Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight
Abstract
:1. Introduction
2. Materials & Methods
2.1. Plant Growth Conditions
2.2. Plant Dissection and RNA Extraction
2.3. RNA-Sequencing Library Preparation
2.4. Illumina NovaSeq6000 Sequencing
2.5. Bioinformatics Pipeline and Gene Ontology Analysis
3. Results and Discussion
3.1. Optimizing Plant Growth Conditions within the KFT
3.2. KFT Provides a Suitable Microenvironment for Short-Term Plant Growth
3.3. Plant Responses to KFTs over Time in a Simulated Suborbital Flight Profile
3.4. Short-Term Responses of Plants to Gravity Alteration in the KFT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Home|Virgin Galactic. Available online: https://www.virgingalactic.com/ (accessed on 29 September 2022).
- New Shepard. Available online: https://www.blueorigin.com/new-shepard (accessed on 29 September 2022).
- Qin, X.F.; Holuigue, L.; Horvath, D.M.; Chua, N.H. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 1994, 6, 863–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abel, S.; Nguyen, M.D.; Theologis, A. ThePS-IAA4/5-like Family of Early Auxin-inducible mRNAs inArabidopsis thaliana. J. Mol. Biol. 1995, 251, 533–549. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, C.; Eggers-Schumacher, G.; Wunderlich, M.; Schöffl, F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol. Genet. Genom. 2004, 271, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Uquillas, C.; Letelier, I.; Blanco, F.; Jordana, X.; Holuigue, L. NPR1-Independent Activation of Immediate Early Salicylic Acid-Responsive Genes in Arabidopsis. Mol. Plant-Microbe Interact. 2004, 17, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, S.; Drabløs, F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 2016, 62, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, X.; Krause, L.; Görög, M.; Schüler, O.; Hauslage, J.; Hemmersbach, R.; Kircher, S.; Lasok, H.; Haser, T.; et al. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings. Microgravity Sci. Technol. 2016, 28, 59–66. [Google Scholar] [CrossRef]
- Martzivanou, M.; Babbick, M.; Cogoli-Greuter, M.; Hampp, R. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 2006, 229, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.E.; Levine, H.G.; Romero, V. Kennedy Space Center Fixation Tube (KFT). 2016. Available online: https://ntrs.nasa.gov/citations/20160005191 (accessed on 29 September 2022).
- Paul, A.-L.; Levine, H.G.; McLamb, W.; Norwood, K.L.; Reed, D.; Stutte, G.W.; William Wells, H.; Ferl, R.J. Plant molecular biology in the space station era: Utilization of KSC fixation tubes with RNAlater. Acta Astronaut. 2005, 56, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Ferl, R.J.; Zupanska, A.; Spinale, A.; Reed, D.; Manning-Roach, S.; Guerra, G.; Cox, D.R.; Paul, A.-L. The performance of KSC Fixation Tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biology. Adv. Space Res. 2011, 48, 199–206. [Google Scholar] [CrossRef]
- Hoson, T.; Soga, K.; Wakabayashi, K.; Hashimoto, T.; Karahara, I.; Yano, S.; Tanigaki, F.; Shimazu, T.; Kasahara, H.; Masuda, D.; et al. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. 2014, 16, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Omori, K.; Nishitani, K.; Hoson, T.; Shimazu, T.; Ishioka, N. JAXA Space Plant Research on the ISS with European Modular Cultivation System. Biol. Sci. Space 2007, 21, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.; Giguère, I.; Deslauriers, M.; Boyle, B.; MacKay, J. Differential gene expression patterns in white spruce newly formed tissue on board the International Space Station. Adv. Space Res. 2013, 52, 760–772. [Google Scholar] [CrossRef]
- Paul, A.-L.; Daugherty, C.J.; Bihn, E.A.; Chapman, D.K.; Norwood, K.L.L.; Ferl, R.J. Transgene Expression Patterns Indicate That Spaceflight Affects Stress Signal Perception and Transduction in Arabidopsis. Plant Physiol. 2001, 126, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Sng, N.J.; LeFrois, C.E.; Paul, A.-L.; Ferl, R.J. Epigenomics in an extraterrestrial environment: Organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genom. 2019, 20, 205. [Google Scholar] [CrossRef] [Green Version]
- Barker, R.; Lombardino, J.; Rasmussen, K.; Gilroy, S. Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments. Front. Plant Sci. 2020, 11, 147. [Google Scholar] [CrossRef]
- Paul, A.-L.; Haveman, N.; Califar, B.; Ferl, R.J. Epigenomic Regulators Elongator Complex Subunit 2 and Methyltransferase 1 Differentially Condition the Spaceflight Response in Arabidopsis. Front. Plant Sci. 2021, 12, 1907. [Google Scholar] [CrossRef]
- Manzano, A.; Carnero-Diaz, E.; Herranz, R.; Medina, F.J. Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environments. iScience 2022, 25, 104687. [Google Scholar] [CrossRef]
- Paul, A.-L.; Zhou, M.; Callaham, J.B.; Reyes, M.; Stasiak, M.; Riva, A.; Zupanska, A.K.; Dixon, M.A.; Ferl, R.J. Patterns of Arabidopsis gene expression in the face of hypobaric stress. AoB Plants 2017, 9, plx030. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Callaham, J.B.; Reyes, M.; Stasiak, M.; Riva, A.; Zupanska, A.K.; Dixon, M.A.; Paul, A.-L.; Ferl, R.J. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis. Front. Plant Sci. 2017, 8, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Califar, B.; Zupanska, A.; Callaham, J.A.; Bamsey, M.T.; Graham, T.; Paul, A.L.; Ferl, R.J. Shared Metabolic Remodeling Processes Characterize the Transcriptome of Arabidopsis thaliana within Various Suborbital Flight Environments. Gravit. Space Res. 2021, 9, 13–30. [Google Scholar] [CrossRef]
Comparison (Treatment vs. Control) | Total DEG | Upregulated | Downregulated |
---|---|---|---|
Q1B vs. Q1A | 1 | 1 | 0 |
Q1C vs. Q1A | 4 | 2 | 2 |
Q1D vs. Q1A | 16 | 4 | 12 |
Q1C vs. Q1B | 7 | 3 | 4 |
Q1D vs. Q1B | 94 | 22 | 72 |
Q1D vs. Q1C | 17 | 6 | 11 |
Average | 23 | 6 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haveman, N.J.; Zhou, M.; Callaham, J.; Strickland, H.F.; Houze, D.; Manning-Roach, S.; Newsham, G.; Paul, A.-L.; Ferl, R.J. Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight. Life 2022, 12, 1871. https://doi.org/10.3390/life12111871
Haveman NJ, Zhou M, Callaham J, Strickland HF, Houze D, Manning-Roach S, Newsham G, Paul A-L, Ferl RJ. Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight. Life. 2022; 12(11):1871. https://doi.org/10.3390/life12111871
Chicago/Turabian StyleHaveman, Natasha J., Mingqi Zhou, Jordan Callaham, Hunter F. Strickland, Donald Houze, Susan Manning-Roach, Gerard Newsham, Anna-Lisa Paul, and Robert J. Ferl. 2022. "Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight" Life 12, no. 11: 1871. https://doi.org/10.3390/life12111871
APA StyleHaveman, N. J., Zhou, M., Callaham, J., Strickland, H. F., Houze, D., Manning-Roach, S., Newsham, G., Paul, A.-L., & Ferl, R. J. (2022). Utilizing the KSC Fixation Tube to Conduct Human-Tended Plant Biology Experiments on a Suborbital Spaceflight. Life, 12(11), 1871. https://doi.org/10.3390/life12111871