Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (468)

Search Parameters:
Keywords = street optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 141
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

26 pages, 3953 KiB  
Article
Enhancing Sense of Place Through Form-Based Design Codes: Lived Experience in Elmwood Village Under Buffalo’s Green Code
by Duygu Gökce
Urban Sci. 2025, 9(7), 285; https://doi.org/10.3390/urbansci9070285 - 21 Jul 2025
Viewed by 378
Abstract
Form-based design codes have emerged as a planning tool aimed at shaping the physical form of neighborhoods to reinforce local character and enhance sense of place (SoP). However, their effectiveness in delivering these outcomes remains underexplored. This study investigates the extent to which [...] Read more.
Form-based design codes have emerged as a planning tool aimed at shaping the physical form of neighborhoods to reinforce local character and enhance sense of place (SoP). However, their effectiveness in delivering these outcomes remains underexplored. This study investigates the extent to which Buffalo’s Green Code—a form-based zoning ordinance—enhances SoP in residential environments, using Elmwood Village as a case study. A multi-scalar analytical framework assesses SoP at the building, street, and neighborhood levels. Empirical data were gathered through an online survey, while the neighborhood was systematically mapped into street segment blocks categorized by Green Code zoning. The study consolidates six Green Code classifications into three overarching categories: mixed-use, residential, and single-family. SoP satisfaction is analyzed through a two-step process: first, comparative assessments are conducted across the three zoning groups; second, k-means clustering is applied to spatially map satisfaction levels and evaluate SoP at different scales. Findings indicate that mixed-use areas are most closely associated with place identity, while residential and single-family zones (as defined by the Buffalo Green Code) yield higher satisfaction overall—though satisfaction varies significantly across spatial scales. These results suggest that while form-based codes can strengthen SoP, their impact is uneven, and more scale-sensitive zoning strategies may be needed to optimize their effectiveness in diverse urban contexts. This research overall offers an empirically grounded, multi-scalar assessment of zoning impacts on lived experience—addressing a notable gap in the planning literature regarding how form-based codes perform in established, rather than newly developed, neighborhoods. Full article
Show Figures

Figure 1

26 pages, 6762 KiB  
Article
Temporal-Spatial Thermal Comfort Across Urban Blocks with Distinct Morphologies in a Hot Summer and Cold Winter Climate: On-Site Investigations in Beijing
by Tengfei Zhao and Tong Ma
Atmosphere 2025, 16(7), 855; https://doi.org/10.3390/atmos16070855 - 14 Jul 2025
Viewed by 266
Abstract
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly [...] Read more.
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly rely on microclimate numerical simulations, while comparative assessments of OTC from the human thermal perception perspective remain limited. This study employs the thermal walk method, integrating microclimatic measurements with thermal perception questionnaires, to conduct on-site OTC investigations across three urban blocks with contrasting spatial morphologies—a business district (BD), a residential area (RA), and a historical neighborhood (HN)—in Beijing, a hot summer and cold winter climate city. The results reveal substantial OTC differences among the blocks. However, these differences demonstrated great seasonal and temporal variations. In summer, BD exhibited the best OTC (mTSV = 1.21), while HN performed the worst (mTSV = 1.72). In contrast, BD showed the poorest OTC in winter (mTSV = −1.57), significantly lower than HN (−1.11) and RA (−1.05). This discrepancy was caused by the unique morphology of different blocks. The sky view factor emerged as a more influential factor affecting OTC over building coverage ratio and building height, particularly in RA (r = 0.689, p < 0.01), but its impact varied by block, season, and sunlight conditions. North–South streets generally perform better OTC than East–West streets, being 0.26 units cooler in summer and 0.20 units warmer in winter on the TSV scale. The study highlights the importance of incorporating more applicable physical parameters to optimize OTC in complex urban contexts and offering theoretical support for designing climate adaptive urban spaces. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

24 pages, 7656 KiB  
Article
Mixed Temporal Measurement of Land Use Based on AOI Data and Thermal Data
by Yiyang Hu, Hongfei Chen, Xiping Yang, Yuzheng Cui, Tianxiao Cui and Wenqing Fang
Land 2025, 14(7), 1457; https://doi.org/10.3390/land14071457 - 13 Jul 2025
Viewed by 272
Abstract
Land use mix is important for urban planning, and existing land use mix metrics frameworks have been developed comprehensively in terms of categories, distances, and attributes. However, most existing indices focus solely on the spatial dimension of land use mixing, neglecting the inherent [...] Read more.
Land use mix is important for urban planning, and existing land use mix metrics frameworks have been developed comprehensively in terms of categories, distances, and attributes. However, most existing indices focus solely on the spatial dimension of land use mixing, neglecting the inherent temporal variation of land use within short time scales, which results in difficulties in comprehensively and accurately capturing the cyclical dynamic characteristics of land use. In response to this problem, this study introduces innovative modifications to the diversity indicator from the perspective of the temporal availability of land use, based on the business time characteristics of land use. Specifically, three time-sensitive indexes were proposed, including the temporal diversity index (TDI), the daily temporal diversity index (DTDI), and the temporal entropy index (TEI). With these indexes, this paper measures and analyzes the functional mix of street blocks in Xi’an City. The results of the study show that the indexes are effective in reflecting changes in the temporal dimension of the land use mix. Meanwhile, Xi’an’s land use mix pattern is more reasonable in terms of setting business hours, but the type of functional mix needs to be optimized. The proposed indicator system offers a novel perspective on the spatiotemporal mixing of land use and delivers more precise decision-making support for urban planning and management. Full article
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Cited by 1 | Viewed by 339
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

24 pages, 5299 KiB  
Article
Landscape and Ecological Benefits Evaluation of Flowering Street Trees Based on Digital Technology: A Case Study in Shanghai’s Central Urban Area, China
by Xi Wang, Yanting Zhang, Yali Zhang, Benyao Wang, Yin Wu, Meixian Wang and Shucheng Feng
Forests 2025, 16(7), 1116; https://doi.org/10.3390/f16071116 - 5 Jul 2025
Viewed by 359
Abstract
Flowering street trees are important carriers of urban landscapes and ecological functions, as well as a significant boost to the construction of “Shanghai Flower City”. Most existing studies focus on the ornamental value or single ecological benefits, and there are insufficient systematic evaluations [...] Read more.
Flowering street trees are important carriers of urban landscapes and ecological functions, as well as a significant boost to the construction of “Shanghai Flower City”. Most existing studies focus on the ornamental value or single ecological benefits, and there are insufficient systematic evaluations of the landscape–ecology synergistic effect, especially as there are few quantitative studies on the landscape value during the flowering period and long-term ecological benefits. Scientific assessment of multiple benefits is of great significance for optimizing tree species allocation and enhancing the sustainability of road landscapes. Taking flowering street trees in Shanghai’s central urban area as a case study, this paper verifies the feasibility of using digital technology to evaluate their landscape and ecological benefits and explores ways to enhance these aspects. Landscape, ecological, and comprehensive benefits were quantitatively assessed using digital images, the i-Tree model, and the entropy-weighted method. Influencing factors for each aspect were also analyzed. The results showed the following: (1) Eleven species or cultivars of flowering street trees from six families and ten genera were identified, with the majority flowering in spring, fewer in summer and autumn, and none in winter. (2) The landscape benefits model was: Scenic Beauty Estimation (SBE) = −0.99 + 0.133 × Flowering branches+ 0.183 × Degree of flower display + 0.064 × Plant growth + 0.032 × Artistic conception + 0.091 × Visual harmony with surrounding elements. Melia azedarach L., Prunus × yedoensis ‘Somei-yoshino’, and Paulownia tomentosa (Thunb.) Steud. ranked highest in landscape benefits. (3) Catalpa bungei C. A. Mey., Koelreuteria bipinnata Franch., and Koelreuteria bipinnata ‘integrifoliola’ (Merr.) T.Chen had the highest plant height, diameter at breast height (DBH), and crown width among the studied trees, and ranked top in ecological benefits. (4) Koelreuteria bipinnata, Catalpa bungei, and Melia azedarach showed the best overall performance. The comprehensive benefits model was: Comprehensive Benefits = 0.6889 × Ecological benefits + 0.3111 × Landscape benefits. This study constructs a digital evaluation framework for flowering street trees, quantifies their landscape and ecological benefits, and provides optimization strategies for the selection and application of flowering trees in urban streets. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

30 pages, 15808 KiB  
Article
Exploring the Streetscape Perceptions from the Perspective of Salient Landscape Element Combination: An Interpretable Machine Learning Approach for Optimizing Visual Quality of Streetscapes
by Wanyue Suo and Jing Zhao
Land 2025, 14(7), 1408; https://doi.org/10.3390/land14071408 - 4 Jul 2025
Viewed by 433
Abstract
Understanding how people perceive urban streetscapes is essential for enhancing the visual quality of the urban environment and optimizing street space design. While perceptions are shaped by the interplay of multiple visual elements, existing studies often isolate single semantic features, overlooking their combinations. [...] Read more.
Understanding how people perceive urban streetscapes is essential for enhancing the visual quality of the urban environment and optimizing street space design. While perceptions are shaped by the interplay of multiple visual elements, existing studies often isolate single semantic features, overlooking their combinations. This study proposes a Landscape Element Combination Extraction Method (SLECEM), which integrates the UniSal saliency detection model and semantic segmentation to identify landscape combinations that play a dominant role in human perceptions of streetscapes. Using street view images (SVIs) from the central area of Futian District, Shenzhen, China, we further construct a multi-dimensional feature–perception coupling analysis framework. The key findings are as follows: 1. Both low-level visual features (e.g., color, contrast, fractal dimension) and high-level semantic features (e.g., tree, sky, and building proportions) significantly influence streetscape perceptions, with strong nonlinear effects from the latter. 2. K-Means clustering of salient landscape element combinations reveals six distinct streetscape types and perception patterns. 3. Combinations of landscape features better reflect holistic human perception than single variables. 4. Tailored urban design strategies are proposed for different streetscape perception goals (e.g., beauty, safety, and liveliness). Overall, this study deepens the understanding of streetscape perception mechanisms and proposes a highly operational quantitative framework, offering systematic theoretical guidance and methodological tools to enhance the responsiveness and sustainability of urban streetscapes. Full article
Show Figures

Figure 1

30 pages, 9068 KiB  
Article
Dynamic Behavior of Lighting GFRP Pole Under Impact Loading
by Mahmoud T. Nawar, Ahmed Elbelbisi, Mostafa E. Kaka, Osama Elhosseiny and Ibrahim T. Arafa
Buildings 2025, 15(13), 2341; https://doi.org/10.3390/buildings15132341 - 3 Jul 2025
Viewed by 245
Abstract
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base [...] Read more.
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base material behavior and energy absorption of GFRP lighting pole structures under impact loads. A finite element (FE) model of a 5 m-tall tapered GFRP pole with a steel base sleeve, base plate, and anchor bolts was developed. A 500 kg drop-weight impact at 400 mm above the base simulated vehicle collision conditions. The model was validated against experimental data, accurately reproducing the observed failure mode and peak force within 6%. Parametric analyses explored variations in pole diameter, wall thickness, base plate size and thickness, sleeve height, and anchor configuration. Results revealed that geometric parameters—particularly wall thickness and base plate dimensions—had the most significant influence on energy absorption. Doubling the wall thickness reduced normalized energy absorption by approximately 76%, while increases in base plate size and thickness reduced it by 35% and 26%, respectively. Material strength and anchor bolt configuration showed minimal impact. These findings underscore the importance of optimizing pole geometry to enhance crashworthiness. Controlled structural deformation improves energy dissipation, making geometry-focused design strategies more effective than simply increasing material strength. This work provides a foundation for designing safer roadside poles and highlights areas for further exploration in base configurations and connection systems. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

32 pages, 58845 KiB  
Article
Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
by Yuanyuan Li, Lina Zhao, Hao Zheng and Xiaozhou Yang
Land 2025, 14(7), 1393; https://doi.org/10.3390/land14071393 - 2 Jul 2025
Cited by 1 | Viewed by 493
Abstract
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study [...] Read more.
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale. Full article
Show Figures

Figure 1

24 pages, 6382 KiB  
Article
An Exploration of the Association Between Residents’ Sentiments and Street Functions During Heat Waves—Taking the Five Core Urban Areas of Chengdu City as an Example
by Tianrui Hua, Yufei Ru, Sining Zhang and Shixian Luo
Land 2025, 14(7), 1377; https://doi.org/10.3390/land14071377 - 30 Jun 2025
Viewed by 278
Abstract
Due to global warming, the impact of heat waves on the sentimental health of urban residents has significantly intensified. However, the associative mechanism between diverse urban functional layouts and residents’ emotions at the street scale remains underexplored. Taking the five core urban areas [...] Read more.
Due to global warming, the impact of heat waves on the sentimental health of urban residents has significantly intensified. However, the associative mechanism between diverse urban functional layouts and residents’ emotions at the street scale remains underexplored. Taking the five core urban areas of Chengdu as an example, this study used natural language processing technology to quantify the sentiments in social media texts and combined traditional geographical information for spatial analysis and correlation analysis, to explore the spatial distribution pattern of sentiments during heat waves (SDHW), as well as the correlation between SDHW and the functional categories of streets (FCS). The findings are as follows: (1) There are significant differences in the spatial distribution pattern of residents’ sentiments in the five core urban areas, and positive emotions within the Second Ring Road exhibit a higher proportion than those of peripheral areas, while negative sentiments are more gathered in the eastern area. (2) The street categories of green space, park, and public show a significant promoting role on residents’ positive sentiments. (3) There is an association between the industrial and commercial categories and negative sentiments, and the impact of the traffic category on residents’ sentiments shows spatial differences. (4) The combination of the residential category and other functional categories has a strong correlation with sentiments, indicating that a reasonable functional combination within residential areas plays a crucial role in promoting residents’ positive sentiments. The current study revealed the influence mechanism of the functional categories of streets on residents’ sentiments during heat waves, providing a scientific basis from the sentimental dimension for the optimization of street functional categories, heat wave emergency management, and the construction of resilient cities. Full article
Show Figures

Figure 1

28 pages, 10102 KiB  
Article
Multi-Source Data and Semantic Segmentation: Spatial Quality Assessment and Enhancement Strategies for Jinan Mingfu City from a Tourist Perception Perspective
by Lin Chen, Xiaoyu Cai and Zhe Liu
Buildings 2025, 15(13), 2298; https://doi.org/10.3390/buildings15132298 - 30 Jun 2025
Cited by 1 | Viewed by 400
Abstract
In the context of cultural tourism integration, tourists’ spatial perception intention is an important carrier of spatial evaluation. In historic cultural districts represented by Jinan Mingfu City, tourists’ perceptual depth remains underexplored, leading to a misalignment between cultural tourism development and spatial quality [...] Read more.
In the context of cultural tourism integration, tourists’ spatial perception intention is an important carrier of spatial evaluation. In historic cultural districts represented by Jinan Mingfu City, tourists’ perceptual depth remains underexplored, leading to a misalignment between cultural tourism development and spatial quality needs. Taking Jinan Mingfu City as a representative case of a historic cultural district, while the living heritage model has revitalized local economies, the absence of a tourist perspective has resulted in misalignment between cultural tourism development and spatial quality requirements. This study establishes a technical framework encompassing “data crawling-factor aggregation-human-machine collaborative optimization”. It integrates Python web crawlers, SnowNLP sentiment analysis, and TF-IDF text mining technologies to extract physical elements; constructs a three-dimensional evaluation framework of “visual perception-spatial comfort-cultural experience” through SPSS principal component analysis; and quantifies physical element indicators such as green vision rate and signboard clutter index through street view semantic segmentation (OneFormer framework). A synergistic mechanism of machine scoring and manual double-blind scoring is adopted for correlation analysis to determine the impact degree of indicators and optimization strategies. This study identified that indicators such as green vision rate, shading facility coverage, and street enclosure ratio significantly influence tourist evaluations, with a severe deficiency in cultural spaces. Accordingly, it proposes targeted strategies, including visual landscape optimization, facility layout adjustment, and cultural scenario implementation. By breaking away from traditional qualitative evaluation paradigms, this study provides data-based support for the spatial quality enhancement of historic districts, thereby enabling the transformation of these areas from experience-oriented protection to data-driven intelligent renewal and promoting the sustainable development of cultural tourism. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 4400 KiB  
Article
Smart Street Lighting Powered by Renewable Energy: A Multi-Criteria, Data-Driven Decision Framework
by Jiachen Bian and Jidong J. Yang
Sustainability 2025, 17(13), 5874; https://doi.org/10.3390/su17135874 - 26 Jun 2025
Viewed by 313
Abstract
Renewable energy sources, such as solar and wind power, are gaining increasing global attention. To facilitate their integration into transportation infrastructure, this paper proposes a multi-criteria assessment framework for identifying the most suitable renewable energy sources for street lighting at any given location. [...] Read more.
Renewable energy sources, such as solar and wind power, are gaining increasing global attention. To facilitate their integration into transportation infrastructure, this paper proposes a multi-criteria assessment framework for identifying the most suitable renewable energy sources for street lighting at any given location. The framework evaluates three key metrics: cost–benefit, reliability, and power generation potential, using time-series weather data. To demonstrate its effectiveness, we apply the framework to data from Georgia, USA. The results show that the proposed approach effectively classifies locations into four categories: solar-recommended, wind-recommended, hybrid-recommended, and no recommendation. Specifically, wind energy is primarily recommended in the southeastern region near the coastline, while solar energy is favored in the northwestern region. A hybrid of both sources is mainly recommended along the coast and in transitional areas. In several isolated parts of the northwest, neither energy source is recommended due to unfavorable weather conditions influenced by the local terrain. Since processing long-term time-series data is computationally intensive and challenging during inference, we train machine learning models, including Multilayer Perceptron (MLP) and Extreme Gradient Boosting (XGBoost), using temporally aggregated features for efficient and rapid decision-making. The MLP model achieves an overall accuracy of 92.4%, while XGBoost further improves accuracy to 94.3%. This study provides a practical reference for regional energy infrastructure planning, promoting optimized renewable energy use in street lighting through a robust, data-driven evaluation framework. Full article
Show Figures

Figure 1

22 pages, 5010 KiB  
Article
Street View-Enabled Explainable Machine Learning for Spatial Optimization of Non-Motorized Transportation-Oriented Urban Design
by Yichen Ruan, Xiaoyi Zhang, Shaohua Wang, Xiuxiu Chen and Qiuxiao Chen
Land 2025, 14(7), 1347; https://doi.org/10.3390/land14071347 - 25 Jun 2025
Viewed by 484
Abstract
To advance evidence-based urban design prioritizing non-motorized mobility, this study proposes a street view-enabled explainable machine learning framework that systematically links built environment semantics to non-motorized transportation vitality optimization. By integrating Baidu Street View images with deep learning-based object detection (Faster R-CNN), we [...] Read more.
To advance evidence-based urban design prioritizing non-motorized mobility, this study proposes a street view-enabled explainable machine learning framework that systematically links built environment semantics to non-motorized transportation vitality optimization. By integrating Baidu Street View images with deep learning-based object detection (Faster R-CNN), we quantify fine-grained human-powered and mechanically assisted mobility vitality. These features are fused with multi-source geospatial data encompassing 23 built environment variables into an interpretable machine learning pipeline using SHAP-optimized random forest models. The key findings reveal distinct nonlinear response patterns between HP and MA modes to built environment factors; for instance, a notable promotion in mechanically assisted NMT vitality is observed as enterprise density increases beyond 0.2 facilities per ha. Emergent synergistic and threshold effects are evident from variable interactions requiring multidimensional planning consideration, as demonstrated in phenomena such as the peaking of human-powered NMT vitality occurring at public facility densities of 0.2–0.8 facilities per ha, enterprise densities of 0.6–1 facilities per ha, and spatial heterogeneity patterns identified through Bivariate Local Moran’s I clustering. This research contributes an innovative technical framework combining street view image recognition with explainable AI, while practically informing urban planning through evidence-based mobility zone classification and targeted strategy formulation, enabling more precise optimization of pedestrian-/cyclist-oriented urban spaces. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

18 pages, 1606 KiB  
Article
Comparative Analysis of Traffic Detection Using Deep Learning: A Case Study in Debrecen
by João Porto, Pedro Sampaio, Peter Szemes, Hemerson Pistori and Jozsef Menyhart
Smart Cities 2025, 8(4), 103; https://doi.org/10.3390/smartcities8040103 - 24 Jun 2025
Viewed by 436
Abstract
This study evaluates deep learning models for vehicle detection in urban environments, focusing on the integration of regional data and standardized evaluation protocols. A central contribution is the creation of DebStreet, a novel dataset that captures images from a specific urban setting under [...] Read more.
This study evaluates deep learning models for vehicle detection in urban environments, focusing on the integration of regional data and standardized evaluation protocols. A central contribution is the creation of DebStreet, a novel dataset that captures images from a specific urban setting under varying weather conditions, providing regionally representative information for model development and evaluation. Using DebStreet, four state-of-the-art architectures were assessed: Faster R-CNN, YOLOv8, DETR, and Side-Aware Boundary Localization (SABL). Notably, SABL and YOLOv8 demonstrated superior precision and robustness across diverse scenarios, while DETR showed significant improvements with extended training and increased data volume. Faster R-CNN also proved competitive when carefully optimized. These findings underscore how the combination of regionally representative datasets with consistent evaluation methodologies enables the development of more effective, adaptable, and context-aware vehicle detection systems, contributing valuable insights for advancing intelligent urban mobility solutions. Full article
(This article belongs to the Section Smart Transportation)
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Study on the Propulsion Characteristics of a Flapping Flat-Plate Pumping Device
by Ertian Hua, Yang Lin, Sihan Li, Xiaopeng Wu and Mingwang Xiang
Appl. Sci. 2025, 15(13), 7034; https://doi.org/10.3390/app15137034 - 22 Jun 2025
Viewed by 425
Abstract
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance [...] Read more.
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance of hydrofoils operating under simple harmonic and quasi-harmonic flapping motions. Based on the tip vortex phenomenon observed at the channel outlet, the flow channel structure was further designed to inform the structural optimization of bionic pumping devices. Results show both modes generate reversed Kármán vortex streets, but the quasi-harmonic mode induces a displacement in vorticity distribution, whereas that of the simple harmonic motion extends farther downstream. Pumping efficiency under simple harmonic motion consistently outperforms that of quasi-harmonic motion, exceeding its peak by 20.2%. The pumping and propulsion efficiencies show a generally positive correlation with the outlet angle of the channel, both reaching their peak when the outlet angle α is −10°. Compared to an outlet angle of 0°, an outlet angle of −10° results in an 8.5% increase in pumping efficiency and a 10.2% increase in propulsion efficiency. Full article
(This article belongs to the Special Issue Application of Computational Fluid Mechanics in Fluid Machinery)
Show Figures

Figure 1

Back to TopTop