Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (72,342)

Search Parameters:
Keywords = strengths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1085 KiB  
Article
Safety Analysis of Subway Station Under Seepage Force Using a Continuous Velocity Field
by Zhufeng Cheng, De Zhou, Qiang Chen and Shuaifu Gu
Mathematics 2025, 13(15), 2541; https://doi.org/10.3390/math13152541 (registering DOI) - 7 Aug 2025
Abstract
Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution [...] Read more.
Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution to construct a continuous deformation velocity field based on Terzaghi's mechanism, so as to derive a theoretical calculation method for the safety factor of the deep station pit anti-uplift considering the effect of seepage force. Taking the seepage force as an external load acting on the soil skeleton, a simplified calculation method is proposed to describe the variation in shear strength with depth. Substituting the external work rate induced by self-weight, surface surcharge, seepage force, and plastic shear energy into the energy equilibrium equation, an explicit expression of the safety factor of the station pit is obtained. According to the parameter study and engineering application analysis, the validity and applicability of the proposed procedure are discussed. The parameter study indicated that deep excavation pits are significantly affected by construction drawdown and seepage force; the presence of seepage, to some extent, reduces the anti-uplift stability of the station pit. The calculation method in this work helps to compensate for the shortcomings of existing methods and has a higher accuracy in predicting the safety and stability of station pits under seepage situations. Full article
30 pages, 1577 KiB  
Article
Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception
by Christer Ruff, Till-Karsten Hauser, Constantin Roder, Daniel Feucht, Paula Bombach, Leonie Zerweck, Deborah Staber, Frank Paulsen, Ulrike Ernemann and Georg Gohla
Diagnostics 2025, 15(15), 1982; https://doi.org/10.3390/diagnostics15151982 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach [...] Read more.
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach involving a neuroradiologist, neurosurgeon, neuro-oncologist, and radiotherapist to evaluate qualitative aspects using a 5-point Likert scale, the preferred reconstruction variant and potential residual tumor of DLR and conventional reconstruction (CR) of FLAIR, T1-weighted non-contrast and contrast-enhanced (T1), and coronal T2-weighted (T2) sequences for 1.5 and 3 T MRI. Quantitative analysis included the image quality metrics Structural Similarity Index (SSIM), Multi-Scale SSIM (MS-SSIM), Feature Similarity Index (FSIM), Noise Quality Metric (NQM), signal-to-noise ratio (SNR), and Peak SNR (PSNR) with CR as a reference. Results: All raters strongly preferred DLR over CR. This was most pronounced for FLAIR images at 1.5 and 3 T (91% at 1.5 T and 97% at 3 T) and least pronounced for T1 at 1.5 T (79% for non-contrast-enhanced and 84% for contrast-enhanced sequences) and for T2 at 3 T (69%). DLR demonstrated superior qualitative image quality for all sequences and field strengths (p < 0.001), except for T2 at 3 T, which was observed across all raters (p = 0.670). Diagnostic confidence was similar at 3 T with better but non-significant differences for T2 (p = 0.134) and at 1.5 T with better but non-significant differences for non-contrast-enhanced T1 (p = 0.083) and only marginally significant results for FLAIR (p = 0.033). Both the SSIM and MS-SSIM indicated near-perfect similarity between CR and DLR. FSIM performs worse in terms of consistency between CR and DLR. The image quality metrics NQM, SNR, and PSNR showed better results for DLR. Visual assessment of residual tumor was similar at 3 T but differed at 1.5 T, with more residual tumor detected with DLR, especially by the neurosurgeon (n = 4). Conclusions: An accelerated DLR protocol demonstrates clinical feasibility, enabling high-quality reconstructions in challenging postoperative MRIs. DLR sequences received strong multidisciplinary preference, underscoring their potential to improve neuro-oncologic decision making and suitability for clinical implementation. Full article
(This article belongs to the Special Issue Advanced Brain Tumor Imaging)
19 pages, 3585 KiB  
Article
The Effect of Xylitol as a Natural Admixture on the Properties of Alkali-Activated Slag/Fly Ash-Based Materials
by Jie Song, Haowei Hu and Weitong Yu
Buildings 2025, 15(15), 2805; https://doi.org/10.3390/buildings15152805 (registering DOI) - 7 Aug 2025
Abstract
This study introduces xylitol, a natural compound, as a multifunctional additive to enhance the performance of alkali-activated slag/fly ash materials (AASFMs). A systematic investigation was conducted to elucidate xylitol’s mechanism in modifying AASFM properties, including fresh behavior, hydration kinetics, compressive strength, and autogenous [...] Read more.
This study introduces xylitol, a natural compound, as a multifunctional additive to enhance the performance of alkali-activated slag/fly ash materials (AASFMs). A systematic investigation was conducted to elucidate xylitol’s mechanism in modifying AASFM properties, including fresh behavior, hydration kinetics, compressive strength, and autogenous shrinkage. The experimental findings demonstrated that xylitol significantly delayed early-age hydration while promoting more extensive hydration at later stages. Specifically, the initial and final setting times of AASFM pastes were extended by 640% and 370%, respectively, and paste flowability increased by 30%. At a 0.2% dosage, xylitol markedly reduced porosity and refined the microstructure of AASFMs, leading to improved mechanical properties. The 3-day and 28-day compressive strengths were enhanced by 39.8% and 39.7%, respectively, while autogenous shrinkage was suppressed by 61.4%. These results demonstrate the multifunctional potential of xylitol in AASFMs, serving as an effective retarder, plasticizer, strength enhancer, and shrinkage reducer. Notably, the refined pore structure induced by xylitol may also mitigate the risks of the alkali–silica reaction, though further durability validation is warranted. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 4511 KiB  
Article
Analysis of the Upper Limit of the Stability of High and Steep Slopes Supported by a Combination of Anti-Slip Piles and Reinforced Soil Under the Seismic Effect
by Wei Luo, Gequan Xiao, Zhi Tao, Jingyu Chen, Zhulong Gong and Haifeng Wang
Buildings 2025, 15(15), 2806; https://doi.org/10.3390/buildings15152806 (registering DOI) - 7 Aug 2025
Abstract
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading [...] Read more.
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading effect needs an in-depth study. Based on the upper-bound theorem of limit analysis and the strength-reduction technique, this study establishes an upper-bound stability model for high–steep slopes that simultaneously considers seismic action and the combined reinforcement of anti-slide piles and reinforced soil. A closed-form safety factor is derived. The theoretical results are validated against published data, demonstrating satisfactory agreement. Finally, the MATLAB R2022a sequential quadratic programming method is used to optimize the objective function, and the Optum G2 2023 software is employed to analyze the factors influencing slope stability due to the interaction between anti-slide piles and geogrids. The research indicates that the horizontal seismic acceleration coefficient kh exhibits a significant negative correlation with the safety factor Fs. Increases in the tensile strength T of the reinforcing materials, the number of layers n, and the length l all significantly improve the safety factor Fs of the reinforced-soil slope. Additionally, as l increases, the potential slip plane of the slope shifts backward. For slope support systems combining anti-slide piles and reinforced soil, when the length of the geogrid is the same, adding anti-slide piles can significantly improve the slope’s safety factor. As anti-slide piles move from the toe to the crest of the slope, the safety factor first decreases and then increases, indicating that the optimal reinforcement position for anti-slide piles should be in the middle to lower part of the slope body. The length of the anti-slip piles should exceed the lowest layer of the geogrid to more effectively utilize the blocking effect of the pile ends on the slip surface. The research findings can provide a theoretical basis and practical guidance for parameter optimization in high–steep slope support engineering. Full article
(This article belongs to the Section Building Structures)
24 pages, 3156 KiB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 (registering DOI) - 7 Aug 2025
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
44 pages, 4024 KiB  
Review
Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
by Zhanchao Li, Ebrahim Yahya Khailah, Xingyang Liu and Jiaming Liang
Buildings 2025, 15(15), 2803; https://doi.org/10.3390/buildings15152803 (registering DOI) - 7 Aug 2025
Abstract
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining [...] Read more.
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
21 pages, 1609 KiB  
Article
Exploring Residual Clays for Low-Impact Ceramics: Insights from a Portuguese Ceramic Region
by Carla Candeias, Sónia Novo and Fernando Rocha
Appl. Sci. 2025, 15(15), 8761; https://doi.org/10.3390/app15158761 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A [...] Read more.
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A multidisciplinary approach was employed to characterize clays, integrating mineralogical (XRD), chemical (XRF), granulometric, and thermal analyses (TGA/DTA/TD), as well as technological tests on plasticity, extrusion moisture, shrinkage, and flexural strength. These assessments were designed to capture both the intrinsic properties of the clays and their behavior across key ceramic processing stages, such as shaping, drying, and firing. The results revealed a broad diversity in mineral composition, particularly in the proportions of kaolinite, smectite, and illite, which strongly influenced plasticity, water demand, and thermal stability. Clays with higher fine fractions and smectitic content exhibited excellent plasticity and workability, though with increased sensitivity to drying and firing conditions. Others, with coarser textures and illitic or feldspathic composition, demonstrated improved dimensional stability and lower shrinkage. Thermal analyses confirmed expected dehydroxylation and sintering behavior, with the formation of mullite and spinel-type phases contributing to densification and strength in fired bodies. This study highlights that residual clays from varied geological settings can offer distinct advantages when matched appropriately to ceramic product requirements. Some materials showed strong potential for direct application in structural ceramics, while others may serve as additives or tempering agents in formulations. These findings reinforce the value of integrated characterization for optimizing raw material use and support a more circular, resource-conscious approach to ceramic production. Full article
24 pages, 2812 KiB  
Article
Application of a Multi-Algorithm-Optimized CatBoost Model in Predicting the Strength of Multi-Source Solid Waste Backfilling Materials
by Jianhui Qiu, Jielin Li, Xin Xiong and Keping Zhou
Big Data Cogn. Comput. 2025, 9(8), 203; https://doi.org/10.3390/bdcc9080203 (registering DOI) - 7 Aug 2025
Abstract
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the [...] Read more.
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the strength of the backfill demands a considerable amount of manpower and time. The rapid and precise acquisition and optimization of backfill strength parameters hold utmost significance for mining safety. In this research, the authors carried out a backfill strength experiment with five experimental parameters, namely concentration, cement–sand ratio, waste rock–tailing ratio, curing time, and curing temperature, using an orthogonal design. They collected 174 sets of backfill strength parameters and employed six population optimization algorithms, including the Artificial Ecosystem-based Optimization (AEO) algorithm, Aquila Optimization (AO) algorithm, Germinal Center Optimization (GCO), Sand Cat Swarm Optimization (SCSO), Sparrow Search Algorithm (SSA), and Walrus Optimization Algorithm (WaOA), in combination with the CatBoost algorithm to conduct a prediction study of backfill strength. The study also utilized the Shapley Additive explanatory (SHAP) method to analyze the influence of different parameters on the prediction of backfill strength. The results demonstrate that when the population size was 60, the AEO-CatBoost algorithm model exhibited a favorable fitting effect (R2 = 0.947, VAF = 93.614), and the prediction error was minimal (RMSE = 0.606, MAE = 0.465), enabling the accurate and rapid prediction of the strength parameters of the backfill under different ratios and curing conditions. Additionally, an increase in curing temperature and curing time enhanced the strength of the backfill, and the influence of the waste rock–tailing ratio on the strength of the backfill was negative at a curing temperature of 50 °C, which is attributed to the change in the pore structure at the microscopic level leading to macroscopic mechanical alterations. When the curing conditions are adequate and the parameter ratios are reasonable, the smaller the porosity rate in the backfill, the greater the backfill strength will be. This study offers a reliable and accurate method for the rapid acquisition of backfill strength and provides new technical support for the development of filling mining technology. Full article
13 pages, 718 KiB  
Article
Evaluation and Verification of Starch Decomposition by Microbial Hydrolytic Enzymes
by Makoto Takaya, Manzo Uchigasaki, Koji Itonaga and Koichi Ara
Water 2025, 17(15), 2354; https://doi.org/10.3390/w17152354 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These [...] Read more.
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These compounds enhance the growth of native microorganisms, promoting biofilm formation on carriers and improving treatment efficiency. Over the past decade, EBM has been practically applied in food factory wastewater facilities handling high organic loads. The enzyme groups used in EBM are derived from cultures of Bacillus mojavensis, Saccharomyces cariocanus, and Lacticaseibacillus paracasei. To clarify the system’s mechanism and ensure its practical viability, this study focused on starch—a prevalent and recalcitrant component of food wastewater—using two evaluation approaches. Verification 1: Field testing at a starch factory showed that adding enzyme groups to the equalization tank effectively reduced biological oxygen demand (BOD) through starch degradation. Verification 2: Laboratory experiments confirmed that the enzyme groups possess both amylase and maltase activities, sequentially breaking down starch into glucose. The resulting glucose supports microbial growth, facilitating biofilm formation and BOD reduction. These findings confirm EBM’s potential as a sustainable and effective solution for treating high-strength food industry wastewater. Full article
(This article belongs to the Special Issue Advanced Biological Wastewater Treatment and Nutrient Removal)
43 pages, 15193 KiB  
Article
Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria
by Ibrahim AbdElFattah, Seleem S. E. Ahmad, Ahmed A. Elakhras, Ahmed A. Elshami, Mohamed A. R. Elmahdy and Attitou Aboubakr
Infrastructures 2025, 10(8), 205; https://doi.org/10.3390/infrastructures10080205 (registering DOI) - 7 Aug 2025
Abstract
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance [...] Read more.
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance of concrete to sulfate attacks and improving its mechanical properties. Bacterial suspensions (1% and 2.5% of cement weight) were mixed with concrete containing silica fume or fly ash (10% of cement weight) and cured in freshwater or sulfate solutions (2%, 5%, and 10% concentrations). Specimens were tested for compressive strength, flexural strength, and microstructure using a Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD) at various ages. The results indicate that a 2.5% bacterial content yielded the best performance, with BM surpassing BS, enhancing compressive strength by up to 41.3% and flexural strength by 52.3% in freshwater-cured samples. Although sulfate exposure initially improved early-age strength by 1.97% at 7 days, it led to an 8.5% loss at 120 days. Bacterial inclusion mitigated sulfate damage through microbially induced calcium carbonate precipitation (MICP), sealing cracks, and bolstering durability. Cracked specimens treated with BM recovered up to 93.1% of their original compressive strength, promoting sustainable, sulfate-resistant, self-healing concrete for more resilient infrastructure. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

15 pages, 2183 KiB  
Article
Effective Endotoxin Reduction in Hospital Reverse Osmosis Water Using eBooster™ Electrochemical Technology
by José Eudes Lima Santos, Letícia Gracyelle Alexandre Costa, Carlos Alberto Martínez-Huitle and Sergio Ferro
Water 2025, 17(15), 2353; https://doi.org/10.3390/w17152353 (registering DOI) - 7 Aug 2025
Abstract
Endotoxins, lipopolysaccharides released from the outer membrane of Gram-negative bacteria, pose a significant risk in healthcare environments, particularly in Central Sterile Supply Departments (CSSDs), where the delivery of sterile pyrogen-free medical devices is critical for patient safety. Traditional methods for controlling endotoxins in [...] Read more.
Endotoxins, lipopolysaccharides released from the outer membrane of Gram-negative bacteria, pose a significant risk in healthcare environments, particularly in Central Sterile Supply Departments (CSSDs), where the delivery of sterile pyrogen-free medical devices is critical for patient safety. Traditional methods for controlling endotoxins in water systems, such as ultraviolet (UV) disinfection, have proven ineffective at reducing endotoxin concentrations to comply with regulatory standards (<0.25 EU/mL). This limitation presents a significant challenge, especially in the context of reverse osmosis (RO) permeate used in CSSDs, where water typically has very low conductivity. Despite the established importance of endotoxin removal, a gap in the literature exists regarding effective chemical-free methods that can meet the stringent endotoxin limits in such low-conductivity environments. This study addresses this gap by evaluating the effectiveness of the eBooster™ electrochemical technology—featuring proprietary electrode materials and a reactor design optimized for potable water—for endotoxin removal from water, specifically under the low-conductivity conditions typical of RO permeate. Laboratory experiments using the B250 reactor achieved >90% endotoxin reduction (from 1.2 EU/mL to <0.1 EU/mL) at flow rates ≤5 L/min and current densities of 0.45–2.7 mA/cm2. Additional real-world testing at three hospitals showed that the eBooster™ unit, when installed in the RO tank recirculation loop, consistently reduced endotoxin levels from 0.76 EU/mL (with UV) to <0.05 EU/mL over 24 months of operation, while heterotrophic plate counts dropped from 190 to <1 CFU/100 mL. Statistical analysis confirmed the reproducibility and flow-rate dependence of the removal efficiency. Limitations observed included reduced efficacy at higher flow rates, the need for sufficient residence time, and a temporary performance decline after two years due to a power fault, which was promptly corrected. Compared to earlier approaches, eBooster™ demonstrated superior performance in low-conductivity environments without added chemicals or significant maintenance. These findings highlight the strength and novelty of eBooster™ as a reliable, chemical-free, and maintenance-friendly alternative to traditional UV disinfection systems, offering a promising solution for critical water treatment applications in healthcare environments. Full article
40 pages, 4823 KiB  
Article
On the Assessment of Hourly Means of Solar Irradiance at Ground Level in Clear-Sky Conditions by the ERA5, JRA-3Q, and MERRA-2 Reanalyses
by Yves-Marie Saint-Drenan and Lucien Wald
Atmosphere 2025, 16(8), 949; https://doi.org/10.3390/atmos16080949 (registering DOI) - 7 Aug 2025
Abstract
Meteorological reanalyses are one of the means to assess the solar irradiance reaching the ground. This paper deals with estimates of the hourly means of irradiance in clear-sky conditions provided by the ERA5, JRA-3Q, and MERRA-2 reanalyses. They are compared to coincident ground-based [...] Read more.
Meteorological reanalyses are one of the means to assess the solar irradiance reaching the ground. This paper deals with estimates of the hourly means of irradiance in clear-sky conditions provided by the ERA5, JRA-3Q, and MERRA-2 reanalyses. They are compared to coincident ground-based measurements from 28 BSRN stations located worldwide, selected by a new algorithm for detecting cloud-free instants. Although ERA5 most often underestimates measurements, it is quite reliable over time because it captures the temporal variability of measurements well and provides a constant level of uncertainty. JRA-3Q offers a complex pattern with negative and positive biases depending on station and season. It captures well the temporal variability but, as a whole, is not reliable over time. None of the three reanalyses is reliable in space. Because of its use of the mean solar time instead of the true solar time, MERRA-2 suffers many drawbacks over intraday scales. Its statistical indicators exhibit marked patterns depending on the season and station. Its assimilation of aerosol properties offers advantages when compared to the climatologies used in ERA5 and JRA-3Q. This work exposes the strengths and weaknesses of each reanalysis in clear-sky conditions and formulates suggestions to providers for further improvements. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
19 pages, 272 KiB  
Article
Legacy of Strength and Future Opportunities: A Qualitative Interpretive Inquiry Regarding Australian Men in Mental Health Nursing
by Natasha Reedy, Trish Luyke, Brendon Robinson, Rhonda Dawson and Daniel Terry
Nurs. Rep. 2025, 15(8), 287; https://doi.org/10.3390/nursrep15080287 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Men have historically contributed significantly to mental health nursing, particularly in inpatient settings, where their presence has supported patient recovery and safety. Despite this legacy, men remain under-represented in the nursing workforce, and addressing this imbalance is critical to workforce sustainability. This [...] Read more.
Background/Objectives: Men have historically contributed significantly to mental health nursing, particularly in inpatient settings, where their presence has supported patient recovery and safety. Despite this legacy, men remain under-represented in the nursing workforce, and addressing this imbalance is critical to workforce sustainability. This study offers a novel contribution by exploring the lived experiences, motivations, and professional identities of men in mental health nursing, an area that has received limited empirical attention. The aim of the study is to examine the characteristics, qualities, and attributes of mental health nurses who are male, which contributes to their attraction to and retention within the profession. Methods: A qualitative interpretive inquiry was conducted among nurses who were male and either currently or previously employed in mental health settings. Two focus groups were conducted using semi-structured questions to explore their career pathways, motivations, professional identities, and perceived contributions. Thematic analysis was used to identify key themes and patterns in their narratives. Results: Seven participants, with 10–30 years of experience, participated. They had entered the profession through diverse pathways, expressing strong alignment between personal values and professional roles. Five themes emerged and centred on mental health being the heart of health, personal and professional fulfillment, camaraderie and teamwork, a profound respect for individuals and compassion, and overcoming and enjoying the challenge. Conclusions: Mental health nurses who are male bring unique contributions to the profession, embodying compassion, resilience, and ethical advocacy. Their experiences challenge traditional gender norms and redefine masculinity in health care. Fostering inclusive environments, mentorship, and leadership opportunities is essential to support their growth. These insights inform strategies to strengthen recruitment, retention, and the future of mental health nursing. Full article
(This article belongs to the Section Mental Health Nursing)
26 pages, 1699 KiB  
Systematic Review
Effect of Plant-Based Proteins on Recovery from Resistance Exercise-Induced Muscle Damage in Healthy Young Adults—A Systematic Review
by Karuppasamy Govindasamy, Koulla Parpa, Borko Katanic, Cain C. T. Clark, Masilamani Elayaraja, Ibnu Noufal Kambitta Valappil, Corina Dulceanu, Vlad Adrian Geantă, Gloria Alexandra Tolan and Hassane Zouhal
Nutrients 2025, 17(15), 2571; https://doi.org/10.3390/nu17152571 (registering DOI) - 7 Aug 2025
Abstract
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance [...] Read more.
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance exercise-induced muscle damage in healthy young adults. Methods: A systematic and comprehensive search was administered in eight databases up to 1 May 2025, identifying 1407 articles. Following deduplication and screening, 24 studies met the eligibility criteria, including 22 randomized controlled trials and 2 non-randomized studies, with the majority from high income western countries. Results: Interventions primarily involved soy, pea, rice, hemp, potato, and blended plant protein sources, with doses ranging from 15 to 50 g, typically administered post resistance exercise. Outcomes assessed included muscle protein synthesis (MPS), delayed-onset muscle soreness (DOMS), inflammatory biomarkers, muscle function, and fatigue. The review findings reaffirm that single-source plant proteins generally offer limited benefits compared to animal proteins such as whey, particularly in acute recovery settings, a limitation well-documented consistently in the literature. However, our synthesis highlights that well-formulated plant protein blends (e.g., combinations of pea, rice, and canola) can stimulate MPS at levels comparable to whey when consumed at adequate doses (≥30 g with ~2.5 g leucine). Some studies also reported improvements in subjective recovery outcomes and reductions in muscle damage biomarkers with soy or pea protein. However, overall evidence remains limited by small sample sizes, moderate to high risk of bias, and heterogeneity in intervention protocols, protein formulations, and outcome measures. Risk of bias assessments revealed concerns related to detection and reporting bias in nearly half the studies. Due to clinical and methodological variability, a meta-analysis was not conducted. Conclusion: plant-based proteins particularly in the form of protein blends and when dosed appropriately, may support muscle recovery in resistance-trained individuals and offer a viable alternative to animal-based proteins. However, further high-quality, long-term trials in vegan populations are needed to establish definitive recommendations for plant protein use in sports nutrition. Full article
(This article belongs to the Special Issue Nutrition Strategy and Resistance Training)
24 pages, 3567 KiB  
Article
Investigation of the Load-Bearing Capacity of Resin-Printed Components Under Different Printing Strategies
by Brigitta Fruzsina Szívós, Vivien Nemes, Szabolcs Szalai and Szabolcs Fischer
Appl. Sci. 2025, 15(15), 8747; https://doi.org/10.3390/app15158747 (registering DOI) - 7 Aug 2025
Abstract
This study examines the influence of different printing orientations and infill settings on the strength and flexibility of components produced using resin-based 3D printing, particularly with masked stereolithography (MSLA). Using a common photopolymer resin and a widely available desktop MSLA printer, we produced [...] Read more.
This study examines the influence of different printing orientations and infill settings on the strength and flexibility of components produced using resin-based 3D printing, particularly with masked stereolithography (MSLA). Using a common photopolymer resin and a widely available desktop MSLA printer, we produced and tested a series of samples with varying tilt angles and internal structures. To understand their mechanical behavior, we applied a custom bending test combined with high-precision deformation tracking through the GOM ARAMIS digital image correlation system. The results obtained clearly show that both the angle of printing and the density of the internal infill structure play a significant role in how much strain the printed parts can handle before breaking. Notably, a 75° orientation provided the best deformation performance, and infill rates between 60% and 90% offered a good balance between strength and material efficiency. These findings highlight how adjusting print settings can lead to stronger parts while also saving time and resources—an important consideration for practical applications in engineering, design, and manufacturing. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

Back to TopTop