Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Double-Layered Specimens and UV-Curable Resin Impregnation
2.3. FT-IR
2.4. Mechanical Property Testing by Three-Point Bending
2.5. Healing Procedure and Recovery Evaluation
2.6. Evaluation of Porous Structure and Resin Distribution
2.7. Evaluation of Resin Weight Cured by UV Irradiation
2.8. Analysis of UV-Cured Resin Polymerization Depth
3. Results and Discussion
3.1. Fabrication and Porosity Evaluation of Double-Layered Porcelain
3.2. UV-Curable Resin Filling and Internal Structure Changes
3.3. Chemical Confirmation of Resin Filling by FT-IR
3.4. Mechanical Property Evaluation by Three-Point Bending
3.5. Evaluation of Cured Resin Weight vs. UV Irradiation Time
3.6. Observation of Polymerization Regions by Optical Microscopy
4. Conclusions
- A double-layered porcelain structure was successfully fabricated with distinct porosity levels (67% inner layer, 39% outer layer) using nylon microparticle addition and subsequent volatilization during sintering.
- FT-IR spectroscopy and EDS analysis confirmed the successful incorporation and uniform distribution of UV-curable resin throughout the porous structure.
- Three-point bending tests demonstrated effective healing with recovery rates exceeding 50% after 5 min of UV exposure, significantly faster than conventional ceramic healing methods.
- Both cured resin weight and post-healing bending strength increased logarithmically with UV exposure time, indicating a direct correlation between polymerization extent and mechanical recovery.
- Cross-sectional analysis revealed progressive polymerization from the surface inward with increased UV exposure time, providing insight into the healing mechanism.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, S.; Bhat, G. Progress and challenges in self-healing composite materials. Mater. Adv. 2021, 2, 1896–1926. [Google Scholar] [CrossRef]
- Song, T.; Jiang, B.; Li, Y.; Ji, Z.; Zhou, H.; Jiang, D.; Seok, I.; Murugadoss, V.; Wen, N.; Colorado, H. Self-healing materials: A review of recent developments. ES Mater. Manuf. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Wu, D.Y.; Meure, S.; Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 2008, 33, 479–522. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Zhong, J.; Tian, X.; Shi, B.; Zhang, Z.; Liu, X.; Yang, Y. Bio-inspired self-healing polyurethane system: Mimicking connective tissue with hydrogen-bonding mechanism. Chem. Eng. J. 2024, 498, 155416. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Xu, J.; Zhao, Z.H.; Fu, J. Research Progress of Human Biomimetic Self-Healing Materials. Small 2025, 21, 2408199. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Self-Healing Polymeric Materials Based on Microencapsulated Healing Agents: From Design to Preparation. Prog. Polym. Sci. 2015, 49–50, 175–220. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef]
- Chen, Y.; Kushner, A.M.; Williams, G.A.; Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472. [Google Scholar] [CrossRef]
- Shields, Y.; Van Mullem, T.; De Belie, N.; Van Tittelboom, K. An investigation of suitable healing agents for vascular-based self-healing in cementitious materials. Sustainability 2021, 13, 12948. [Google Scholar] [CrossRef]
- Davies, R.; Jefferson, T.; Gardner, D. Development and testing of vascular networks for self-healing cementitious materials. J. Mater. Civ. Eng. 2021, 33, 04021164. [Google Scholar] [CrossRef]
- Kaushal, V.; Saeed, E. Sustainable and Innovative Self-Healing Concrete Technologies to Mitigate Environmental Impacts in Construction. CivilEng 2024, 5, 549–558. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, A. Advancing Sustainability in Construction and Environmental Management About Innovative Materials, Technologies, and Policy Frameworks. Appl. Comput. Eng. 2024, 66, 107–112. [Google Scholar] [CrossRef]
- Li, G.; Xiao, P.; Hou, S.; Huang, Y. Graphene based self-healing materials. Carbon 2019, 146, 371–387. [Google Scholar] [CrossRef]
- Sun, H.; Zou, B.; Wang, X.; Chen, W.; Zhang, G.; Quan, T.; Huang, C. Advancements in multi-material additive manufacturing of advanced ceramics: A review of strategies, techniques and equipment. Mater. Chem. Phys. 2024, 319, 129337. [Google Scholar] [CrossRef]
- Zhang, W.; Yamashita, S.; Kita, H. Progress in tribological research of SiC ceramics in unlubricated sliding—A review. Mater. Des. 2020, 190, 108528. [Google Scholar] [CrossRef]
- Belmonte, M. Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 2006, 8, 693–703. [Google Scholar] [CrossRef]
- Mohammed, B.; Afram, B.; Nazar, Z. An evaluation of the effect of different surface treatment on hardness and smoothness of pressable ceramic (in vitro study). IOSR J. Dent. Med. Sci. IOSR 2015, 14, 84–89. [Google Scholar]
- Boyraz, T.; Akkuş, A. Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics. J. Ceram. Process. Res. 2021, 22, 226–231. [Google Scholar]
- Cherney, E.A.; Hackam, R.; Kim, S.H. Porcelain insulator maintenance with RTV silicone rubber coatings. IEEE Trans. Power Deliv. 1991, 6, 1177–1181. [Google Scholar] [CrossRef]
- Chaudhuri, S.P.; Sarkar, P.; Chakraborty, A.K. Electrical resistivity of porcelain in relation to constitution. Ceram. Int. 1999, 25, 91–99. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Qiao, S.; Qian, S.J.; Mo, J.-J. Hardware Complications and Failure of Three-unit Zirconia-based and Porcelain-fused-metal Implant-supported Fixed Dental Prostheses: A Retrospective Cohort Study with Up to 8 years. Clin. Oral Implant. Res. 2016, 28, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Zakaly, H.M.H.; Saudi, H.A.; Tekin, H.O.; Rashad, M.; Issa, S.A.M.; Rammah, Y.S.; Elazaka, A.I.; Hessien, M.M.; Ene, A. Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: Physical, structural, optical and nuclear radiation attenuation properties. J. Mater. Res. Technol. 2021, 15, 4074–4085. [Google Scholar] [CrossRef]
- Woda, C.; Greilich, S.; Beerten, K. On the OSL Curve Shape and Preheat Treatment of Electronic Components from Portable Electronic Devices. Radiat. Meas. 2010, 45, 746–748. [Google Scholar] [CrossRef]
- Belussi, L.; Mariotto, M.; Meroni, I.; Zevi, C.; Dei Svaldi, S. LCA study and testing of a photovoltaic ceramic tile prototype. Renew. Energy 2015, 74, 263–270. [Google Scholar] [CrossRef]
- Xiu, D.; Zhao, G.; Zhou, J.; Zhang, S. Black Porcelain Solar Plate and Its Thermal Performance. Int. J. Appl. Ceram. Technol. 2019, 16, 2385–2392. [Google Scholar] [CrossRef]
- Ewart, L.; Suresh, S. Crack propagation in ceramics under cyclic loads. J. Mater. Sci. 1987, 22, 1173–1192. [Google Scholar] [CrossRef]
- Evans, A.G. The role of inclusions in the fracture of ceramic materials. J. Mater. Sci. 1974, 9, 1145–1152. [Google Scholar] [CrossRef]
- Capobianco, V.; Baroudi, K.; Santos, M.J.M.C.; Rubo, J.H.; Rizkalla, A.S.; Piva, A.M.d.O.D.; Vitti, R.P.; Tribst, J.P.M.; Santos, G.C. Post-Fatigue Fracture Load, Stress Concentration and Mechanical Properties of Feldspathic, Leucite- and Lithium Disilicate-Reinforced Glass Ceramics. Heliyon 2023, 9, e17787. [Google Scholar] [CrossRef] [PubMed]
- Alwaqeet, M. Inter-Proximal Space Management Using Indirect Ceramic Veneers. J. Med. Sci. Clin. Res. 2017, 05, 15845–15849. [Google Scholar] [CrossRef]
- Wielage, B.; Nestler, D.; Roder, K. Investigation of Mechanical Properties and Failure Behaviour of CFRP, C/C and C/C-SiC Materials Fabricated by the Liquid-Silicon Infiltration Process in Dependence on the Matrix Chemistry. In Integrated Systems, Design and Technology 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 59–66. [Google Scholar] [CrossRef]
- Bolten, M.; Gottschalk, H.; Hahn, C.; Saadi, M. Numerical Shape Optimization to Decrease Failure Probability of Ceramic Structures. Comput. Vis. Sci. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Osada, T.; Kamoda, K.; Mitome, M.; Hara, T.; Abe, T.; Tamagawa, Y.; Nakao, W.; Ohmura, T. A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator. Sci. Rep. 2017, 7, 17853. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Fang, X.; Zhang, Y.; Liu, D.; Wang, Y.; Feng, S.; Zhou, T.; Cai, S.; Suo, J. Enhancement of high temperature oxidation resistance and spallation resistance of SiC-self-healing thermal barrier coatings. Surf. Coat. Technol. 2016, 286, 365–375. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Du, S.; Han, W.; Han, J. Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scr. Mater. 2008, 59, 1222–1225. [Google Scholar] [CrossRef]
- Cluzel, C.; Baranger, E.; Ladeveze, P.; Mouret, A. Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading in air. Compos. Part A Appl. Sci. Manuf. 2009, 40, 976–984. [Google Scholar] [CrossRef]
- McDonald, S.A.; Coban, S.B.; Sottos, N.R.; Withers, P.J. Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer. Sci. Rep. 2019, 9, 17773. [Google Scholar] [CrossRef] [PubMed]
- Paladugu, S.R.M.; Sreekanth, P.S.R.; Sahu, S.K.; Naresh, K.; Karthick, S.A.; Venkateshwaran, N.; Ramoni, M.; Mensah, R.A.; Das, O.; Shanmugam, R. A comprehensive review of self-healing polymer, metal, and ceramic matrix composites and their modeling aspects for aerospace applications. Materials 2022, 15, 8521. [Google Scholar] [CrossRef]
- Zhang, H.; Ling, T.C.; Shi, X.; Wang, H. Influence of Curing Condition on Compressive Strength of Low-Calcium Fly Ash-Based Geopolymer Concrete. J. Residuals Sci. Technol. 2017, 14, S79–S83. [Google Scholar] [CrossRef]
- Mahdi, S.; Gama, B.A.; Yarlagadda, S.; Gillespie, J.W. Structural Repair of Composite Structural Armor. J. Compos. Mater. 2005, 39, 1695–1717. [Google Scholar] [CrossRef]
- Masson, F.; Decker, C.; Andre, S.; Andrieu, X. UV-curable formulations for UV-transparent optical fiber coatings: I. Acrylic resins. Prog. Org. Coat. 2004, 49, 1–12. [Google Scholar] [CrossRef]
- Noè, C.; Hakkarainen, M.; Sangermano, M. Cationic UV-curing of epoxidized biobased resins. Polymers 2020, 13, 89. [Google Scholar] [CrossRef]
- Strużyńska-Piron, I.; Loccufier, J.; Vanmaele, L.; Vankelecom, I.F.J. Synthesis of solvent stable polymeric membranes via UV depth-curing. Chem. Commun. 2013, 49, 11494–11496. [Google Scholar] [CrossRef]
- Strużyńska-Piron, I.; Bilad, M.R.; Loccufier, J.; Vanmaele, L.; Vankelecom, I.F.J. Influence of UV curing on morphology and performance of polysulfone membranes containing acrylates. J. Membr. Sci. 2014, 462, 17–27. [Google Scholar] [CrossRef]
- Kamochi, N.; Yamasaki, K. Technological Development for Diversification of High Precision Ceramics Products (1) Sintering Behaver and Pore Properties of High Precision Ceramics. Saga Ceram. Res. Lab. Annu. Rep. 2019, 40–44. [Google Scholar]
- Oftadeh, R.; Entezari, V.; Spörri, G.; Villa-Camacho, J.C.; Krigbaum, H.; Strawich, E.; Graham, L.; Rey, C.; Chiu, H.; Müller, R. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone. J. R. Soc. Interface 2015, 12, 20150070. [Google Scholar] [CrossRef]
- Velnar, T.; Bunc, G.; Gradišnik, L. Fractures and Biomechanical Characteristics of the Bone. Surg. Sci. 2015, 6, 255–263. [Google Scholar] [CrossRef]
- Yada, M.; Tanaka, G.; Isono, K.; Kamochi, N.; Ichinose, H. Ultra-reduction of drying and firing shrinkage on pottery slip casting by adding mullite fiber. J. Eur. Ceram. Soc. 2024, 44, 2677–2684. [Google Scholar] [CrossRef]
- Gür, M.; Kocaokutgen, H.; Kandemirli, F.; Özkinali, S.; Yerlikaya, Z. Synthesis, Spectral and Thermal Characterization of Some Azo-Polymers Containing Acrylate Derivatives. Res. Rev. J. Chem. 2016, 5, 1–9. [Google Scholar]
- Obazee, E.O.; Okieimen, F.E.; Felix, P.S.; Ghosh, S.; Aigbodion, A.I.; Bakare, I.O. Synthesis and characterization of acrylated rubber seed oil. J. Chem. Soc. Niger. 2018, 43, 499–507. [Google Scholar]
- Zhang, L.; Wei, X.; Huang, B.; Wang, L.; Xiong, X. Ultraviolet Curing Kinetics of Epoxy Resin in UV-Curing Reaction Photopolymerization with Real-Time Fourier Transform Infrared Spectroscopy. In Applied Sciences in Graphic Communication and Packaging: Proceedings of 2017 49th Conference of the International Circle of Educational Institutes for Graphic Arts Technology and Management & 8th China Academic Conference on Printing and Packaging; Springer: Singapore, 2018; pp. 761–767. [Google Scholar]
- Hong, B.T.; Shin, K.S.; Kim, D.S. Ultraviolet-curing behavior of an epoxy acrylate resin system. J. Appl. Polym. Sci. 2005, 98, 1180–1185. [Google Scholar] [CrossRef]
- Lee, I.B.; Um, C.-M. Thermal Analysis on the Cure Speed of Dual Cured Resin Cements Under Porcelain Inlays. J. Oral Rehabil. 2001, 28, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhang, Y.; Shen, Z.; Du, D.; Huang, S.; Liu, L.; Huang, L. Fiber Bragg Grating Detection of Gel Time and Residual Strain of Curing in Epoxy Resins. Polym. Eng. Sci. 2024, 64, 3101–3108. [Google Scholar] [CrossRef]
- Jiang, H.; Du, Y.; Wang, J.; Cao, Y.; Jin, C.; Yan, Y. Enhanced Bamboo Interfacial Bonding Performance on the Basis of Toughening Phenol Formaldehyde Resin by Flour. Polym. Compos. 2022, 44, 524–535. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, A.; Zhao, P.; Wei, H.; Hu, F. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system. J. Appl. Biomater. Funct. Mater. 2018, 16, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Basu, S.; DeMeter, E.C. Coupling Monte Carlo Light Propagation Method and Curing Kinetic Equations to Model the Degree of Conversion Evolution of UV-Curable Composites. Ind. Eng. Chem. Res. 2021, 60, 10431–10444. [Google Scholar] [CrossRef]
- Zhang, W.; Shentu, B.; Weng, Z. Preparation and properties of heat and ultraviolet-induced bonding and debonding epoxy/epoxy acrylate adhesives. J. Appl. Polym. Sci. 2018, 135, 46435. [Google Scholar] [CrossRef]
- Sun, G.; Mao, X.; Luo, J.; Liu, R. Mitigating Shrinkage Stress in UV-Curable Resin: Shape Memory Microcapsules Enable Shrinkage Stress Reduction via Photopolymerization-Induced Shape Recovery. ACS Appl. Polym. Mater. 2024, 6, 977–985. [Google Scholar] [CrossRef]
- Rahman, M.M.; Maeda, T.; Osada, T.; Ozaki, S. Method of Determining Kinetic Parameters of Strength Recovery in Self-Healing Ceramic Composites. Materials 2023, 16, 4079. [Google Scholar] [CrossRef]
- Sloof, W.G.; Pei, R.; McDonald, S.; Fife, J.L.; Shen, L.; Boatemaa, L.; Farle, A.S.; Yan, K.; Zhang, X.; Zwaag, S.v.d.; et al. Repeated Crack Healing in MAX-phase Ceramics Revealed by 4D in Situ Synchrotron X-Ray Tomographic Microscopy. Sci. Rep. 2016, 6, 23040. [Google Scholar] [CrossRef]
- Souza, N.R.d.; Paiva, P.R.P. Evaluation of the Self-Healing Capacity of Ceramics Produced with Alumina and Silicon Carbide. Cerâmica 2022, 68, 229–235. [Google Scholar] [CrossRef]
- Lee, J.S.; Akutsu, Y.; Nakao, W. Mechanical Properties Due to Competition Behavior Between Damage and Recovery of Self-healing Fiber-reinforced Ceramics. Int. J. Appl. Ceram. Technol. 2024, 21, 2228–2234. [Google Scholar] [CrossRef]
- Cai, H.; Wei, Y.; Wang, B.; Jiang, K. Oxidation-induced Crack-healing Behavior of SiC-Al2O3-TiB2 Composites at 600 °C–800 °C. Int. J. Appl. Ceram. Technol. 2023, 20, 3635–3646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsutsumi, R.; Yada, M.; Ichinose, H.; Oishi, Y.; Narita, T. Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure. J. Compos. Sci. 2025, 9, 99. https://doi.org/10.3390/jcs9030099
Tsutsumi R, Yada M, Ichinose H, Oishi Y, Narita T. Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure. Journal of Composites Science. 2025; 9(3):99. https://doi.org/10.3390/jcs9030099
Chicago/Turabian StyleTsutsumi, Rui, Mitsunori Yada, Hiromichi Ichinose, Yushi Oishi, and Takayuki Narita. 2025. "Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure" Journal of Composites Science 9, no. 3: 99. https://doi.org/10.3390/jcs9030099
APA StyleTsutsumi, R., Yada, M., Ichinose, H., Oishi, Y., & Narita, T. (2025). Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure. Journal of Composites Science, 9(3), 99. https://doi.org/10.3390/jcs9030099