Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Identification and Simulation Method of Vegetation Distribution
2.3.1. Spatial Interpolation and Downscaling Method of Key Climatic Parameters
2.3.2. Classification Standards of Vegetation Distribution
2.3.3. Identification Method of Vegetation Type
3. Results
3.1. Accuracy Verification
3.2. Spatial Landscape of Vegetation Distribution
3.3. Dynamic Changes in Vegetation Area
3.4. Change Intensity of Vegetation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenoir, J.; Svenning, J.-C. Climate-related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Bastien-Olvera, B.A.; Conte, M.N.; Dong, X.; Briceno, T.; Batker, D.; Emmerling, J.; Tavoni, M.; Granella, F.; Moore, F.C. Unequal Climate Impacts on Global Values of Natural Capital. Nature 2024, 625, 722–727. [Google Scholar] [CrossRef]
- Otto-Portner, H.; Scholes, B.; Agard, J.; Archer, E.R.M.; Arneth, A.; Bai, X.; Barnes, D.K.A.; Burrows, M.T.; Chan, L.; Cheung, W.L.; et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change; IPBES Sectetariat: Bonn, Germany, 2021. [Google Scholar]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Heijmans, M.M.P.D.; Magnússon, R.Í.; Lara, M.J.; Frost, G.V.; Myers-Smith, I.H.; Van Huissteden, J.; Jorgenson, M.T.; Fedorov, A.N.; Epstein, H.E.; Lawrence, D.M.; et al. Tundra Vegetation Change and Impacts on Permafrost. Nat. Rev. Earth Environ. 2022, 3, 68–84. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Hao, D.L.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical Vegetation Indices for Monitoring Terrestrial Ecosystems Globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Jia, B.Q. Driving factor analysis on the vegetation changes derived from the Landsat TM images in Beijing. Acta Ecol. Sin. 2013, 33, 1654–1666. [Google Scholar] [CrossRef]
- Pitman, A.J. The Evolution of, and Revolution in, Land Surface Schemes Designed for Climate Models. Int. J. Climatol. 2003, 23, 479–510. [Google Scholar] [CrossRef]
- Fan, Z.M.; Fan, B.; Yue, T.X. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Sci. China Earth Sci. 2019, 49, 1817–1830. [Google Scholar] [CrossRef]
- Bakkenes, M.; Alkemade, J.R.M.; Ihle, F.; Leemans, R.; Latour, J.B. Assessing Effects of Forecasted Climate Change on the Diversity and Distribution of European Higher Plants for 2050. Glob. Change Biol. 2002, 8, 390–407. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Fu, Y.; Pan, F.F. Climate change tendency and grassland vegetation response during the growth season in Three-River Source Region. Sci. China Earth Sci. 2010, 53, 1506–1512. [Google Scholar] [CrossRef]
- Fang, X.Q.; Chen, F.H. Plant phenology and climate change. Sci. China Earth Sci. 2015, 58, 1043–1044. [Google Scholar] [CrossRef]
- Guo, K.; Fang, J.Y.; Wang, G.H.; Tang, Z.Y.; Xie, Z.Q.; Shen, Z.H.; Wang, R.Q.; Qiang, S.; Liang, C.Z.; Da, L.J.; et al. A revised scheme of vegetation classification system of China. Chin. J. Plant Ecol. 2020, 44, 111–127. [Google Scholar] [CrossRef]
- Yue, T.X.; Fan, Z.M. A review of responses of typical terrestrial ecosystems to climate change. Chin. Sci. Bull. 2014, 59, 217–231. [Google Scholar] [CrossRef]
- Li, S.Q.; Zhang, X.; Lu, Z.Y.; Ni, J.; Lu, J.H. Progress of Vegetation Modelling and Future Research Prospects. Sci. China Earth Sci. 2024, 67, 2718–2738. [Google Scholar] [CrossRef]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San José, Costa Rica, 1967. [Google Scholar]
- Box, E.O. Predicting Physiognomic Vegetation Types with Climate Variables. Vegetatio 1981, 45, 127–139. [Google Scholar] [CrossRef]
- Woodward, F.I.; Williams, B.G. Climate and Plant Distribution at Global and Local Scales. Vegetatio 1987, 69, 189–197. [Google Scholar] [CrossRef]
- Neilson, R.P.; King, G.A.; Koerper, G. Toward a Rule-Based Biome Model. Landsc. Ecol. 1992, 7, 27–43. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. Special Paper: A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate. J. Biogeogr. 1992, 19, 117. [Google Scholar] [CrossRef]
- Haxeltine, A.; Prentice, I.C. BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability, and Competition among Plant Functional Types. Glob. Biogeochem. Cycle 1996, 10, 693–709. [Google Scholar] [CrossRef]
- Kaplan, J.O. Geophysical Applications of Vegetation Modeling. Ph.D. Thesis, Lund University, Lund, Sweden, 2001. [Google Scholar]
- Herzschuh, U.; Ni, J.; Birks, H.J.B.; Böhner, J. Driving Forces of Mid-Holocene Vegetation Shifts on the Upper Tibetan Plateau, with Emphasis on Changes in Atmospheric CO2 Concentrations. Quat. Sci. Rev. 2011, 30, 1907–1917. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics. Glob. Biogeochem. Cycle 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Zhang, X.S. A vegetation-climate classification system for global change studies in China. Quat. Sci. 1993, 13, 157–169, 193–196. [Google Scholar]
- Fan, Z.M.; Fan, B. Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia. Forests 2019, 10, 873. [Google Scholar] [CrossRef]
- Audebert, P.; Milne, E.; Schiettecatte, L.-S.; Dionisio, D.; Sinitambirivoutin, M.; Pais, C.; Proença, C.; Bernoux, M. Ecological Zoning for Climate Policy and Global Change Studies. Nat. Sustain. 2024, 7, 1294–1303. [Google Scholar] [CrossRef]
- Jin, B.S.; Nie, M.; Li, Q.; Chen, J.K.; Zhou, W.B. Basic characteristics, challenges and key scientific questions of the Poyang Lake Basin. Resour. Environ. Yangtze Basin 2012, 21, 268–275. [Google Scholar]
- Jian, Y.X.; Li, R.D.; Wang, J.B.; Chen, J.K. Aquatic plant diversity and remote sensing of the beach vegetation in Lake Poyang. Chin. J. Plant Ecol. 2001, 25, 581–587. [Google Scholar]
- Gu, T.T.; Zhou, S.Q.; Shao, B.F.; Li, Q. Interactions between vegetation cover change and precipitation in Poyang Lake region. Chin. J. Ecol. 2009, 28, 1060–1066. [Google Scholar]
- Li, X.H.; Zhang, Q.; Shao, M. Spatial and temporal variability of leaf area index in the Poyang Lake Basin and its relationship with climatic factors. Resour. Environ. Yangtze Basin 2012, 21, 296–301. [Google Scholar]
- Yao, B.N.; Chen, B.Z.; Che, M.L. Spatial-temporal change of gross primary productivity in the Poyang Lake Basin from 2000 to 2013 and correlation with meteorologic factors. Chin. Bull. Bot. 2016, 51, 639–649. [Google Scholar] [CrossRef]
- Yang, X.X. Impacts of Climate Change and Human Activities on the Terrestrial Vegetation Cover Changes in the Poyang Lake Basin. Master’s Thesis, Southwest University, Chongqin, China, 2022. [Google Scholar]
- Li, B.Z.; Wang, J.F.; Wang, H.Q.; Xia, L.J.; Su, R.; Dai, Z.J. Study on the Carbon Sink Value of Forest and Vegetation in Jiangxi Province. Meteorol. Disaster Reduct. Res. 2018, 41, 207–211. [Google Scholar] [CrossRef]
- Wu, G.X.; Tang, X.J.; Ruan, H.H.; Luo, X.F. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province, China. J. Nanjing For. Univ. Nat. Sci. Ed. 2019, 43, 105–110. [Google Scholar]
- Yue, T.X. Surface Modeling: High Accuracy and High Speed Methods, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1-138-07567-1. [Google Scholar]
- Yue, T.X.; Zhao, N.; Liu, Y.; Wang, Y.F.; Zhang, B.; Du, Z.P.; Fan, Z.M.; Shi, W.J.; Chen, C.F.; Zhao, M.W.; et al. A Fundamental Theorem for Eco-Environmental Surface Modelling and Its Applications. Sci. China Earth Sci. 2020, 63, 1092–1112. [Google Scholar] [CrossRef]
- Gong, W.P.; Zhang, Q.; Fan, Z.M.; Shi, W.J.; Zhao, N.; Du, Z.P.; Yang, Y.; Chen, K.N.; Hu, J.X.; An, T.R.; et al. Future Scenarios of Forest Carbon Sink in a Typical Subtropical County. Forests 2024, 15, 1887. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems; Macmillan Company: London, UK, 1975. [Google Scholar]
- Zhang, F.; Zhang, J.T.; Zhang, F. Pattern of forest vegetation and its environmental interpretation in Zhuweigou, Lishan Mountain Nature Reserve. Acta Ecol. Sin. 2003, 23, 421–427. [Google Scholar]
- Yue, T.X.; Fan, Z.M.; Chen, C.F.; Sun, X.F.; Li, B.L. Surface Modelling of Global Terrestrial Ecosystems under Three Climate Change Scenarios. Ecol. Model. 2011, 222, 2342–2361. [Google Scholar] [CrossRef]
- Cheng, W.M.; Zhou, C.H.; Chai, H.X.; Zhao, S.M.; Li, B.Y. Quantitative extraction and analysis of basic morphological types of land geomorphology in China. J. Geo-Inf. Sci. 2009, 11, 725–736. [Google Scholar] [CrossRef]
- Xia, W.L. Spatio-Temporal Variation of NDVI and Its Relationship with Environmental Factors in Jiangxi Province. Master’s Thesis, East China University of Technology, Jiangxi, China, 2017. [Google Scholar]
- Belotelov, N.V.; Bogatyrev, B.G.; Kirilenko, A.P.; Venevsky, S.V. Modelling of Time-Dependent Biome Shifts under Global Climate Changes. Ecol. Model. 1996, 87, 29–40. [Google Scholar] [CrossRef]
- Chen, X.W.; Zhang, X.S.; Li, B.L. The Possible Response of Life Zones in China under Global Climate Change. Glob. Planet. Change 2003, 38, 327–337. [Google Scholar] [CrossRef]
- Szelepcsényi, Z.; Breuer, H.; Kis, A.; Pongrácz, R.; Sümegi, P. Assessment of Projected Climate Change in the Carpathian Region Using the Holdridge Life Zone System. Theor. Appl. Climatol. 2018, 131, 593–610. [Google Scholar] [CrossRef]
- Fan, Z.M.; Bai, X.Y. Scenarios of Potential Vegetation Distribution in the Different Gradient Zones of Qinghai-Tibet Plateau under Future Climate Change. Sci. Total Environ. 2021, 796, 148918. [Google Scholar] [CrossRef]
- Fan, Z.M. Dynamic Patterns of the Vertical Distribution of Vegetation in Heihe River Basin since the 1980s. Forests 2021, 12, 1496. [Google Scholar] [CrossRef]
- Ye, C.; Liu, Y.B.; Zhao, X.S.; Wu, G.P. Analysis of Poyang Lake wetland vegetation growth dynamics and its response to lake water level based on MODIS. Resour. Environ. Yangtze Basin 2013, 22, 705–712. [Google Scholar]
- Liu, T.T.; Yang, X.X.; Ye, X.C.; Wu, J.; Liu, J. Effects of human activities on terrestrial vegetation coverage change of Poyang Lake Basin during 2000–2020. Bull. Soil Water Conserv. 2022, 42, 320–329. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.F.; Lin, M.Z. Simulating the effect of climate change and human activities on the forest ecosystem in the hilly red soil region of southern China: A case study in Taihe county, Jiangxi province. Geogr. Res. 2018, 37, 2141–2152. [Google Scholar]
- Liu, M.X.; Liu, Y.C.; Chen, M.; Li, Q.; Liang, Q.; Zou, J.P.; Qiaolipanguli, T.E.H. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang river basin during 2000–2018. Bull. Soil Water Conserv. 2020, 40, 284–290. [Google Scholar] [CrossRef]
- Lin, Y.B.; Wang, X.J.; Quan, M.Y.; Lin, D.R.; Lu, Y.; Liu, G.X. Spatiotemporal characteristics of vegetation coverage and its terrain gradient effect in Jiangxi and Fujian provinces in south China. Res. Soil Water Conserv. 2024, 31, 290–300. [Google Scholar] [CrossRef]
- Sugden, A.; Smith, J.; Pennisi, E. The Future of Forests. Science 2008, 320, 1435. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H.B. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef]
- Pan, Y.; Lin, J.; Tong, G.C.; Tang, P.; Zhang, J.C.; Gu, Z.Y. Spatio-Temporal Variations of Vegetation Coverage in Taihu Lake Basin From 2004 to 2014. J. Ecol. Rural Environ. 2018, 34, 37–45. [Google Scholar]
- Liu, S.L.; An, N.N.; Yin, Y.J.; Cheng, F.Y.; Dong, S.K. Relationship Between Spatio-Temporal Dynamics of Soil and Water Loss and NDVI of the Small Basins in the Middle Reaches of Lancang River Based on SWAT Model. J. Soil Water Conserv. 2016, 30, 62–67. [Google Scholar] [CrossRef]
- Mao, Z.Y.; Xu, L.G.; Lai, X.J.; Wang, X.L.; Li, Y.L.; Li, X.H.; Cai, Y.J.; Fan, H.X.; Wu, Y.K.; Wei, F.K. Assessment on ecosystem health of Lake Poyang based on a comprehensive index method. J. Lake Sci. 2023, 35, 1022–1036. [Google Scholar] [CrossRef]
Vegetation | MAB (°C) | TAP (mm) | PER | DEM (m) | LON | LAT |
---|---|---|---|---|---|---|
Temperate grassland | 16.55 | 1721.80 | 0.58 | 28.82 | 116.29 | 29.53 |
Temperate shrubland | 17.15 | 1860.88 | 0.55 | 353.79 | 115.68 | 27.25 |
Temperate marsh | 17.25 | 1788.54 | 0.57 | 155.39 | 117.24 | 29.71 |
Temperate coniferous forest | 17.74 | 1804.08 | 0.58 | 485.50 | 116.39 | 26.25 |
Temperate deciduous broadleaf forest | 17.08 | 1701.58 | 0.59 | 43.75 | 116.86 | 29.60 |
Subtropical grassland | 17.98 | 1790.06 | 0.60 | 247.93 | 115.86 | 27.42 |
Subtropical shrubland | 17.32 | 1788.64 | 0.58 | 320.81 | 115.70 | 27.79 |
Subtropical marsh | 17.55 | 1666.68 | 0.64 | 153.66 | 116.26 | 29.09 |
Subtropical coniferous forest | 17.73 | 1776.20 | 0.60 | 313.60 | 115.51 | 27.21 |
Subtropical deciduous broadleaf forest | 16.41 | 2024.78 | 0.49 | 414.99 | 116.54 | 28.74 |
Subtropical evergreen broadleaf forest | 17.16 | 1875.00 | 0.55 | 435.37 | 115.94 | 27.26 |
Subtropical evergreen–deciduous broadleaf mixed forest | 15.51 | 1900.71 | 0.48 | 721.47 | 113.87 | 26.75 |
Subtropical coniferous–broadleaf mixed forest | 17.59 | 1695.86 | 0.61 | 295.02 | 114.10 | 26.73 |
Bamboo forest | 16.78 | 1902.48 | 0.53 | 474.15 | 115.53 | 27.23 |
Cultivated vegetation | 18.18 | 1724.14 | 0.63 | 135.28 | 115.73 | 27.96 |
Water body | 18.34 | 1599.16 | 0.69 | 34.76 | 116.14 | 28.78 |
Predicted Values | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 0 | 210 | 73 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
810 | 0 | 0 | 1746 | 47 | 3485 | 114 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 3718 | 0 | 0 | 0 | 0 | 0 |
350 | 0 | 0 | 520 | 32 | 0 | 17 | 5327 | 4 | 0 | 0 | 0 |
114 | 0 | 0 | 143 | 4 | 0 | 10 | 0 | 1388 | 0 | 0 | 0 |
42 | 0 | 0 | 80 | 4 | 0 | 4 | 0 | 0 | 231 | 0 | 0 |
704 | 0 | 0 | 854 | 42 | 0 | 17 | 0 | 0 | 0 | 4746 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3382 |
Vegetation | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|
Temperate grassland | 1.82 | 1.37 | 1.37 | 1.37 |
Temperate shrubland | 16.63 | 22.92 | 25.42 | 27.85 |
Temperate marsh | 23.40 | 7.32 | 7.15 | 7.11 |
Temperate coniferous forest | 2.26 | 17.30 | 19.32 | 35.92 |
Temperate deciduous broadleaf forest | 4.57 | 4.90 | 4.89 | 4.89 |
Subtropical grassland | 336.23 | 306.73 | 307.25 | 303.11 |
Subtropical shrubland | 88.53 | 87.39 | 86.64 | 84.59 |
Subtropical marsh | 10.18 | 24.47 | 26.29 | 26.20 |
Subtropical coniferous forest | 375.01 | 314.03 | 305.78 | 299.43 |
Subtropical deciduous broadleaf forest | 44.98 | 16.25 | 14.67 | 7.20 |
Subtropical evergreen broadleaf forest | 69.53 | 63.13 | 64.21 | 72.32 |
Subtropical evergreen–deciduous broadleaf mixed forest | 50.66 | 107.89 | 109.78 | 111.70 |
Subtropical coniferous–broadleaf mixed forest | 0.44 | 18.26 | 20.69 | 24.71 |
Bamboo forest | 61.16 | 85.56 | 84.07 | 71.10 |
Cultivated vegetation | 606.55 | 611.68 | 611.70 | 611.72 |
Water body | - | - | - | - |
Vegetation | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|
Temperate grassland | 1.82 | 1.62 | 1.62 | 1.62 |
Temperate shrubland | 16.63 | 25.12 | 24.03 | 24.91 |
Temperate marsh | 23.40 | 12.43 | 9.81 | 9.80 |
Temperate coniferous forest | 2.26 | 10.11 | 13.88 | 16.96 |
Temperate deciduous broadleaf forest | 4.57 | 5.64 | 5.63 | 5.62 |
Subtropical grassland | 336.23 | 310.55 | 307.68 | 308.06 |
Subtropical shrubland | 88.53 | 87.30 | 85.59 | 84.77 |
Subtropical marsh | 10.18 | 27.60 | 33.12 | 33.31 |
Subtropical coniferous forest | 375.01 | 315.34 | 306.02 | 301.48 |
Subtropical deciduous broadleaf forest | 44.98 | 11.88 | 9.43 | 8.52 |
Subtropical evergreen broadleaf forest | 69.53 | 65.81 | 64.34 | 65.41 |
Subtropical evergreen–deciduous broadleaf mixed forest | 50.66 | 102.87 | 108.64 | 108.57 |
Subtropical coniferous–broadleaf mixed forest | 0.44 | 15.26 | 20.42 | 23.54 |
Bamboo forest | 61.16 | 83.74 | 83.86 | 81.49 |
Cultivated vegetation | 606.55 | 614.96 | 615.14 | 615.15 |
Water body | - | - | - | - |
Vegetation | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|
Temperate grassland | 1.82 | 1.37 | 1.37 | 1.37 |
Temperate shrubland | 16.63 | 22.92 | 25.42 | 27.85 |
Temperate marsh | 23.40 | 7.32 | 7.15 | 7.11 |
Temperate coniferous forest | 2.26 | 17.30 | 19.32 | 35.92 |
Temperate deciduous broadleaf forest | 4.57 | 4.90 | 4.89 | 4.89 |
Subtropical grassland | 336.23 | 306.73 | 307.25 | 303.11 |
Subtropical shrubland | 88.53 | 87.39 | 86.64 | 84.59 |
Subtropical marsh | 10.18 | 24.47 | 26.29 | 26.20 |
Subtropical coniferous forest | 375.01 | 314.03 | 305.78 | 299.43 |
Subtropical deciduous broadleaf forest | 44.98 | 16.25 | 14.67 | 7.20 |
Subtropical evergreen broadleaf forest | 69.53 | 63.13 | 64.21 | 72.32 |
Subtropical evergreen–deciduous broadleaf mixed forest | 50.66 | 107.89 | 109.78 | 111.70 |
Subtropical coniferous–broadleaf mixed forest | 0.44 | 18.26 | 20.69 | 24.71 |
Bamboo forest | 61.16 | 85.56 | 84.07 | 71.10 |
Cultivated vegetation | 606.55 | 611.68 | 611.70 | 611.72 |
Water body | - | - | - | - |
Area | 2021–2030 | 2031–2040 | 2041–2050 |
---|---|---|---|
Low-elevation area | 1.36 | 0.042 | 0.003 |
Medium-elevation area | 20.34 | 2.49 | 3.99 |
High-elevation area | 42.90 | 1.74 | 1.41 |
The whole region | 64.60 | 4.27 | 5.40 |
Area | 2021–2030 | 2031–2040 | 2041–2050 |
---|---|---|---|
Low-elevation area | 1.98 | 0.092 | 0 |
Medium-elevation area | 17.27 | 3.65 | 1.871 |
High-elevation area | 37.07 | 4.82 | 1.626 |
The whole region | 56.32 | 8.57 | 3.50 |
Area | 2021–2030 | 2031–2040 | 2041–2050 |
---|---|---|---|
Low-elevation area | 1.26 | 0.006 | 0.004 |
Medium-elevation area | 18.07 | 2.85 | 4.39 |
High-elevation area | 42.841 | 2.33 | 7.50 |
The whole region | 62.17 | 5.19 | 11.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Fan, Z.; Li, S.; Yao, Y.; Du, Z.; Bai, X. Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China. Forests 2025, 16, 430. https://doi.org/10.3390/f16030430
Wang L, Fan Z, Li S, Yao Y, Du Z, Bai X. Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China. Forests. 2025; 16(3):430. https://doi.org/10.3390/f16030430
Chicago/Turabian StyleWang, Lingjing, Zemeng Fan, Saibo Li, Yonghui Yao, Zhengping Du, and Xuyang Bai. 2025. "Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China" Forests 16, no. 3: 430. https://doi.org/10.3390/f16030430
APA StyleWang, L., Fan, Z., Li, S., Yao, Y., Du, Z., & Bai, X. (2025). Vegetation Mapping and Scenario Simulation in the Poyang Lake Basin of China. Forests, 16(3), 430. https://doi.org/10.3390/f16030430