Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = strength of brittle ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 226
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

22 pages, 10555 KiB  
Article
Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials
by Zhiyuan Zhang, Xiaolan Bai, Jingjie Zhang, Mingdong Yi, Guangchun Xiao, Tingting Zhou, Hui Chen, Zhaoqiang Chen and Chonghai Xu
Materials 2025, 18(15), 3440; https://doi.org/10.3390/ma18153440 - 22 Jul 2025
Viewed by 399
Abstract
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O [...] Read more.
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O3 as precursors and consolidated by spark plasma sintering. Sc2W3O12 with negative thermal expansion was introduced to compensate for matrix shrinkage and modulate interfacial stress. The effects of varying Sc2W3O12 content on thermal expansion, residual stress, microstructure, and mechanical properties were systematically investigated. Among the compositions, SNS3 (12 wt.% Sc2W3O12) exhibited the best overall performance: relative density of 98.8 ± 0.2%, flexural strength of 712.4 ± 30 MPa, fracture toughness of 7.5 ± 0.3 MPa·m1/2, Vickers hardness of 16.3 ± 0.3 GPa, and an average thermal expansion coefficient of 2.81 × 10−6·K−1. The formation of a spherical chain-like Sc-W-O phase at the grain boundaries created a “hard core–soft shell” interface that enhanced crack resistance and stress buffering. Cutting tests showed that the SNS3 tool reduced workpiece surface roughness by 32.91% and achieved a cutting distance of 9500 m. These results validate the potential of this novel multiphase ceramic system as a promising candidate for high-performance and thermally stable ceramic cutting tools. Full article
Show Figures

Figure 1

16 pages, 5820 KiB  
Article
Mechanical, Antibacterial, and Physico-Chemical Properties of Three Different Polymer-Based Direct Restorative Materials: An In Vitro Study
by Chloé Laporte, Rim Bourgi, Hamdi Jmal, Teissir Ben Ammar, Sandy Hazko, Frédéric Addiego, Salvatore Sauro, Youssef Haïkel and Naji Kharouf
Polymers 2025, 17(9), 1272; https://doi.org/10.3390/polym17091272 - 6 May 2025
Viewed by 800
Abstract
A novel resin-based bulk-fill restorative material (ST; Stela SDI, Bayswater, Victoria, Australia) has been recently introduced as a self-curing alternative to traditional light-cured composites. Promoted for its unlimited depth of cure, enhanced aesthetics, and unique primer composition, it aims to address challenges associated [...] Read more.
A novel resin-based bulk-fill restorative material (ST; Stela SDI, Bayswater, Victoria, Australia) has been recently introduced as a self-curing alternative to traditional light-cured composites. Promoted for its unlimited depth of cure, enhanced aesthetics, and unique primer composition, it aims to address challenges associated with amalgam and light-curing composites. Thus, the aim of this in vitro study was to investigate the performance of the new self-curing polymer-based restorative material, ST, compared to two conventional light-cured composites for direct restoration. The study evaluated compressive strength with and without aging, antibacterial activity, mineral deposition in contact with Phosphate-Buffered Saline (PBS) and artificial saliva, porosity, and wettability of ST (Tetric EvoCeram (TE; Ivoclar Vivadent, Schaan, Liechtenstein) and Clearfil Majesty ES-2 (CM; Kuraray Noritake Dental, Tokyo, Japan)). The data was statistically analyzed (α = 0.05) through one-way and two-way analysis of variance (ANOVA). ST demonstrated significantly higher compressive strength than TE and CM at baseline and after aging (p < 0.001), while aging significantly reduced compressive strength across all materials (p < 0.001). Fracture mode analysis revealed brittle fractures for TE and CM, whereas ST fractured in multiple smaller fragments. CM showed the highest void volume and diameter, significantly differing from ST and TE (p < 0.001). Scanning electron microscopy (SEM) analysis revealed cubical-like crystalline formations on ST’s surface after 28 days of immersion in PBS and saliva, indicating some level of bioactivity, whereas no changes were observed for TE and CM. Wettability testing showed ST had the lowest contact angle (12.24° ± 2.1°) compared to TE (62.78° ± 4.68°) and CM (64.64° ± 3.72°) (p < 0.001). Antibacterial activity testing displayed a significant decrease in bacterial growth for CM compared to ST (p = 0.001) and TE (p = 0.002); however, ST and TE showed no significant differences (p = 0.950). To conclude, ST Automix demonstrated promising results across several key parameters, making it a potential candidate for long-lasting restorative applications. Future studies should explore its long-term clinical performance and investigate formulations that enhance its antibacterial properties. Moreover, the bond strength of these materials to dentin and the cytotoxicity should be evaluated. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Figure 1

22 pages, 6884 KiB  
Article
Ecological Building Material Obtained Through the Moderate Thermal Consolidation of Ceramic Slurry Collected from Industrial Waste Waters
by Simona Elena Avram, Bianca Violeta Birle, Cosmin Cosma, Lucian Barbu Tudoran, Marioara Moldovan, Stanca Cuc, Gheorghe Borodi and Ioan Petean
Materials 2025, 18(8), 1715; https://doi.org/10.3390/ma18081715 - 9 Apr 2025
Viewed by 567
Abstract
The slurry collected from the waste water resulting from ceramic tile processing contains significant amounts of quartz, kaolinite, and mullite, along with traces of iron hydroxides as observed using XRD analysis coupled with mineralogical optical microscopy (MOM). Such an admixture would be ideal [...] Read more.
The slurry collected from the waste water resulting from ceramic tile processing contains significant amounts of quartz, kaolinite, and mullite, along with traces of iron hydroxides as observed using XRD analysis coupled with mineralogical optical microscopy (MOM). Such an admixture would be ideal for the development of ecologic building materials. Microstructural conditioning enhances the binding properties of kaolinite. Therefore, the influence of the vibration compaction of the moistened slurry at 30% humidity on the compressive strength was assessed. The compressive strength of the unvibrated sample is about 0.8 MPa with failure promoted by the microstructural unevenness. Several vibration amplitudes were tested from 20 to 40 mm. The optimal vibration mode was obtained at an amplitude of 25 mm for 10 min, ensuring a compressive strength of 2.37 MPa with a smooth and uniform failure surface involved within the binding layer as observed using SEM microscopy. The samples prepared under optimal conditions were thermally consolidated at 700, 800, and 900 °C below the mullitization temperature to ensure a low carbon footprint. XRD results reveal kaolinite dehydration in all fired samples, inducing its densification, which increases with increasing heating temperature. SEM coupled with EDS elemental investigations reveal that the dehydrated kaolinite better embeds quartz and mullite particles, ensuring a compact microstructure. The binding strength increases with the firing temperature. The mullite particles within the samples fired at 900 °C induce the partial mullitization of the dehydrated kaolinite matrix, increasing their homogeneity. The compression strength of the fired samples is temperature dependent: 4.44 MPa at 700 °C; 5.88 MPa at 800 °C, and 16.87 MPa at 900 °C. SEM fractography shows that failure occurs due to the dehydrated kaolinite matrix cracks and the quartz particles. The failure is rather plastic at low temperatures and becomes brittle at 900 °C. Reducing the firing temperature and treatment time reduces the carbon footprint of the consolidated ceramic parts. Samples fired at 700 °C exhibit a compressive strength comparable to low quality bricks, those fired at 800 °C exhibit a strength comparable to regular bricks, and those fired at 900 °C exhibit a superior strength comparable to high-quality bricks. Full article
Show Figures

Figure 1

12 pages, 2992 KiB  
Article
Enhanced Toughness of High-Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C Ceramics with SiC Whiskers by High-Pressure and High-Temperature Sintering
by Hao Li, Zhenxing Yang, Min Lian, Shuailing Ma, Wei Li, Xinmiao Wei, Xingbin Zhao, Yilong Pan, Yunfeng She, Lingyan Dang, Bao Yuan and Tian Cui
Materials 2025, 18(7), 1655; https://doi.org/10.3390/ma18071655 - 4 Apr 2025
Viewed by 551
Abstract
High-entropy ceramics (HECs) have garnered considerable interest due to their exceptional mechanical properties and high-temperature stability. Nevertheless, their inherent brittleness significantly restricts industrial applications, posing a challenge to improving toughness without compromising hardness. This study investigates the role of SiC whiskers (SiCw) in [...] Read more.
High-entropy ceramics (HECs) have garnered considerable interest due to their exceptional mechanical properties and high-temperature stability. Nevertheless, their inherent brittleness significantly restricts industrial applications, posing a challenge to improving toughness without compromising hardness. This study investigates the role of SiC whiskers (SiCw) in simultaneously suppressing grain growth and enhancing the toughness of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) composites, while maintaining high hardness during high-pressure high-temperature (HPHT) sintering. HEC-SiCw composites were fabricated via HPHT (P = 5 GPa, T = 2000 °C), with SiCw contents ranging from 0 to 40 mol%. As the SiCw content increased, the growth of HEC grains was inhibited, and the fracture toughness progressively rose to a peak value (KIC = 9.4 ± 1.2 MPa·m1/2), representing an increase of approximately 184% compared to that of pure HEC, while Vickers hardness remained stable at 26 GPa. The enhancement in fracture toughness is attributed to the heterogeneous grain distribution and robust grain boundary strength, which facilitated a synergistic combination of transgranular and intergranular fracture mechanisms. These mechanisms induced crack deflection and whisker pull-out, effectively dissipating fracture energy and impeding crack propagation, thereby enhancing toughness. This study presents a novel approach to simultaneously refine grain size and improve toughness in HECs through HPHT processing, providing valuable insights for the development of next-generation ceramic composites. Full article
Show Figures

Figure 1

21 pages, 11619 KiB  
Article
Deposition Characteristics and Mechanical Properties of WC/Stellite-6 Composite Coatings Prepared by Supersonic Laser Deposition
by Bo Li, Hao Wang, Haocheng Li, Zhihong Li, Panpan Zhang, Shaowu Liu, Qunli Zhang, Jiake Deng, Szymon Tofil and Jianhua Yao
Coatings 2025, 15(3), 295; https://doi.org/10.3390/coatings15030295 - 3 Mar 2025
Viewed by 842
Abstract
To fulfill the harsh surface demand for key industrial components, metal matrix composite coatings (MMC) with hard ceramic particles located in the metallic matrix have attracted considerable attention in recent years. In this paper, WC/Stellite-6 composite coatings were fabricated via supersonic laser deposition [...] Read more.
To fulfill the harsh surface demand for key industrial components, metal matrix composite coatings (MMC) with hard ceramic particles located in the metallic matrix have attracted considerable attention in recent years. In this paper, WC/Stellite-6 composite coatings were fabricated via supersonic laser deposition (SLD). The effects of laser heating temperature, WC particle size and addition content on the deposition characteristics were systematically studied. The microstructures and mechanical properties of the as-prepared composite coatings were examined. The results demonstrated that increasing laser heating temperature can improve powder deposition efficiency for both coarse and fine WC-reinforced coatings. The peak coating height of fine WC-reinforced composite coating is 1157 μm, which is higher than that of coarse WC-reinforced composite coating (505.5 μm) deposited under the same laser heating temperature. The increase in laser heating temperature and WC addition content in original composite powder resulted in the increase in WC fraction in the composite coating, which can achieve a highest value of 55.9 vol.%. The SLD composite coating had comparable bonding strength (145.5 MPa) to that of laser cladded (LC) coating. The SLD specimen showed plastic fracture behavior, which was different from brittle fracture behavior for the LC sample. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

16 pages, 5148 KiB  
Article
Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure
by Rui Tsutsumi, Mitsunori Yada, Hiromichi Ichinose, Yushi Oishi and Takayuki Narita
J. Compos. Sci. 2025, 9(3), 99; https://doi.org/10.3390/jcs9030099 - 23 Feb 2025
Viewed by 945
Abstract
This study presents a novel self-healing mechanism for porcelain ceramics using UV-curable resin to address the inherent brittleness of ceramic materials. A biomimetic double-layered structure was designed, consisting of a high-density outer layer for mechanical strength and a highly porous inner layer for [...] Read more.
This study presents a novel self-healing mechanism for porcelain ceramics using UV-curable resin to address the inherent brittleness of ceramic materials. A biomimetic double-layered structure was designed, consisting of a high-density outer layer for mechanical strength and a highly porous inner layer for resin storage. The porous layer, achieved through nylon microparticle addition and subsequent volatilization during sintering, reached a porosity of 67%. As confirmed by FT-IR spectroscopy and EDS analysis, UV-curable acrylic resin was successfully incorporated into the porous structure. Three-point bending tests demonstrated efficient healing with a recovery rate of 56% after 5 min of UV irradiation. Both cured resin weight and post-healing bending strength increased logarithmically with UV irradiation time. The bending strength after healing was strongly dependent on the cured resin weight and polymerization depth within the specimen, as evidenced by the correlation between increased polymerization area and higher bending strength. This approach offers a promising solution for developing more reliable and durable ceramic materials, which will be particularly beneficial for aerospace and medical applications where maintenance cost reduction and extended product life are crucial. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 8890 KiB  
Article
Application of Magnetic-Assisted Polishing Using Metal-Bonded Grinding Wheels for Machining Silicon Nitride Ball Bearings
by Su-Yeon Han, Seung-Min Lee, Ha-Neul Kim, Jae-Woong Ko and Tae-Soo Kwak
Materials 2025, 18(3), 677; https://doi.org/10.3390/ma18030677 - 3 Feb 2025
Viewed by 948
Abstract
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and [...] Read more.
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and high efficiency in machining brittle materials. However, it is difficult to completely remove surface damage, which limits its use in products requiring a nano surface. These defects also result in reduced reliability and shortened lifespan. Magnetic-assisted polishing (MAP) is a technology that can achieve a fine surface by using a mixture of iron powder and abrasives, but it requires a lot of time due to the low material removal rate (MRR). Therefore, this study developed a hybrid processing technology using a metal-bonded grinding wheel and a slurry with hard abrasives for the high precision of silicon nitride ceramic ball bearings. Experiments were conducted in order to compare and analyze the surface roughness and material removal rate. Through MAP, using a grinding wheel with low grit (#325), high-efficiency machining performance was confirmed with a maximum material removal rate of 1.193 mg/min. In MAP, using a grinding wheel with high grit (#2000), a nano-level surface roughness of 6.5 nm Ra was achieved. Full article
Show Figures

Figure 1

18 pages, 40755 KiB  
Article
Effects of Temperature and Water Vapor Content on Microstructure, Mechanical Properties and Corrosion Behavior of C/C-SiC Composites
by Yanbin Wei, Zhiyong Ye, Yalei Wang, Xiang Xiong, Zaidong Liu, Jinming Wang and Tongqi Li
Materials 2024, 17(24), 6259; https://doi.org/10.3390/ma17246259 - 21 Dec 2024
Cited by 2 | Viewed by 850
Abstract
Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the [...] Read more.
Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the difficulty of oxidation in water vapor can be ranked from easy to difficult in the following order: carbon fiber (CF), pyrolytic carbon (PyC), and ceramic phase. The surface CFs become cone-shaped under corrosion. PyC has a slower oxidation rate and lower degree of oxidation compared to CF. The SiO2 layer formed by the oxidation of SiC and residual Si was insufficient to fully cover the surface of CFs and PyC. As the temperature increased, the oxide film thickened, but the corrosion degree of CF and PyC intensified, and the flexural performance continuously deteriorated. The flexural strength of C/C-SiC composites was 271.86 MPa at room temperature. Their strength retention rates were all higher than 92.19% after water vapor corrosion at 1000 °C, still maintaining the “pseudoplastic” fracture characteristics. After water vapor corrosion at 1200 °C, the CFs inside the composites sustained more severe damage, with a strength retention rate as low as 48.75%. The fracture mode was also more inclined towards brittle fracture. Full article
(This article belongs to the Special Issue Damage, Fracture and Fatigue of Ceramic Matrix Composites (CMCs))
Show Figures

Graphical abstract

11 pages, 2255 KiB  
Article
Mechanical Resistance of Different Dental Ceramics and Composite, Milled, or Printed Materials: A Laboratory Study
by Georgi Iliev, Radosveta Vasileva, Dimitar Kirov, Elitsa Deliverska and Janet Kirilova
Appl. Sci. 2024, 14(23), 11129; https://doi.org/10.3390/app142311129 - 29 Nov 2024
Viewed by 1653
Abstract
Contemporary indirect restorative materials vary in their physical and mechanical properties, necessitating additional research. This investigation aims to compare the mechanical properties (such as fatigue and compressive strength) of indirect dental restorative materials. In an in vitro study, the mechanical behaviour of monolithic [...] Read more.
Contemporary indirect restorative materials vary in their physical and mechanical properties, necessitating additional research. This investigation aims to compare the mechanical properties (such as fatigue and compressive strength) of indirect dental restorative materials. In an in vitro study, the mechanical behaviour of monolithic onlay restorations made from a lithium disilicate glass–ceramic (Group A), a ceramic-infiltrated composite (Group B), a polymer-based composite resin (Group C), and zirconia (Group D), bonded to a prepared tooth model, was evaluated after ageing and mechanical cycling. The average value of compressive strength (stage of cracking) in each group was as follows: Group A, 871 N; Group B, 728 N; Group C, 2655 N; and Group D, 2005 N. Moreover, the results of the compressive strength test (stage of destruction) in each group were as follows: Group A, 2516.5 N; Group B, 2266 N; Group C, 5670 N; and Group D, 3543 N. An analysis of variance (ANOVA) followed by Tukey’s (HSD) post hoc test was conducted to assess pairwise comparisons among group means. Statistical analysis revealed significant differences between Groups C and D and the others, highlighting the potential of these materials in clinical applications. Based on the average values, it can be concluded that the 3D-printed ceramic-infiltrated composite onlays exhibited the highest compressive resistance values among the materials evaluated. The lithium disilicate glass–ceramic and the ceramic-infiltrated composite are brittle materials, which should be considered when covering teeth with high occlusal stress. Full article
(This article belongs to the Special Issue Dental Materials: Latest Advances and Prospects, Third Edition)
Show Figures

Figure 1

23 pages, 12190 KiB  
Article
Effect of PVDF, HA, and AgNO3 Annealing on β-Phase, Optical, and Mechanical Properties
by Ieva Markuniene, Arvydas Palevicius, Joris Vezys, Jakub Augustyniak, Dariusz Perkowski, Sigita Urbaite and Giedrius Janusas
J. Compos. Sci. 2024, 8(7), 240; https://doi.org/10.3390/jcs8070240 - 25 Jun 2024
Cited by 1 | Viewed by 2000
Abstract
Typically, polymer composites and ceramics are used to create biosensors. Materials with properties that are ideal for biosensors and chemical sensors include AgNO3 (silver nitrate), PVDF (polyvinylidene fluoride), and HA (hydroxyapatite). Polyvinylidene fluoride (PVDF) polymer has been widely used in several applications [...] Read more.
Typically, polymer composites and ceramics are used to create biosensors. Materials with properties that are ideal for biosensors and chemical sensors include AgNO3 (silver nitrate), PVDF (polyvinylidene fluoride), and HA (hydroxyapatite). Polyvinylidene fluoride (PVDF) polymer has been widely used in several applications because of its well-known superior ferroelectric characteristics and biocompatibility. The brittleness and low bending strength of hydroxyapatite limit its applicability. Several HA and polymer composite formulations have been developed to compensate for HA’s mechanical weakness. The final product contains a significant amount of HA, making HA/polymer composites highly biocompatible. When the right amount of silver is deposited, the maximum piezoelectric activity is generated, and silver nitrate has antimicrobial properties. The non-toxic solvent DMSO (dimethyl sulfoxide) and the solvent casting method were chosen for the preparation of the film. Surface roughness was chosen to measure the Str and Sdr properties of the thin film. For liquid preparation, the multifractal spectra analysis was chosen for each sample. SEM was used to examine the samples morphologically. EDX and mapping analyses were presented for chemistry distribution in the samples. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

16 pages, 2705 KiB  
Article
Oxidation Driven Damage on SiC/BN/SiC Ceramic Matrix Composite Aero-Engine Structures: An Iterative Computational Framework
by Giacomo Canale and Roberto Citarella
Materials 2024, 17(12), 3034; https://doi.org/10.3390/ma17123034 - 20 Jun 2024
Cited by 1 | Viewed by 924
Abstract
Ceramic matrix composites (CMCs) could be a game changer in the aero-engine industry. Their density is circa one-third of their metallic counterpart. CMCs, furthermore, offer increased strength and greater capability at very high temperatures. This would allow for a reduction in cooling and [...] Read more.
Ceramic matrix composites (CMCs) could be a game changer in the aero-engine industry. Their density is circa one-third of their metallic counterpart. CMCs, furthermore, offer increased strength and greater capability at very high temperatures. This would allow for a reduction in cooling and an increased engine performance. Some challenges, besides the complexity of the manufacturing process, however, remain for the structural integrity of this technology. CMCs are inherently brittle; furthermore, they tend to oxidise when attacked by water or oxygen, and their constituents become brittle and more prone to failure. There are two main points of novelty proposed by this work. The first one is to model and reproduce recent oxidation experimental data with a simple Fick’s law implemented in Abaqus. The parameters of this modelling are a powerful tool for the design of such material systems. The second aspect consists in the development of a new computational framework for iteratively calculating oxygen diffusion and stiffness degradation of the material. Oxidation and stiffness degradation are in fact coupled phenomena. The crack (or microcracking) opening, the function of applied stress, accelerates oxygen diffusion whilst the oxidation diffusion itself contributes to embrittlement and then damage introduction in the material system. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 12507 KiB  
Article
Vat Photopolymerization of Sepiolite Fiber and 316L Stainless Steel-Reinforced Alumina with Functionally Graded Structures
by Chang Liu, Hailong Wu, Anfu Guo, Dekun Kong, Zhengyu Zhao, Lu Wang, Lvfa Yin, Guojun Xia, Xiaofei Su and Yingbin Hu
Materials 2024, 17(12), 2973; https://doi.org/10.3390/ma17122973 - 18 Jun 2024
Cited by 2 | Viewed by 1347
Abstract
Alumina (Al2O3) ceramics are widely used in electronics, machinery, healthcare, and other fields due to their excellent hardness and high temperature stability. However, their high brittleness limits further applications, such as artificial ceramic implants and highly flexible protective gear. [...] Read more.
Alumina (Al2O3) ceramics are widely used in electronics, machinery, healthcare, and other fields due to their excellent hardness and high temperature stability. However, their high brittleness limits further applications, such as artificial ceramic implants and highly flexible protective gear. To address the limitations of single-phase toughening in Al2O3 ceramics, some researchers have introduced a second phase to enhance these ceramics. However, introducing a single phase still limits the range of performance improvement. Therefore, this study explores the printing of Al2O3 ceramics by adding two different phases. Additionally, a new gradient printing technique is proposed to overcome the limitations of single material homogeneity, such as uniform performance and the presence of large residual stresses. Unlike traditional vat photopolymerization printing technology, this study stands out by generating green bodies with varying second-phase particle ratios across different layers. This study investigated the effects of different contents of sepiolite fiber (SF) and 316L stainless steel (SS) on various aspects of microstructure, phase composition, physical properties, and mechanical properties of gradient-printed Al2O3. The experimental results demonstrate that compared to Al2O3 parts without added SF and 316L SS, the inclusion of these materials can significantly reduce porosity and water absorption, resulting in a denser structure. In addition, the substantial improvements, with an increase of 394.4% in flexural strength and an increase of 316.7% in toughness, of the Al2O3 components enhanced by incorporating SF and 316L SS have been obtained. Full article
Show Figures

Graphical abstract

18 pages, 6817 KiB  
Article
Investigation of Variability of Flaw Strength Distributions on Brittle SiC Ceramic
by Jacques Lamon
Ceramics 2024, 7(2), 759-776; https://doi.org/10.3390/ceramics7020050 - 4 Jun 2024
Cited by 1 | Viewed by 1419
Abstract
The present paper investigates flaw strength distributions established using various flexural tests on batches of SiC bar test specimens, namely four-point bending as well as three-point bending tests with different span lengths. Flaw strength is provided by the elemental stress operating on the [...] Read more.
The present paper investigates flaw strength distributions established using various flexural tests on batches of SiC bar test specimens, namely four-point bending as well as three-point bending tests with different span lengths. Flaw strength is provided by the elemental stress operating on the critical flaw at the fracture of a test specimen. Fracture-inducing flaws and their locations are identified using fractography. A single population of pores was found to dominate the fracture. The construction of diagrams of p-quantile vs. elemental strengths was aimed at assessing the Gaussian nature of flaw strengths. Then, empirical cumulative distributions of strengths were constructed using the normal distribution function. The Weibull distributions of strengths are then compared to the normal reference distributions. The parameters of the Weibull cumulative probability distributions are estimated using maximum likelihood and moment methods. The cumulative distributions of flexural strengths for the different bending tests are predicted from the flaw strength density function using the elemental strength model, and from the cumulative distribution of flexural strength using the Weibull function. Flaw strength distributions that include the weaker flaws that are potentially present in larger test pieces are extrapolated using the p-quantile diagrams. Implications are discussed regarding the pertinence of an intrinsically representative flaw strength distribution, considering failure predictions. Finally, the influence of the characteristics of fracture-inducing flaw populations expressed in terms of flaw strength interval, size, dispersion, heterogeneity, and reproducibility with volume change is examined. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

17 pages, 11586 KiB  
Article
Fabrication of Ceramic Microchannels with Periodic Corrugated Microstructures as Catalyst Support for Hydrogen Production via Diamond Wire Sawing
by Xinying Li, Chao Gao, Ding Yuan, Yuanbao Qin, Dongbi Fu, Xiyang Jiang and Wei Zhou
Materials 2024, 17(11), 2535; https://doi.org/10.3390/ma17112535 - 24 May 2024
Cited by 1 | Viewed by 1270
Abstract
Hydrogen energy is the clean energy with the most potential in the 21st century. The microchannel reactor for methanol steam reforming (MSR) is one of the effective ways to obtain hydrogen. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, and [...] Read more.
Hydrogen energy is the clean energy with the most potential in the 21st century. The microchannel reactor for methanol steam reforming (MSR) is one of the effective ways to obtain hydrogen. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, and high mechanical strength, and are ideal materials for preparing the catalyst support in microchannel reactors. However, the structure of ceramic materials is hard and brittle, and the feature size of microchannel is generally not more than 1 mm, which is difficult to process using traditional processing methods. Diamond wire saw processing technology is mainly used in the slicing of hard and brittle materials such as sapphire and silicon. In this paper, a microchannel with a periodic corrugated microstructure was fabricated on a ceramic plate using diamond wire sawing, and then as a catalyst support when used in a microreactor for MSR hydrogen production. The effects of wire speed and feed speed on the amplitude and period size of the periodic corrugated microstructure were studied using a single-factor experiment. The microchannel surface morphology was observed via SEM and a 3D confocal laser microscope under different processing parameters. The microchannel samples obtained under different processing parameters were supported by a multiple impregnation method. The loading strength of the catalyst was tested via a strong wind purge experiment. The experimental results show that the periodic corrugated microstructure can significantly enhance the load strength of the catalyst. The microchannel catalyst support with the periodic corrugated microstructure was put into the microreactor for a hydrogen production experiment, and a good hydrogen production effect was obtained. The experimental results have a positive guiding effect on promoting ceramic materials as the microchannel catalyst support for the development of hydrogen energy. Full article
(This article belongs to the Special Issue Advanced Abrasive Processing Technology and Applications)
Show Figures

Figure 1

Back to TopTop