Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (914)

Search Parameters:
Keywords = structural graded material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 (registering DOI) - 1 Aug 2025
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 305
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

14 pages, 2068 KiB  
Article
Cellular Rejection Post-Cardiac Transplantation: A 13-Year Single Unicentric Study
by Gabriela Patrichi, Catalin-Bogdan Satala, Andrei Ionut Patrichi, Toader Septimiu Voidăzan, Alexandru-Nicușor Tomuț, Daniela Mihalache and Anca Ileana Sin
Medicina 2025, 61(8), 1317; https://doi.org/10.3390/medicina61081317 - 22 Jul 2025
Viewed by 190
Abstract
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. [...] Read more.
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. Materials and Methods: This study included 146 patients who underwent transplantation at the Institute of Cardiovascular Diseases and Transplantation in Targu Mures between 2010 and 2023, and we evaluated the function and structure of the myocardium after surgery by using endomyocardial biopsy. Results: Overall, 120 men and 26 women underwent transplantation, with an approximately equal proportion under and over 40 years old (48.6% and 51.4%). Evaluating the degree of acute cellular rejection according to the International Society for Heart and Lung Transplantation classification showed that most of the patients presented with acute cellular rejection (ACR) and antibody-mediated rejection (AMR) grade 0, and most cases of ACR and AMR were reported with mild changes (13% or 10.3% patients). Therefore, the most frequent histopathologic diagnoses were similar to lesions unrelated to rejection (45.2% of patients) and ischemia–reperfusion lesions (25.3% patients), respectively. Conclusions: Although 82.2% of the transplanted cases showed no rejection (ISHLT score 0), non-rejection-related lesion-like changes were present in 45.2% of cases, and because more of the non-rejection-related criteria could be detected, it may be necessary to adjust the grading of the rejection criteria. The histopathologic changes that characterize rejection are primarily represented by the mononuclear inflammatory infiltrate; in our study, inflammatory changes were mostly mild (71.9%), with myocyte involvement in all cases. These changes are associated with and contribute to the maintenance of the rejection phenomenon. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

31 pages, 15881 KiB  
Article
Fused Space in Architecture via Multi-Material 3D Printing Using Recycled Plastic: Design, Fabrication, and Application
by Jiangjing Mao, Lawrence Hsu and Mai Altheeb
Buildings 2025, 15(15), 2588; https://doi.org/10.3390/buildings15152588 - 22 Jul 2025
Viewed by 336
Abstract
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor [...] Read more.
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor to ecological imbalance, this research on fused space aims to recycle plastic and use it as a multi-material for building applications, due to its capacity for being 3D printed and fused with other materials. Furthermore, to generate diverse properties for the fused space, several nature-inspired forming algorithms are employed, including Swarm Behavior, Voronoi, Game of Life, and Shortest Path, to shape the building enclosure. Subsequently, digital analyses, such as daylight analysis, structural analysis, porosity analysis, and openness analysis, are conducted on the enclosure, forming the color mapping digital diagram, which determines the distribution of varying thickness, density, transparency, and flexibility gradation parameters, resulting in spatial diversity. During the fabrication process, Dual Force V1 and Dual Force V2 were developed to successfully print multi-material gradations with fused plastic following an upgrade to the cooling system. Finally, three test sites in London were chosen to implement the fused space concept using multi-material. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 9956 KiB  
Article
Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft
by Anto Nickhil Antony Ramesh, Aliyu M. Aliyu, Nick Tucker and Ibrahim M. Albayati
Appl. Sci. 2025, 15(14), 8006; https://doi.org/10.3390/app15148006 - 18 Jul 2025
Viewed by 306
Abstract
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial [...] Read more.
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial aircraft: we consider the design of three compressed hydrogen storage vessels made of 304 stainless steel, 6061-T6 aluminium, and Grade 5 (Ti-6Al-4V) titanium and capable of delivering 440 kW—enough for a PEM fuel cell for a Boeing 777. Complete structural analyses for pressures from 35 MPa to 70 MPa and wall thicknesses of 25, 50, 100, and 150 mm are used to determine the optimal material for aviation applications. Key factors such as deformation, safety factors, and Von Mises equivalent stress are evaluated to ensure structural integrity under a range of operating conditions. In addition, CO2 emissions from a conventional 440 kW gas turbine APU and an equivalent PEM fuel cell are compared. This study provides insights into optimal material selection for compressed hydrogen storage vessels, emphasising safety, reliability, cost, and weight reduction. Ultimately, this research aims to facilitate the adoption of fuel cell technology in aviation, contributing to greenhouse emissions reduction and hence sustainable air transport. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

27 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Viewed by 197
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 312
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 443
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 243
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3974 KiB  
Article
Cast Polyamide 6 Molds as a Suitable Alternative to Metallic Molds for In Situ Automated Fiber Placement
by Fynn Atzler, Ines Mössinger, Jonathan Freund, Samuel Tröger, Ashley R. Chadwick, Simon Hümbert and Lukas Raps
J. Compos. Sci. 2025, 9(7), 367; https://doi.org/10.3390/jcs9070367 - 15 Jul 2025
Viewed by 429
Abstract
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part [...] Read more.
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part can be manufactured. One approach to lowering these costs is the use of a 3D-printable thermoplastic mold. However, AFP lay-up on a 3D-printed mold differs from the usage of a traditional metallic mold in various aspects. Most notable is a reduced stiffness of the mold, a lower thermal conductivity of the mold, and the need for varied process parameters of the AFP process. This study focuses on the investigation of the difference in mechanical and morphological characteristics of laminates produced on metallic and polymeric molds. To this end, the tensile strength and the interlaminar shear strength of laminates manufactured on each substrate were measured and compared. Additionally, morphological analysis using scanning electron microscopy and differential scanning calorimetry was performed to compare the crystallinity in laminates. No statistically significant difference in mechanical or morphological properties was found. Thus, thermoplastics were shown to be a suitable material for non-heated molds to manufacture in situ AFP composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

19 pages, 1241 KiB  
Article
ThermalInsulation Dry Construction Mixture Based on Diatomite
by Ruslan E. Nurlybayev, Erzhan I. Kuldeyev, Axaya S. Yestemessova, Zaure N. Altayeva, Yelzhan S. Orynbekov, Aktota A. Murzagulova, Alinur A. Iskakov, Gaukhar K. Abisheva and Yerlan Y. Khamza
Coatings 2025, 15(7), 811; https://doi.org/10.3390/coatings15070811 - 11 Jul 2025
Viewed by 377
Abstract
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, [...] Read more.
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, adaptable, and highly reliable in operation. Mixtures based on fillers with a porous structure and materials that impart thermal insulation properties, which provide higher thermal insulation properties, are of great interest. However, the development of dry thermal insulation mixtures is hampered by insufficient study of their physical, mechanical, and operational characteristics. This article presents the results of research work on the development and study of dry building thermal insulation mixtures. A distinctive feature of the work is the creation of a composition of dry building thermal insulation mixtures based on local raw materials, such as diatomite, its thermal modification at a temperature of 900 °C, the use of expanded perlite sand, lime, and Portland cement. Research into the properties of modified diatomite has shown that its surface after thermal treatment differs from the surface of unburned diatomite in that it becomes more active and has a 3–4 times higher increase in strength. Modified diatomite and expanded perlite sand have low thermal conductivity, and this property was used in the creation of building thermal insulation mixtures, which was confirmed by research, as the thermal conductivity coefficient ranged from 0.128 to 0.152 W/m °C. The developed dry thermal insulation lime–cement mixture is intended for both interior and exterior finishing works, which is confirmed by the results obtained for determining the frost resistance of the solution and the frost resistance of the contact zone, and corresponds to the F35 grade and has a strength of up to 3.59 MPa. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

13 pages, 2034 KiB  
Article
A Comparative Study of the Pullout Strength of Geostraps and Geogrids in Reinforced Soil
by Kshitij Gaur, Ashutosh Trivedi and Sanjay Kumar Shukla
Appl. Sci. 2025, 15(14), 7715; https://doi.org/10.3390/app15147715 - 9 Jul 2025
Viewed by 276
Abstract
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, [...] Read more.
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, flexible, polymeric reinforcement materials. There has not been a thorough study of their pullout resistance, which directly affects the stability and durability of reinforced soil structures. Pullout tests were conducted on sandy soil in a controlled environment. The experimental findings from the pullout test were then validated in a numerical model. The model was used to determine the pullout resistance of different grades of geostraps for comparative analysis. This helped to identify the possible application areas based on the pullout capacity of various grades. The results obtained for the geostraps were then compared with those in the established literature on geogrids. Initially, the pullout resistance of the M65 geostrap was up to 20% higher than that of a biaxial geogrid. This makes it a suitable option for reinforced earth applications. However, the maximum pullout resistance of geogrids was up to 8% higher than that of geostraps when subjected to a surcharge of 17 kN m−2 in poorly graded sand. This study highlights the potential of geostraps as reinforcement materials, particularly in challenging environments where conventional geosynthetics may underperform. Future research may explore their behaviour with different soil types and other controlled environmental factors to establish their broader applicability and design charts. Full article
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 278
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

20 pages, 369 KiB  
Article
Transverse Wave Propagation in Functionally Graded Structures Using Finite Elements with Perfectly Matched Layers and Infinite Element Coupling
by Kulandhaivel Hemalatha, Anandakrishnan Akshaya, Ali Qabur, Santosh Kumar, Mohammed Tharwan, Ali Alnujaie and Ayman Alneamy
Mathematics 2025, 13(13), 2131; https://doi.org/10.3390/math13132131 - 29 Jun 2025
Viewed by 266
Abstract
This study investigates the propagation of shear horizontal transverse waves in a functionally graded piezoelectric half-space (FGPHS), where the material properties vary linearly and quadratically. The analysis focuses on deriving and understanding the dispersion characteristics of such waves in in-homogeneous media. The WKB [...] Read more.
This study investigates the propagation of shear horizontal transverse waves in a functionally graded piezoelectric half-space (FGPHS), where the material properties vary linearly and quadratically. The analysis focuses on deriving and understanding the dispersion characteristics of such waves in in-homogeneous media. The WKB approximation method is employed to obtain the dispersion relation analytically, considering the smooth variation of material properties. To validate and study the wave behavior numerically, two advanced techniques were utilized: the Semi-Analytical Finite Element with Perfectly Matched Layer (SAFE-PML) and the Semi-Analytical Infinite Element (SAIFE) method incorporating a (1/r) decay model to simulate infinite media. The numerical implementation uses the Rayleigh–Ritz method to discretize the wave equation, and Gauss 3-point quadrature is applied for efficient numerical integration. The dispersion curves are plotted to illustrate the wave behavior in the graded piezoelectric medium. The results from SAFE-PML and SAIFE are in excellent agreement, indicating that these techniques effectively model the shear horizontal transverse wave propagation in such structures. This study also demonstrates that combining finite and infinite element approaches provides accurate and reliable simulation of wave phenomena in functionally graded piezoelectric materials, which has applications in sensors, actuators, and non-destructive testing. Full article
(This article belongs to the Special Issue Finite Element Analysis and Application)
Show Figures

Figure 1

27 pages, 4236 KiB  
Review
Metallurgy, Properties and Applications of Superaustenitic Stainless Steels—SASSs
by Alessio Malandruccolo, Cinzia Menapace and Igor Giroletti
Materials 2025, 18(13), 3079; https://doi.org/10.3390/ma18133079 - 28 Jun 2025
Viewed by 439
Abstract
Superaustenitic stainless steels (SASSs) are one of the families of high-performance stainless steels, the so-called “super” grades. While sharing the face-centered cubic lattice structure typical of standard austenitic stainless steels, their chemical composition is significantly more complex. This enables them to offer an [...] Read more.
Superaustenitic stainless steels (SASSs) are one of the families of high-performance stainless steels, the so-called “super” grades. While sharing the face-centered cubic lattice structure typical of standard austenitic stainless steels, their chemical composition is significantly more complex. This enables them to offer an exceptional balance of superior corrosion resistance and high mechanical strength. However, the intricate chemical makeup of SASSs brings challenges, such as the phenomenon of segregation and precipitation of deleterious intermetallics. Consequently, this leads to several challenges in their processing and use. This work aims to present SASSs in detail, starting from their chemistry and metallurgy and ending with processing and applications. Hence, the first part will be dedicated to the analysis of chemistry, resulting grades, microstructure and secondary phases along with the conditions determining their formation. Afterwards, physical, mechanical and corrosion resistance characteristics will be set forth in such a way as to understand their origin and implications for processing and possible uses, with a focus on processability limitations. In fact, manufacturing and processing options significantly affect the types of products that can be developed, and, when considered alongside material attributes and costs, they help define the target markets for these alloys. Full article
Show Figures

Figure 1

Back to TopTop