Read more.
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest aboveground biomass (AGB) in Chenzhou City, Hunan Province, China. In addition, a canopy height model, constructed from a digital surface model (DSM) derived from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and an ICESat-2-corrected SRTM DEM, is incorporated to quantify its impact on the accuracy of AGB estimation. The results indicate the following: (1) The incorporation of multi-source remote sensing data significantly improves the accuracy of AGB estimation, among which the RF model performs the best (R2 = 0.69, RMSE = 24.26 t·ha−1) compared with the single-source model. (2) The canopy height model (CHM) obtained from InSAR-LiDAR effectively alleviates the signal saturation effect of optical and SAR data in high-biomass areas (>200 t·ha−1). When FCH is added to the RF model combined with multi-source remote sensing data, the R2 of the AGB estimation model is improved to 0.74. (3) In 2018, AGB in Chenzhou City shows clear spatial heterogeneity, with a mean of 51.87 t·ha−1. Biomass increases from the western hilly part (32.15–68.43 t·ha−1) to the eastern mountainous area (89.72–256.41 t·ha−1), peaking in Dongjiang Lake National Forest Park (256.41 t·ha−1). This study proposes a comprehensive feature integration framework that combines red-edge spectral indices for capturing vegetation physiological status, SAR-derived texture metrics for assessing canopy structural heterogeneity, and canopy height metrics to characterize forest three-dimensional structure. This integrated approach enables the robust and accurate monitoring of carbon storage in subtropical forests. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

22 pages, 5044 KiB  
Review
Paleolimnological Approaches to Track Anthropogenic Eutrophication in Lacustrine Systems Across the American Continent: A Review
by Cinthya Soledad Manjarrez-Rangel, Silvana Raquel Halac, Luciana Del Valle Mengo, Eduardo Luis Piovano and Gabriela Ana Zanor
Limnol. Rev. 2025, 25(3), 33; https://doi.org/10.3390/limnolrev25030033 - 17 Jul 2025
Viewed by 415
Abstract
Eutrophication has intensified in lacustrine systems across the American continent, which has been primarily driven by human activities such as intensive agriculture, wastewater discharge, and land-use change. This phenomenon adversely affects water quality, biodiversity, and ecosystem functioning. However, studies addressing the historical evolution [...] Read more.
Eutrophication has intensified in lacustrine systems across the American continent, which has been primarily driven by human activities such as intensive agriculture, wastewater discharge, and land-use change. This phenomenon adversely affects water quality, biodiversity, and ecosystem functioning. However, studies addressing the historical evolution of trophic states in lakes and reservoirs remain limited—particularly in tropical and subtropical regions. In this context, sedimentary records serve as invaluable archives for reconstructing the environmental history of water bodies. Paleolimnological approaches enable the development of robust chronologies to further analyze physical, geochemical, and biological proxies to infer long-term changes in primary productivity and trophic status. This review synthesizes the main methodologies used in paleolimnological research focused on trophic state reconstruction with particular attention to the utility of proxies such as fossil pigments, diatoms, chironomids, and elemental geochemistry. It further underscores the need to broaden spatial research coverage, fostering interdisciplinary integration and the use of emerging tools such as sedimentary DNA among others. High-resolution temporal records are critical for disentangling natural variability from anthropogenically induced changes, providing essential evidence to inform science-based lake management and restoration strategies under anthropogenic and climate pressures. Full article
Show Figures

Graphical abstract

16 pages, 2685 KiB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 265
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

29 pages, 12574 KiB  
Article
Weathering Records from an Early Cretaceous Syn-Rift Lake
by Yaohua Li, Qianyou Wang and Richard H. Worden
Hydrology 2025, 12(7), 179; https://doi.org/10.3390/hydrology12070179 - 3 Jul 2025
Viewed by 334
Abstract
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation [...] Read more.
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation (Lishu Rift Depression, Songliao Basin, NE Asia) to access paleo-weathering intensity and paleoclimate variability between the Middle Aptian and Early Albian (c. 118.2–112.3 Ma). Multiple geochemical proxies, including the Chemical Index of Alteration (CIA), were applied within a sequence stratigraphic framework covering four stages of lake evolution. Our results indicate that a hot and humid subtropical climate predominated in the Lishu paleo-lake, punctuated by transient cooling and drying events. Periods of lake expansion corresponded to episodes of intense chemical weathering, while two distinct intervals of aridity and cooling coincided with phases of a reduced lake level and fan delta progradation. To address the impact of potassium enrichment on CIA values, we introduced a rectangular coordinate system on A(Al2O3)-CN(CaO* + Na2O)-K(K2O) ternary diagrams, enabling more accurate weathering trends and CIA corrections (CIAcorr). Uncertainties in CIA correction were evaluated by integrating geochemical and petrographic evidence from deposits affected by hydrothermal fluids and external potassium addition. Importantly, our results show that metasomatic potassium addition cannot be reliably inferred solely from deviations in A-CN-K diagrams or the presence of authigenic illite and altered plagioclase. Calculations of “excess K2O” and CIAcorr values should only be made when supported by robust geochemical and petrographic evidence for external potassium enrichment. This work advances lacustrine paleoclimate reconstruction methodology and highlights the need for careful interpretation of weathering proxies in complex sedimentary systems. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

13 pages, 5084 KiB  
Article
Comparative Ecotoxicological Effects of Cyanobacterial Crude Extracts on Native Tropical Cladocerans and Daphnia magna
by Cesar Alejandro Zamora-Barrios, Marcos Efrén Fragoso Rodríguez, S. Nandini and S. S. S. Sarma
Toxins 2025, 17(6), 277; https://doi.org/10.3390/toxins17060277 - 2 Jun 2025
Viewed by 570
Abstract
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should [...] Read more.
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should be used in bioassays. Here, we evaluated the impact of crude cyanobacteria extracts on three common, native species (Daphnia laevis, Ceriodaphnia dubia, and Simocephalus vetulus) based on acute and chronic bioassays. We analyzed the toxicity of cyanobacterial consortium collected from Lake Zumpango, Mexico. The FCHAB was dominated by Planktothrix agardhii (1.16 × 106 ind mL−1). A series of freeze/thaw/sonification cycles at 20 kHz was used to extract the toxic metabolites and the concentration of dissolved microcystin-LR equivalents was measured using an ELISA immunological kit. S. vetulus was the most sensitive species, with a median lethal concentration of 0.43 compared to 1.19 µg L−1 of D. magna at 48 h. S. vetulus was also the most sensitive in chronic evaluations, showing a negative rate of population increase (−0.10 d−1) in experiments with 20% crude extract. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
Show Figures

Figure 1

15 pages, 2051 KiB  
Article
Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties
by Lee Potter, Yijun Xu and Jonathan Simak
Water 2025, 17(7), 1046; https://doi.org/10.3390/w17071046 - 2 Apr 2025
Viewed by 425
Abstract
Recent studies have emphasized the diel nature of dissolved CO2 (pCO2) in lake systems; however, around the world, field measurements have been conducted at different times, and it is not clear how, and to what extent, this variable [...] Read more.
Recent studies have emphasized the diel nature of dissolved CO2 (pCO2) in lake systems; however, around the world, field measurements have been conducted at different times, and it is not clear how, and to what extent, this variable sampling time affects CO2 emission (FCO2). This research aimed to investigate whether 10:00 am. was an effective time for lake field sampling to capture 24 h mean pCO2 and FCO2 from subtropical eutrophic shallow lake systems. To accomplish this goal, our study compiled long-term data from three individual studies on a shallow lake system in southeast Louisiana, USA. The data comprised samples collected across three-hour intervals, seasonally, over five years. This study highlights that a lake system can function as a carbon sink during peak daylight hours and can shift to a source overnight to early morning. The findings from the longer-term data confirmed 9:00 am to 11:00 am as the time range when pCO2 deviation from the daily mean is at its lowest (111% of the daily mean). Sampling outside of this time range resulted in an increase in FCO2 (32.09 mmol m−2 h−1) of up to 271% (87.03 mmol m−2 h−1) in overnight samples, with daytime measurements of FCO2 flipping the lake from source to sink sequestering −20.17 mmol m−2 h−1. Based on our findings, we strongly recommend that future studies in similar aquatic systems utilize the 9:00–11:00 am timeframe for field sampling to increase the accuracy and compatibility of shared data in carbon emission estimation. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

12 pages, 4073 KiB  
Article
Characteristics of Observed Electromagnetic Wave Ducts in Tropical, Subtropical, and Middle Latitude Locations
by Sandra E. Yuter, McKenzie M. Sevier, Kevin D. Burris and Matthew A. Miller
Atmosphere 2025, 16(3), 336; https://doi.org/10.3390/atmos16030336 - 17 Mar 2025
Cited by 1 | Viewed by 386
Abstract
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings [...] Read more.
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings obtained over four years from seven tropical and subtropical islands, as well as middle latitude sites at four US coastal locations, three sites near the Great Lakes, and four US inland sites. Across all location types, elevated ducts were found to be more common than surface-based ducts, and the median duct thicknesses were ~100 m. There was a weak correlation between duct thickness and strength and, essentially, no correlation between the duct strength and duct base height. EM ducts more frequently occurred at the tropical and subtropical island locations (~60%) and middle latitude coastal locations (70%) as compared to the less than 30% of the time that occurred at the Great Lake and US inland sites. The tropical and subtropical island sites were more likely than the other location types to have ducts at altitudes higher than 2 km, which is above the boundary layer height. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 3499 KiB  
Article
Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China
by Lingjing Wang, Zemeng Fan, Saibo Li, Yonghui Yao, Zhengping Du and Xuyang Bai
Forests 2025, 16(3), 430; https://doi.org/10.3390/f16030430 - 27 Feb 2025
Cited by 1 | Viewed by 519
Abstract
Climate change has significantly altered plant habitats within the Earth’s surface system, reshaping the global distribution and succession of vegetation. The spatiotemporal simulation of vegetation dynamics is essential for effective ecosystem management and conservation at regional scales. In this study, an improved method [...] Read more.
Climate change has significantly altered plant habitats within the Earth’s surface system, reshaping the global distribution and succession of vegetation. The spatiotemporal simulation of vegetation dynamics is essential for effective ecosystem management and conservation at regional scales. In this study, an improved method is developed to analyze the vegetation patterns and scenarios in the Poyang Lake basin, based on the High-Accuracy Surface Modeling (HASM) method and the improved Holdridge Life Zone (HLZ) ecosystem model. HASM is applied to generate high-resolution (250 m × 250 m) spatial grid data for key climate parameters, including mean annual biotemperature (MAB), total annual precipitation (TAP), and potential evapotranspiration ratio (PER), for each decade from 1961 to 2050. The distribution thresholds of vegetation types are calculated based on current vegetation data, MAB, TAP, PER, longitude, latitude, and elevation datasets. In the improved HLZ ecosystem model, the classification parameters of vegetation types have been expanded from three to six. The simulation results indicate that cultivated vegetation, subtropical coniferous forest, and subtropical grassland are the dominant vegetation types, accounting for 75.88% of the total area. Between 2020 and 2050, subtropical coniferous forest is projected to experience the greatest decrease in area, shrinking by an average of 2.65 × 103 km2 per decade. In contrast, subtropical evergreen–deciduous broadleaf mixed forest is expected to undergo the largest increase, expanding by an average of 1.96 × 103 km2 per decade. Vegetation types in high-altitude regions exhibit the most rapid changes, with an average decadal variation of 15.26%, whereas low-altitude regions show relatively slower changes, averaging 0.52% per decade. Overall, subtropical grassland, subtropical coniferous forest, and subtropical evergreen–deciduous broadleaf mixed forest in the Poyang Lake basin demonstrate high sensitivity to projected climate change scenarios. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

20 pages, 5079 KiB  
Article
Paleovegetation Community and Paleoclimate Succession in Middle Jurassic Coal Seams in Eastern Coalfields in Dzungaria Basin, China
by Xingli Wang, Shuo Feng, Wenfeng Wang, Qin Zhang, Jijun Tian, Changcheng Han and Meng Wang
Plants 2025, 14(5), 695; https://doi.org/10.3390/plants14050695 - 24 Feb 2025
Viewed by 560
Abstract
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the [...] Read more.
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the aim of this study was to classify the paleovegetation types and develop paleoclimate succession models of the extra-thick coal seams. We conducted the sampling, separation, and extraction of spores and pollen and carried out microscopic observations in the Wucaiwan mining area of the eastern coalfields in the Dzungaria Basin. The vertical vegetation succession in the thick seam (Aalenian Stage) in the study area was divided into three zones using the CONISS clustering method. The results show that the types of spore and pollen fossils belong to twenty families and forty-five genera, including twenty-three fern, twenty gymnosperm, and two bryophyte genera. The types of paleovegetation in the study area were mainly Lycopodiaceae and Selaginellaceae herb plants, Cyatheaceae, Osmundaceae, and Polypodiaceae shrub plants, and Cycadaceae and Pinaceae coniferous broad-leaved trees. The paleoclimate changed from warm–humid to humid–semi-humid and, finally, to the semi-humid–semi-dry type, all within a tropical–subtropical climate zone. The study area was divided into four paleovegetation communities: the nearshore wetland paleovegetation community, lowland cycad and Filicinae plant community, slope broad-leaved and coniferous plant mixed community, and highland coniferous tree community. This indicates that there was a climate warming event during the Middle Jurassic, which led to a large-scale lake transgression and regression in the basin. This resulted in the transfer of the coal-accumulating center from the west and southwest to the central part of the eastern coalfields in the Dzungaria Basin. Full article
(This article belongs to the Special Issue Evolution of Land Plants)
Show Figures

Figure 1

30 pages, 18951 KiB  
Article
Identification and Sedimentary Model of Shallow-Water Deltas: A Case Study of the Funing Formation, Subei Basin, Northeast China
by Ziyi Yang, Guiyu Dong, Lianbo Zeng, Yongfeng Qiu, Chen Guo, Zhao Ma, Tianwei Wang, Xu Yang, Shuo Ran and Xing Zhao
Minerals 2025, 15(3), 207; https://doi.org/10.3390/min15030207 - 21 Feb 2025
Cited by 1 | Viewed by 471
Abstract
Shallow-water deltas are not only a hot spot for sedimentological research but also a key target for oil and gas exploration. In this paper, taking the third member (E1f3) of the Funing Formation in the Upper Jurassic as an [...] Read more.
Shallow-water deltas are not only a hot spot for sedimentological research but also a key target for oil and gas exploration. In this paper, taking the third member (E1f3) of the Funing Formation in the Upper Jurassic as an example, based on observations made from core samples, well logging, cathode luminescence characteristics, and analytical assays, the development conditions, sedimentary characteristics, and sedimentary models of shallow-water deltas are summarized. These shallow-water deltas were deposited in conditions with the following characteristics: a gentle terrain platform, a subtropical climate with ample rainfall, an abundant source supply, strong hydrodynamic forces, shallow water bodies, and a frequently eustatic lake level. Shallow-water deltas are characterized by sediment deposition from traction currents, numerous underwater distributary channel scour structures, overlapping scouring structures, sand body distribution with planar features, underwater distributary channels as skeletal sand bodies, and undeveloped mouth bars. Based on these, it is believed that during the deposition period of E1f3, the Gaoyou Sag in the Subei Basin had favorable geological conditions for the development of shallow-water delta deposition. The shallow-water delta deposition that occurred during the sedimentary periods of the five major sand units in the Funing Formation is characterized by front subfacies, with underwater distributary channels as the framework for sand bodies, and multiple intermittent positive rhythms overlapping vertically with the Jianhu Uplift as the source of material supply. In this paper, a depositional model for shallow-water delta deposition during the E1f3 deposition period in the Gaoyou Sag is established, expanding the scope of oil reservoir exploration in the north slope region of the Gaoyou Sag and providing important geological evidence for the selection of favorable subtle zones. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

34 pages, 16609 KiB  
Article
Palaeoclimatic Signatures Based on Pollen Fingerprints: Reconstructing Mid–Late Holocene Climate Dynamics in Northwestern Himalaya, India
by Anupam Nag, Anjali Trivedi, Anjum Farooqui and P. Morthekai
Quaternary 2025, 8(1), 6; https://doi.org/10.3390/quat8010006 - 28 Jan 2025
Cited by 1 | Viewed by 1455
Abstract
This study presents a high-resolution palaeoclimate reconstruction based on a radiocarbon-dated 240 cm deep trench profile from Renuka Lake, Northwestern Himalaya, India. The palynological analysis provides insight into the palaeovegetation and palaeoclimatic dynamics of a subtropical, dense, mixed deciduous forest, predominantly characterized by [...] Read more.
This study presents a high-resolution palaeoclimate reconstruction based on a radiocarbon-dated 240 cm deep trench profile from Renuka Lake, Northwestern Himalaya, India. The palynological analysis provides insight into the palaeovegetation and palaeoclimatic dynamics of a subtropical, dense, mixed deciduous forest, predominantly characterized by Sal (Shorea robusta). The fossil pollen reveals the presence of tropical Sal mixed deciduous taxa, including Shorea robusta, Emblica officinalis, Murraya koenigii, Toona ciliata, Syzygium cumini, and Terminalia spp., which indicate that the region experiences a warm and humid climate with the strong Indian Summer Monsoon (ISM) during ~7500–4460 cal yr BP. Subsequently, Sal-mixed deciduous forests were replaced by highland taxa, viz., Pinus roxburghii and Abies pindrow, suggesting dry and cold conditions during ~4460–3480 cal yr BP. Additionally, warm and humid (~3480–3240, ~3060–2680, ~2480–2270 cal yr BP) and cold and dry conditions (~3240–3060, ~2680–2480, ~2270–1965 cal yr BP) recorded alternatively in this region. Improved ISM prevailed ~1965–940 cal yr BP, followed by cold and dry conditions ~940–540 cal yr BP. From ~540 cal yr BP to present, the appearance of moist deciduous taxa alongside dry deciduous and highland taxa in similar proportions suggests moderate climate conditions in the region. Environmental reconstructions are supported by the Earth System Palaeoclimate Simulation (ESPS) model, providing an independent validation of the pollen-based interpretations. This research contributes to our understanding of long-term vegetation dynamics in the Northwestern Himalaya and offers valuable insights into the historical variability of the Indian Summer Monsoon, establishing a foundation for future investigations of climate-driven vegetation changes in the region. Full article
Show Figures

Figure 1

21 pages, 14115 KiB  
Article
Assessment of Spatio-Temporal Dynamics of Dal Lake’s Trophic State
by Irfan Ali, Elena Neverova-Dziopak and Zbigniew Kowalewski
Water 2025, 17(3), 314; https://doi.org/10.3390/w17030314 - 23 Jan 2025
Viewed by 1871
Abstract
The ecosystem of Dal Lake, an important freshwater lake in Srinagar, India, has been rapidly degraded in recent decades due to intensified eutrophication. The main causes of eutrophication were determined to be different types of human activities in the catchment area and its [...] Read more.
The ecosystem of Dal Lake, an important freshwater lake in Srinagar, India, has been rapidly degraded in recent decades due to intensified eutrophication. The main causes of eutrophication were determined to be different types of human activities in the catchment area and its inappropriate development as well as excessive loads of pollutants introduced into the lake. The heightened algal blooms brought significant water quality deterioration, a reduction in indigenous fish populations, and a general disturbance of the ecological balance of the lake. Such changes adversely influenced the living conditions of the inhabitants depending on the lake for tourism, fishing, and other economic pursuits. The aim of the research was the evaluation of the specificity of the course and spatio-temporal dynamics of Dal Lake eutrophication process on the base of accurate assessment of its actual trophic state. The applied assessment methodology was based on the biotic balance approach. As an indicator of the biotic balance in water, the Index of Trophic State (ITS) was chosen and adopted for the conditions of the lake ecosystem in humid subtropical climate conditions. The assessment was based on data from a five-year lake monitoring period (2019–2023) and analyzed for four lake basins: Hazaratbal, Nishat, Nagin, and Gagribal. The results indicated a steady increase in the lake’s trophic status, with the Hazaratbal basin evolving from mesotrophic to eutrophic, while the other basins progressed from meso-eutrophic to eutrophic during the research period. At the end of the research period, the whole lake was classified as eutrophic, with a modest inclination towards heightened eutrophication severity. The research underscores the pressing need for elaboration of a holistic lake management approach, where ITS, which has proven to be a valuable and reliable express-monitoring tool, can be used for obtaining information necessary for solving different applied tasks for protection and conservation strategies. Full article
Show Figures

Figure 1

12 pages, 2007 KiB  
Article
Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir
by Li-Juan Xiao, Yanru Jiang, Zihan Chen, Liang Peng, Yali Tang and Lamei Lei
Microorganisms 2024, 12(12), 2610; https://doi.org/10.3390/microorganisms12122610 - 17 Dec 2024
Viewed by 886
Abstract
Taste and odor (T/O) compounds are a global threat in drinking water, mainly produced by cyanobacteria in freshwater environments. Temperature plays a crucial role in regulating geosmin dynamics in temperate and subtropical lakes, while its influence may be lower in tropical waters. To [...] Read more.
Taste and odor (T/O) compounds are a global threat in drinking water, mainly produced by cyanobacteria in freshwater environments. Temperature plays a crucial role in regulating geosmin dynamics in temperate and subtropical lakes, while its influence may be lower in tropical waters. To better understand the factors affecting geosmin occurrence in tropical waters, a dataset from a field investigation conducted in a large tropical reservoir was analyzed. The water temperature varied between 16 °C and 32 °C, with geosmin concentration ranging from below the detection limit (3 ng/L) to as high as 856 ng/L. Elevated geosmin levels exceeding > 10 ng/L were observed over the whole year except for in September, suggesting that the annual temperature was suitable for geosmin production. Among the diverse cyanobacteria, Dolichospermum circinale was identified as the main producer of geosmin in the reservoir, both by correlation analysis and cells’ geosmin measurements. Geosmin concentration was also significantly related to the abundance of D. circinale. None of the environmental variables (temperature, pH, transparency and nutrients) were significantly directly correlated with geosmin concentration. But the high total nitrogen significantly explained the increase in D. circinale abundance associated with geosmin elevation. Our results suggest that nutrients, particularly nitrogen, directly affected the competitive advantage and abundance of key geosmin producers and thus modified geosmin levels in this tropical reservoir. Our study thus hints at the possible management of the geosmin problem through nutrient reduction in tropical reservoirs. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1141
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

18 pages, 12518 KiB  
Article
Aeolian Sands of the Temperate Boreal Zone (Northern Asia)
by Nikolay Akulov, Maria Rubtsova, Varvara Akulova, Yurii Ryzhov and Maksim Smirnov
Quaternary 2024, 7(4), 55; https://doi.org/10.3390/quat7040055 - 5 Dec 2024
Viewed by 1627
Abstract
This article is devoted to the study of the Quaternary aeolian sands of the boreal zone of north Asia. Using the example of the study reference sections of the Selenga Dauria (Western Transbaikalia), it was established that the activation of aeolian processes is [...] Read more.
This article is devoted to the study of the Quaternary aeolian sands of the boreal zone of north Asia. Using the example of the study reference sections of the Selenga Dauria (Western Transbaikalia), it was established that the activation of aeolian processes is determined by the complex interaction of natural and anthropogenic factors. Natural factors include neotectonic movements; wide distribution of alluvial and lacustrine-alluvial deposits; a sharply continental semi-arid climate; and forest-steppe and steppe vegetation. Among the anthropogenic factors, the leading ones are deforestation, plowing of land and construction of new settlements, roads and other line structures. The obtained radiocarbon dating of buried soils and coal from ancient fire pits indicates the activation of aeolian processes during the Holocene. The main sources for aeolian transport (winnowing) are sands located in the areas of river and lake beaches, floodplains and river terraces. Almost all aeolian sands of the boreal zone were formed as a result of short-range wind transport. They form mini-deserts unfixed by vegetation, with active aeolian processes, dunes, barkhans and deflationary basins. Aeolian swells and blowout basins characterize aeolian landscapes weakly fixed by vegetation. It is noted that aeolian deposits of the boreal zone of north Asia, in contrast to similar sands of the subtropical and tropic zones, consist of coarser-grained material. Medium- and fine-grained sands dominate their composition, which is polymineral and well-sorted. In subtropical and tropical deserts, they are predominantly monomineral, fine and fine-grained. At the same time, mainly minerals that are unstable to weathering (feldspars, plagioclases, pyroxenes and amphiboles) represent the mineralogical composition of the studied aeolian sands. Weathering-resistant minerals dominate the sands of classical deserts: quartz, leucoxene, ilmenite, epidote, zircon, garnets, tourmaline, rutile and others. Modern aeolian landscapes are a unique natural formation for the boreal zone of north Asia and can be successfully used for the development of ecotourism. Full article
Show Figures

Figure 1

Back to TopTop