Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = suborbital flight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4831 KiB  
Article
Aerodynamic Optimization and Thermal Deformation Effects on Mid-Altitude Sounding Rockets: A Computational and Structural Analysis
by Aslam Abdullah, Mohd Fadhli Zulkafli, Muhammad Akmal Abdul Halim, Ramanathan Ashwin Thanneermalai and Bambang Basuno
Dynamics 2025, 5(3), 28; https://doi.org/10.3390/dynamics5030028 - 9 Jul 2025
Viewed by 242
Abstract
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through [...] Read more.
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). SolidWorks Flow Simulation and SolidWorks Simulation are used to assess how nose cone and fin geometries, as well as thermal deformation, influence flight performance. Among nine tested configurations, the ogive nose cone with trapezoidal fins achieved the highest simulated apogee of 2639 m, with drag coefficients of 0.480 (OpenRocket) and 0.401 (SolidWorks Flow Simulation). Thermal–structural analysis revealed a maximum nose tip displacement of 0.7249 mm for the rocket with the ogive nose cone, leading to an increasing drag coefficient of 0.404. However, thermal deformation of the ellipsoid nose cone led to a reduction in the drag coefficient from 0.419 to 0.399, even though it exhibited a slightly higher maximum displacement of 0.7443 mm. Mesh independence was confirmed with outlet velocity deviations below 1% across refinements. These results highlight the importance of integrated CFD–FEA approaches, geometric optimization, and material resilience for enhancing the aerodynamic performance of subsonic sounding rockets. Full article
Show Figures

Figure 1

22 pages, 10679 KiB  
Article
Simulation Model for Hardware-in-the-Loop Tests of the ILR-33 AMBER Rocket Control System
by Dawid Cieśliński, Rafał Dziczkaniec, Jan Kierski, Cezary Szczepański and Michał Welcer
Sensors 2025, 25(13), 4083; https://doi.org/10.3390/s25134083 - 30 Jun 2025
Viewed by 277
Abstract
In this paper, an advanced flight simulation model of the ILR-33 AMBER rocket is shown. The model is designed for Hardware-in-the-Loop (HiL) tests of the rocket control system. It permits us to simulate flight dynamics in a 6DOF environment, with consideration of the [...] Read more.
In this paper, an advanced flight simulation model of the ILR-33 AMBER rocket is shown. The model is designed for Hardware-in-the-Loop (HiL) tests of the rocket control system. It permits us to simulate flight dynamics in a 6DOF environment, with consideration of the variable thrust, mass-inertia, and aerodynamics. It reproduces key functionalities of on-board computer and sensors and allows us to reproduce multiple mission scenarios. Simplifying assumptions concerning the environment and coordinate systems were made, reducing calculation costs while preserving key functionalities of the simulation. The control system consists of four movable canards, actuators, and motion controllers. The process of integration between the simulation model and hardware using a real-time computer is shown. Efficient communication between those elements was developed and tested in simulated flight conditions. In the final part, relevant control system HiL tests were presented. An extensive comparison between unguided and guided flight trajectories was performed. The impact of the control system operation on all analyzed parameters is clearly demonstrated. The results confirmed the usefulness of the simulation model for the task it was developed for. The potential of the HiL method in the design of complex control systems for suborbital rockets is proven. Full article
Show Figures

Figure 1

23 pages, 8683 KiB  
Article
MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments
by Waldenê de Melo Moura, Carlos Renato dos Santos, Moisés José dos Santos Freitas, Adriano Costa Pinto, Luciana Pereira Simões and Alison Moraes
Aerospace 2024, 11(10), 790; https://doi.org/10.3390/aerospace11100790 - 25 Sep 2024
Cited by 2 | Viewed by 2640
Abstract
The study of microgravity, a condition in which an object experiences near-zero weight, is a critical area of research with far-reaching implications for various scientific disciplines. Microgravity allows scientists to investigate fundamental physical phenomena influenced by Earth’s gravitational forces, opening up new possibilities [...] Read more.
The study of microgravity, a condition in which an object experiences near-zero weight, is a critical area of research with far-reaching implications for various scientific disciplines. Microgravity allows scientists to investigate fundamental physical phenomena influenced by Earth’s gravitational forces, opening up new possibilities in fields such as materials science, fluid dynamics, and biology. However, the complexity and cost of developing and conducting microgravity missions have historically limited the field to well-funded space agencies, universities with dedicated government funding, and large research institutions, creating a significant barrier to entry. This paper presents the MicroGravity Explorer Kit’s (MGX) design, a multifunctional platform for conducting microgravity experiments aboard suborbital rocket flights. The MGX aims to democratize access to microgravity research, making it accessible to high school students, undergraduates, and researchers. To ensure that the tool is versatile across different scenarios, the authors conducted a comprehensive literature review on microgravity experiments, and specific requirements for the MGX were established. The MGX is designed as an open-source platform that supports various experiments, reducing costs and accelerating development. The multipurpose experiment consists of a Jetson Nano computer with multiple sensors, such as inertial sensors, temperature and pressure, and two cameras with up to 4k resolution. The project also presents examples of codes for data acquisition and compression and the ability to process images and run machine learning algorithms to interpret results. The MGX seeks to promote greater participation and innovation in space sciences by simplifying the process and reducing barriers to entry. The design of a platform that can democratize access to space and research related to space sciences has the potential to lead to groundbreaking discoveries and advancements in materials science, fluid dynamics, and biology, with significant practical applications such as more efficient propulsion systems and novel materials with unique properties. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 6118 KiB  
Article
UAV Atmosphere Sounding for Rocket Launch Support
by Karol Piotr Bęben, Tomasz Noga, Dawid Cieśliński, Dawid Kulpa and Marcin Ryszard Spiralski
Sensors 2023, 23(24), 9639; https://doi.org/10.3390/s23249639 - 5 Dec 2023
Cited by 1 | Viewed by 2379
Abstract
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given [...] Read more.
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given the finite flight zone and impact area. Crucial to safety analysis is the wind profile, especially in the very first seconds of a flight, when rocket velocity is of the same order as the wind speed. Traditional near-ground wind data sources, ranging from wind towers to numerical models of the atmosphere, have limitations. Wind towers are costly and unfeasible at many test ranges used for launches, while numerical modeling may not reflect the specific ground profile near the launcher due to their large cell size (2 to +10 km). Meteorological balloons are not favorable for such measurements as they aim to provide the launch operator with a wind profile at high altitudes, and are launched only 1–2 times per flight attempt. Our study sought to prototype a wind measurement system designed to acquire near-ground wind profile data. It focuses on measuring wind direction and speed at near-ground altitudes with higher flight frequency, offering data on demand shortly before launch to help ensure safety. This atmosphere sounding system consists of an Unmanned Aerial Vehicle (UAV) equipped with an onboard ultrasonic wind sensor. Some reports in the literature have discussed the possibility of using UAV-borne anemometers, but the topic of measurement errors introduced by placing the anemometer onboard an UAV remains under studied. Limited research in this area underlines the need for experimental validation of design choices–for specific types of UAVs, anemometers, and mounting. This paper presents a literature review, a detailed overview of the prototyped system, and flight test results in both natural (outdoor) and controlled (indoor, no wind) conditions. Data from the UAV system’s anemometer was benchmarked against a stationary reference weather station, in order to examine the influence of the UAV’s rotor on the anemometer readings. Our findings show a wind speed Root Mean Square Error (RMSE) of 5 m/s and a directional RMSE of below 5.3° (both averaged for 1 min). The results were also compared with similar UAV-based wind measurements. The prototyped system was successfully used in a suborbital rocket launch campaign, thus demonstrating the feasibility of integrating UAVs with dedicated sensors for performing regular meteorological measurements in automatic mode. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 14502 KiB  
Article
The Study of Selected Aspects of the Suborbital Vehicle Return Flight Trajectory
by Agnieszka Kwiek, Marcin Figat and Tomasz Goetzendorf-Grabowski
Aerospace 2023, 10(5), 489; https://doi.org/10.3390/aerospace10050489 - 22 May 2023
Cited by 5 | Viewed by 2416
Abstract
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: [...] Read more.
The article presents the results of preliminary studies of the parameters of the return flight trajectory of a rocket plane for suborbital tourist flights into space. The rocket plane is designed as a tailless vehicle and has an unconventional arrangement of control surfaces: elevons and side plates that can rotate. The main aim of the research presented in this paper is to investigate the dynamic stability of the rocket plane and the response to control in the return suborbital flight. The secondary objective is to study the behavior of the rocket plane with respect to the initial state of the return flight. The key parameters taken into account in this study are the Mach number and G-load. Moreover, a study of the trim condition, dynamic stability and response to control of a rocket plane in the low part of the stratosphere is presented. The tests were carried out using a numerical simulation of the flight of a rocket plane. Dynamic stability was determined on the basis of time history analysis, and the results were compared with the results obtained by solving the eigenvalues problem. The results revealed that the rocket plane should be equipped with a Stability Augmentation System to improve short period damping at supersonic speeds at moderate altitudes. It can also be concluded that the maximum load G and Ma do not occur at the same height of flight. In terms of the effectiveness of the control surfaces, they start working at an altitude of 55 km. Due to the speed regime, the obtained results can be useful in the design of such objects as rocket planes, highly maneuverable and supersonic aircraft. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 27327 KiB  
Review
Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs
by Carolyn Ross, Shyam Sablani and Juming Tang
Foods 2023, 12(6), 1322; https://doi.org/10.3390/foods12061322 - 20 Mar 2023
Cited by 9 | Viewed by 5534
Abstract
The crewed suborbital and space flights launched by private companies over the past three years have rejuvenated public interest in space travel, including space tourism. Ready-to-eat meals (MREs) are the main source of nutrients and energy for space travelers. It is critical that [...] Read more.
The crewed suborbital and space flights launched by private companies over the past three years have rejuvenated public interest in space travel, including space tourism. Ready-to-eat meals (MREs) are the main source of nutrients and energy for space travelers. It is critical that those meals are free of bacterial and viral pathogens and have adequate shelf life. The participation of private companies in space programs will create new opportunities and demand for high-quality and microbiologically safe MREs for future space travels. In this article, we provide a brief review of nutrition and energy requirements for human activities in space. We discuss the general thermal processing requirements for control of bacterial and viral pathogens in MREs and introduce advanced thermal preservation technologies based on microwaves for production of MREs with different shelf-lives under various storage conditions. We also present the latest advancements in the development of polymer packaging materials for quality preservation of thermally stabilized MREs over extended storage. Finally, we recommend future research on issues related to the sensory quality of specially formulated MREs, microbial safety of dried foods that complement high moisture MREs, and food package waste management in future space missions. Full article
(This article belongs to the Special Issue Advances of Ultrasound and Microwave Technology Application in Foods)
Show Figures

Figure 1

14 pages, 5221 KiB  
Article
Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight
by Natasha J. Haveman, Mingqi Zhou, Jordan Callaham, Hunter F. Strickland, Donald Houze, Susan Manning-Roach, Gerard Newsham, Anna-Lisa Paul and Robert J. Ferl
Life 2022, 12(11), 1871; https://doi.org/10.3390/life12111871 - 13 Nov 2022
Cited by 3 | Viewed by 3042
Abstract
Suborbital spaceflights now enable human-tended research investigating short-term gravitational effects in biological systems, eliminating the need for complex automation. Here, we discuss a method utilizing KSC Fixation Tubes (KFTs) to both carry biology to suborbital space as well as fix that biology at [...] Read more.
Suborbital spaceflights now enable human-tended research investigating short-term gravitational effects in biological systems, eliminating the need for complex automation. Here, we discuss a method utilizing KSC Fixation Tubes (KFTs) to both carry biology to suborbital space as well as fix that biology at certain stages of flight. Plants on support media were inserted into the sample side of KFTs preloaded with RNAlater in the fixation chamber. The KFTs were activated at various stages of a simulated flight to fix the plants. RNA-seq analysis conducted on tissue samples housed in KFTs, showed that plants behaved consistently in KFTs when compared to petri-plates. Over the time course, roots adjusted to hypoxia and leaves adjusted to changes in photosynthesis. These responses were due in part to the environment imposed by the encased triple containment of the KFTs, which is a requirement for flight in human spacecraft. While plants exhibited expected reproducible transcriptomic alteration over time in the KFTs, responses to clinorotation during the simulated flight suggest that transcriptomic responses to suborbital spaceflight can be examined using this approach. Full article
(This article belongs to the Special Issue Plants and Microgravity)
Show Figures

Figure 1

16 pages, 3786 KiB  
Article
Stability and Rupture of Liquid Crystal Bridges under Microgravity
by Torsten Trittel, Christoph Klopp, Kirsten Harth and Ralf Stannarius
Crystals 2022, 12(8), 1092; https://doi.org/10.3390/cryst12081092 - 4 Aug 2022
Cited by 1 | Viewed by 2071
Abstract
Liquid-crystal columns were prepared and observed under microgravity aboard suborbital TEXUS rocket flights. The microgravity phase of each flight lasted for approximately six minutes. We tested structures in different liquid-crystalline mesophases. In the isotropic and nematic phases, the Rayleigh-Plateau instability led to the [...] Read more.
Liquid-crystal columns were prepared and observed under microgravity aboard suborbital TEXUS rocket flights. The microgravity phase of each flight lasted for approximately six minutes. We tested structures in different liquid-crystalline mesophases. In the isotropic and nematic phases, the Rayleigh-Plateau instability led to the collapse of the columns. However, in the smectic A and C mesophases, it was found that the columns survived the extension to slenderness ratios (length/diameter) of over 4.5 (and in one case, more than 6). The liquid-crystalline material in the millimeter-sized columns was macroscopically disordered. Thus, regular shell-like internal layer structures that stabilized the columns can be excluded. Instead, the reason for their persistence was the yield stress of the material, which is quite different for the different mesophases. In the columnar mesophase, the cylindrical bridge even survived the strong deceleration when the rocket re-entered the atmosphere. During the breakup of the filaments, the neck thinning dynamics were determined. Full article
(This article belongs to the Special Issue Smectic Liquid Crystals)
Show Figures

Figure 1

40 pages, 12344 KiB  
Article
Gravitational Force—Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells
by Christian Vahlensieck, Cora Sandra Thiel, Ye Zhang, Andreas Huge and Oliver Ullrich
Int. J. Mol. Sci. 2021, 22(17), 9426; https://doi.org/10.3390/ijms22179426 - 30 Aug 2021
Cited by 20 | Viewed by 3889
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying [...] Read more.
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

23 pages, 24094 KiB  
Review
Development of Green Storable Hybrid Rocket Propulsion Technology Using 98% Hydrogen Peroxide as Oxidizer
by Adam Okninski, Pawel Surmacz, Bartosz Bartkowiak, Tobiasz Mayer, Kamil Sobczak, Michal Pakosz, Damian Kaniewski, Jan Matyszewski, Grzegorz Rarata and Piotr Wolanski
Aerospace 2021, 8(9), 234; https://doi.org/10.3390/aerospace8090234 - 24 Aug 2021
Cited by 42 | Viewed by 13750
Abstract
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up [...] Read more.
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up to 99.99% to be obtained in-house. Hydrogen peroxide of 98% concentration (mass-wise) was selected as the workhorse for further space propulsion and space transportation developments. Over the course nearly 10 years of the technology’s evolution, the Lukasiewicz Research Network—Institute of Aviation completed hundreds of subscale hybrid rocket motor and component tests. In 2017, the Institute presented the first vehicle in the world to have demonstrated in-flight utilization for 98% hydrogen peroxide. This was achieved by the ILR-33 AMBER suborbital rocket, which utilizes a hybrid rocket propulsion as the main stage. Since then, three successful consecutive flights of the vehicle have been performed, and flights to the Von Karman Line are planned. The hybrid rocket technology developments are described. Advances in hybrid fuel technology are shown, including the testing of fuel grains. Theoretical studies and sizing of hybrid propulsion systems for spacecraft, sounding rockets and small launch vehicles have been performed, and planned further developments are discussed. Full article
(This article belongs to the Special Issue Hybrid Rocket(Volume II))
Show Figures

Figure 1

17 pages, 6765 KiB  
Article
Design Optimization of Interfacing Attachments for the Deployable Wing of an Unmanned Re-Entry Vehicle
by Francesco Di Caprio, Roberto Scigliano, Roberto Fauci and Domenico Tescione
Algorithms 2021, 14(5), 141; https://doi.org/10.3390/a14050141 - 28 Apr 2021
Cited by 4 | Viewed by 3163
Abstract
Re-entry winged body vehicles have several advantages w.r.t capsules, such as maneuverability and controlled landing opportunity. On the other hand, they show an increment in design level complexity, especially from an aerodynamic, aero-thermodynamic, and structural point of view, and in the difficulties of [...] Read more.
Re-entry winged body vehicles have several advantages w.r.t capsules, such as maneuverability and controlled landing opportunity. On the other hand, they show an increment in design level complexity, especially from an aerodynamic, aero-thermodynamic, and structural point of view, and in the difficulties of housing in operative existing launchers. In this framework, the idea of designing unmanned vehicles equipped with deployable wings for suborbital flight was born. This work details a preliminary study for identifying the best configuration for the hinge system aimed at the in-orbit deployment of an unmanned re-entry vehicle’s wings. In particular, the adopted optimization methodology is described. The adopted approach uses a genetic algorithm available in commercial software in conjunction with fully parametric models created in FEM environments and, in particular, it can optimize the hinge position considering both the deployed and folded configuration. The results identify the best hinge configuration that minimizes interface loads, thus, realizing a lighter and more efficient deployment system. Indeed, for such a category of vehicle, it is mandatory to reduce the structural mass, as much as possible in order to increase the payload and reduce service costs. Full article
(This article belongs to the Special Issue Algorithms and Models for Dynamic Multiple Criteria Decision Making)
Show Figures

Figure 1

37 pages, 6380 KiB  
Article
Rapid Cellular Perception of Gravitational Forces in Human Jurkat T Cells and Transduction into Gene Expression Regulation
by Cora Sandra Thiel, Swantje Christoffel, Svantje Tauber, Christian Vahlensieck, Diane de Zélicourt, Liliana E. Layer, Beatrice Lauber, Jennifer Polzer and Oliver Ullrich
Int. J. Mol. Sci. 2020, 21(2), 514; https://doi.org/10.3390/ijms21020514 - 14 Jan 2020
Cited by 18 | Viewed by 6037
Abstract
Cellular processes are influenced in many ways by changes in gravitational force. In previous studies, we were able to demonstrate, in various cellular systems and research platforms that reactions and adaptation processes occur very rapidly after the onset of altered gravity. In this [...] Read more.
Cellular processes are influenced in many ways by changes in gravitational force. In previous studies, we were able to demonstrate, in various cellular systems and research platforms that reactions and adaptation processes occur very rapidly after the onset of altered gravity. In this study we systematically compared differentially expressed gene transcript clusters (TCs) in human Jurkat T cells in microgravity provided by a suborbital ballistic rocket with vector-averaged gravity (vag) provided by a 2D clinostat. Additionally, we included 9× g centrifuge experiments and rigorous controls for excluding other factors of influence than gravity. We found that 11 TCs were significantly altered in 5 min of flight-induced and vector-averaged gravity. Among the annotated clusters were G3BP1, KPNB1, NUDT3, SFT2D2, and POMK. Our results revealed that less than 1% of all examined TCs show the same response in vag and flight-induced microgravity, while 38% of differentially regulated TCs identified during the hypergravity phase of the suborbital ballistic rocket flight could be verified with a 9× g ground centrifuge. In the 2D clinostat system, doing one full rotation per second, vector effects of the gravitational force are only nullified if the sensing mechanism requires 1 s or longer. Due to the fact that vag with an integration period of 1 s was not able to reproduce the results obtained in flight-induced microgravity, we conclude that the initial trigger of gene expression response to microgravity requires less than 1 s reaction time. Additionally, we discovered extensive gene expression differences caused by simple handling of the cell suspension in control experiments, which underlines the need for rigorous standardization regarding mechanical forces during cell culture experiments in general. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 1849 KiB  
Article
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages
by Cora Sandra Thiel, Svantje Tauber, Beatrice Lauber, Jennifer Polzer, Christian Seebacher, Rainer Uhl, Srujana Neelam, Ye Zhang, Howard Levine and Oliver Ullrich
Int. J. Mol. Sci. 2019, 20(10), 2402; https://doi.org/10.3390/ijms20102402 - 15 May 2019
Cited by 55 | Viewed by 7492
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital [...] Read more.
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Show Figures

Figure 1

31 pages, 4446 KiB  
Article
Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity
by Johannes Vogel, Cora Sandra Thiel, Svantje Tauber, Christian Stockmann, Max Gassmann and Oliver Ullrich
Int. J. Mol. Sci. 2019, 20(2), 436; https://doi.org/10.3390/ijms20020436 - 20 Jan 2019
Cited by 28 | Viewed by 7109
Abstract
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk [...] Read more.
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF’s) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Show Figures

Figure 1

25 pages, 1656 KiB  
Article
Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity
by Svantje Tauber, Swantje Christoffel, Cora Sandra Thiel and Oliver Ullrich
Int. J. Mol. Sci. 2018, 19(9), 2814; https://doi.org/10.3390/ijms19092814 - 18 Sep 2018
Cited by 25 | Viewed by 4940
Abstract
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, [...] Read more.
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system. Full article
Show Figures

Graphical abstract

Back to TopTop