Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = street connectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 348
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

18 pages, 5079 KiB  
Article
Graph Representation Learning on Street Networks
by Mateo Neira and Roberto Murcio
ISPRS Int. J. Geo-Inf. 2025, 14(8), 284; https://doi.org/10.3390/ijgi14080284 - 22 Jul 2025
Viewed by 427
Abstract
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that [...] Read more.
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that raster representations of the original data can be created through a learning algorithm on low-dimensional representations of the street networks. In contrast, models that capture high-level urban network metrics can be trained through convolutional neural networks. However, the detailed topological data is lost through the rasterization of the street network, and the models cannot recover this information from the image alone, failing to capture complex street network features. This paper proposes a model capable of inferring good representations directly from the street network. Specifically, we use a variational autoencoder with graph convolutional layers and a decoder that generates a probabilistic, fully connected graph to learn latent representations that encode both local network structure and the spatial distribution of nodes. We train the model on thousands of street network segments and use the learned representations to generate synthetic street configurations. Finally, we proposed a possible application to classify the urban morphology of different network segments, investigating their common characteristics in the learned space. Full article
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 445
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

22 pages, 893 KiB  
Proceeding Paper
Research and Analysis of Traffic Intensity on a Street with High Traffic Load: Case Study of the City of Sofia
by Durhan Saliev, Georgi Mladenov and Plamen Petkov
Eng. Proc. 2025, 100(1), 37; https://doi.org/10.3390/engproc2025100037 - 11 Jul 2025
Viewed by 264
Abstract
The study of traffic parameters in cities is the basis for making adequate decisions related to the organization and regulation of traffic. This publication presents a study of one of the main parameters of transport flows, namely, its intensity. The study covers one [...] Read more.
The study of traffic parameters in cities is the basis for making adequate decisions related to the organization and regulation of traffic. This publication presents a study of one of the main parameters of transport flows, namely, its intensity. The study covers one of the busiest streets in the city of Sofia, which is part of the radial connection in the radial circular street network of the city, for the evening peak period of the day. Data analysis presents the influence of the intensity of transport flows at the intersections, which are formed by the intersection with other streets, on the load of the studied street. The share of the load of each transport flow at the individual intersections on the total load of the studied section was recorded for the subsequent assessment of the existing traffic management. The results have been provided to the relevant directorates in the structure of Sofia Municipality for information and use. Full article
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Cited by 1 | Viewed by 370
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

26 pages, 3670 KiB  
Article
Video Instance Segmentation Through Hierarchical Offset Compensation and Temporal Memory Update for UAV Aerial Images
by Ying Huang, Yinhui Zhang, Zifen He and Yunnan Deng
Sensors 2025, 25(14), 4274; https://doi.org/10.3390/s25144274 - 9 Jul 2025
Viewed by 281
Abstract
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we [...] Read more.
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we propose a hierarchical offset compensation and temporal memory update method for video instance segmentation (HT-VIS) with a high generalization ability. Firstly, a hierarchical offset compensation (HOC) module in the form of a sequential and parallel connection is designed to perform deformable offset for the same flexible target across frames, which benefits from compensating for spatial motion features at the time sequence. Next, the temporal memory update (TMU) module is developed by employing convolutional long-short-term memory (ConvLSTM) between the current and adjacent frames to establish the temporal dynamic context correlation and update the current frame feature effectively. Finally, extensive experimental results demonstrate the superiority of the proposed HDNet method when applied to the public YouTubeVIS-2019 dataset and a self-built UAV-Seg segmentation dataset. On four typical datasets (i.e., Zoo, Street, Vehicle, and Sport) extracted from YoutubeVIS-2019 according to category characteristics, the proposed HT-VIS outperforms the state-of-the-art CNN-based VIS methods CrossVIS by 3.9%, 2.0%, 0.3%, and 3.8% in average segmentation accuracy, respectively. On the self-built UAV-VIS dataset, our HT-VIS with PHOC surpasses the baseline SipMask by 2.1% and achieves the highest average segmentation accuracy of 37.4% in the CNN-based methods, demonstrating the effectiveness and robustness of our proposed framework. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 4803 KiB  
Article
Unraveling Street Configuration Impacts on Urban Vibrancy: A GeoXAI Approach
by Longzhu Xiao, Minyi Wu, Qingqing Weng and Yufei Li
Land 2025, 14(7), 1422; https://doi.org/10.3390/land14071422 - 7 Jul 2025
Viewed by 308
Abstract
As a catalyst for sustainable urbanization, urban vibrancy drives human interactions, economic agglomeration, and resilient development through its spatial manifestation of diverse activities. While previous studies have emphasized the connection between built environment features—especially street network centrality—and urban vibrancy, the broader mechanisms through [...] Read more.
As a catalyst for sustainable urbanization, urban vibrancy drives human interactions, economic agglomeration, and resilient development through its spatial manifestation of diverse activities. While previous studies have emphasized the connection between built environment features—especially street network centrality—and urban vibrancy, the broader mechanisms through which the full spectrum of street configuration dimensions shape vibrancy patterns remain insufficiently examined. To address this gap, this study applies a GeoXAI approach that synergizes random forest modeling and GeoShapley interpretation to reveal the influence of street configuration on urban vibrancy. Leveraging multi-source geospatial data from Xiamen Island, China, we operationalize urban vibrancy through a composite index derived from three-dimensional proxies: life service review density, social media check-in intensity, and mobile device user concentration. Street configuration is quantified through a tripartite measurement system encompassing network centrality, detour ratio, and shape index. Our findings indicate that (1) street network centrality and shape index, as well as their interactions with location, emerge as the dominant influencing factors; (2) The relationships between street configuration and urban vibrancy are predominantly nonlinear, exhibiting clear threshold effects; (3) The impact of street configuration is spatially heterogeneous, as evidenced by geographically varying coefficients. The findings can enlighten urban planning and design by providing a basis for the development of nuanced criteria and context-sensitive interventions to foster vibrant urban environments. Full article
(This article belongs to the Special Issue GeoAI for Urban Sustainability Monitoring and Analysis)
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 403
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 966
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

30 pages, 9068 KiB  
Article
Dynamic Behavior of Lighting GFRP Pole Under Impact Loading
by Mahmoud T. Nawar, Ahmed Elbelbisi, Mostafa E. Kaka, Osama Elhosseiny and Ibrahim T. Arafa
Buildings 2025, 15(13), 2341; https://doi.org/10.3390/buildings15132341 - 3 Jul 2025
Viewed by 248
Abstract
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base [...] Read more.
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base material behavior and energy absorption of GFRP lighting pole structures under impact loads. A finite element (FE) model of a 5 m-tall tapered GFRP pole with a steel base sleeve, base plate, and anchor bolts was developed. A 500 kg drop-weight impact at 400 mm above the base simulated vehicle collision conditions. The model was validated against experimental data, accurately reproducing the observed failure mode and peak force within 6%. Parametric analyses explored variations in pole diameter, wall thickness, base plate size and thickness, sleeve height, and anchor configuration. Results revealed that geometric parameters—particularly wall thickness and base plate dimensions—had the most significant influence on energy absorption. Doubling the wall thickness reduced normalized energy absorption by approximately 76%, while increases in base plate size and thickness reduced it by 35% and 26%, respectively. Material strength and anchor bolt configuration showed minimal impact. These findings underscore the importance of optimizing pole geometry to enhance crashworthiness. Controlled structural deformation improves energy dissipation, making geometry-focused design strategies more effective than simply increasing material strength. This work provides a foundation for designing safer roadside poles and highlights areas for further exploration in base configurations and connection systems. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

21 pages, 3449 KiB  
Article
Rural Local Landscape Perception Evaluation: Integrating Street View Images and Machine Learning
by Suning Gong, Lin Zhang, Jie Zhang and Yuxi Duan
ISPRS Int. J. Geo-Inf. 2025, 14(7), 251; https://doi.org/10.3390/ijgi14070251 - 27 Jun 2025
Viewed by 393
Abstract
Rural landscape perception is of great significance in understanding the emotional connection between people and rural local environments. Seeking to rectify the problem of incomplete or biased results owing to the separation of objective and subjective landscape perception in previous studies, this study [...] Read more.
Rural landscape perception is of great significance in understanding the emotional connection between people and rural local environments. Seeking to rectify the problem of incomplete or biased results owing to the separation of objective and subjective landscape perception in previous studies, this study took the village of Chongming District in Shanghai, China, as an example and built an evaluation model that integrated four dimensions and 20 indicators of objective and subjective landscape perception, and used machine learning technology to analyze street view images. Subjective perception has been influenced by landscape color, style, and element perception. Notable spatial disparities have been observed in the distribution of rural landscape indicators across Chongming. This study refines key subjective and objective factors affecting rural landscape perception, and the model provides a new method for the perception evaluation of complex landscapes, providing a theoretical basis and practical reference for rural landscape planning. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

30 pages, 10806 KiB  
Article
Understanding the Influence of Environmental Elements on Spatial Attractiveness in a Jiangnan Water Town Through Computer Vision Techniques
by Chenpeng Xu, Hongshi Cao, Zhengwei Xia, Xinjie You and Zixuan Wang
Buildings 2025, 15(12), 2091; https://doi.org/10.3390/buildings15122091 - 17 Jun 2025
Viewed by 327
Abstract
Traditional Jiangnan water towns in China serve as important cultural heritage sites and tourist destinations. Existing studies have revealed a potential connection between environmental elements and spatial perception in these towns. However, there remains a lack of research systematically investigating whether and how [...] Read more.
Traditional Jiangnan water towns in China serve as important cultural heritage sites and tourist destinations. Existing studies have revealed a potential connection between environmental elements and spatial perception in these towns. However, there remains a lack of research systematically investigating whether and how these environmental elements influence subjective evaluation indicators, such as spatial attractiveness, and the mechanisms underlying the interactions between these elements. To further understand these mechanisms, we used Nanxun Old Town as our study site, employed computer vision techniques to perform semantic segmentation on street-view images, extracted the visual proportions of environmental elements, and conducted quantitative correlation analysis with subjective attractiveness evaluations. The findings indicate that different environmental elements in water towns shape spatial imagery in diverse ways, thereby influencing perceived attractiveness. Firstly, though space-defining elements such as buildings and water generally contribute positively to perceived attractiveness, their proportions should be controlled within a reasonable range to maintain a spatial scale that aligns with the traditional imagery of water towns. Secondly, foreground elements like boats and lanterns, although occupying a smaller proportion, can effectively enhance the space when properly combined. Finally, the influence of elements such as bridges and buildings depends on the specific viewing distance and angle. These findings, based on an interpretable analytical framework, reveal that the effects of environmental elements on spatial attractiveness are context-dependent and nonlinear, varying with their proportions, combinations, and perspectives. This approach offers a more comprehensive understanding of the mechanisms by which environmental elements shape spatial attractiveness, providing a scientific foundation for regulating key visual components and optimizing spatial composition for sustainable traditional water town environment management. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 739 KiB  
Article
Urban Built Environment Perceptions and Female Cycling Behavior: A Gender-Comparative Study of E-bike and Bicycle Riders in Nanjing, China
by Yayun Qu, Qianwen Wang and Hui Wang
Urban Sci. 2025, 9(6), 230; https://doi.org/10.3390/urbansci9060230 - 17 Jun 2025
Viewed by 435
Abstract
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the [...] Read more.
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the Perceived Street Built Environment (PSBE) on the cycling behavior of men and women. Questionnaire data from 285 e-bike and traditional bicycle riders (236 e-bike riders and 49 traditional cyclists, 138 males and 147 females) from Gulou District, Nanjing, between May and October 2023, were used to investigate gender differences in cycling behavior and PSBE using the Mann–Whitney U-test and crossover analysis. Linear regression and logistic regression analyses examined the PSBE impact on gender differences in cycling probability and route choice. The cycling frequency of women was significantly higher than that of men, and their cycling behavior was obviously driven by family responsibilities. Greater gender differences were observed in the PSBE among e-bike riders. Women rated facility accessibility, road accessibility, sense of safety, and spatial comfort significantly lower than men. Clear traffic signals and zebra crossings positively influenced women’s cycling probability. Women were more sensitive to the width of bicycle lanes and street noise, while men’s detours were mainly driven by the convenience of bus connections. We recommend constructing a gender-inclusive cycling environment through intersection optimization, family-friendly routes, lane widening, and noise reduction. This study advances urban science by identifying gendered barriers in cycling infrastructure, providing actionable strategies for equitable transport planning and urban design. Full article
Show Figures

Figure 1

17 pages, 4022 KiB  
Article
Assessing the Impact of Past Flood on Rice Production in Batticaloa District, Sri Lanka
by Suthakaran Sundaralingam and Kenichi Matsui
Geosciences 2025, 15(6), 218; https://doi.org/10.3390/geosciences15060218 - 11 Jun 2025
Cited by 1 | Viewed by 588
Abstract
Flood risk to rice production has previously been examined in terms of river basins or administrative units, incorporating data about the flood year, inundated area, precipitation, elevation, and impacts. However, there is limited knowledge about this topic, as most flood impact studies have [...] Read more.
Flood risk to rice production has previously been examined in terms of river basins or administrative units, incorporating data about the flood year, inundated area, precipitation, elevation, and impacts. However, there is limited knowledge about this topic, as most flood impact studies have focused on loss and damage to people and the economy. It remains important to identify how flood risk to rice production can be better identified within a long-term, community-based, analytical framework. In addition, flood risk studies in Sri Lanka tend to focus on single-year flood events within an administrative boundary, making it difficult to fully comprehend risks to rice production. This paper aims to fill these gaps by investigating long-term flood risk levels on rice production. With this aim, we collected and analyzed information about rice production, geospatial data, and 15-year precipitation records. Temporal-spatial maps were generated using Google Earth Engine JavaScript coding, Google Earth Pro, and OpenStreetMap. In addition, focus group discussions with farmers and key informant interviews were conducted to verify the accuracy of online information. The collected data were analyzed using descriptive statistics, GIS, and linear regression analysis methods. Regarding rice production impacts, we found that floods in the years 2006–2007, 2010–2011, and 2014–2015 had significant impacts on rice production with 20.5%, 75.8%, and 16.6% reductions, respectively. Flood risk maps identified low-, medium-, and high-risk areas based on 15-year flood events, elevation, proximity to water bodies, and 15-year flood-induced damage to rice fields. High risk areas were further studied through field discussions and interviews, showing the connection between past floods and poor water governance practices in terms of dam management. Our linear regression analysis found a marginal negative correlation between total seasonal rainfall and rice production. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

38 pages, 6637 KiB  
Article
Socio-Spatial Bridging Through Walkability: A GIS and Mixed-Methods Analysis in Amman, Jordan
by Majd Al-Homoud and Sara Al-Zghoul
Buildings 2025, 15(12), 1999; https://doi.org/10.3390/buildings15121999 - 10 Jun 2025
Viewed by 539
Abstract
Decades of migration and refugee influxes have driven Amman’s rapid urban growth, yet newer neighborhoods increasingly grapple with fragmented social cohesion. This study examines whether walkable design can strengthen community bonds, focusing on Deir Ghbar, a car-centric district in West Amman. Using GIS [...] Read more.
Decades of migration and refugee influxes have driven Amman’s rapid urban growth, yet newer neighborhoods increasingly grapple with fragmented social cohesion. This study examines whether walkable design can strengthen community bonds, focusing on Deir Ghbar, a car-centric district in West Amman. Using GIS and mixed-methods analysis, we assess how walkability metrics (residential density, street connectivity, land-use mix, and retail density) correlate with sense of community. The results reveal that street connectivity and residential density enhance social cohesion, while land-use mix exhibits no significant effect. High-density, compact neighborhoods foster neighborly interactions, but major roads disrupt these connections. A critical mismatch emerges between quantitative land-use metrics and resident experiences, highlighting the need to integrate spatial data with community insights. Amman’s zoning policies, particularly the stark contrast between affluent low-density Zones A/B and underserved high-density Zones C/D, perpetuate socio-spatial segregation—a central critique of this study. We urge the Greater Amman Municipality’s 2025 Master Plan to prioritize mixed-density zoning, pedestrian retrofits (e.g., traffic calming and sidewalk upgrades), and equitable access to amenities. This study provides a replicable GIS and survey-based framework to address urban socio-spatial divides, aligning with SDG 11 for inclusive cities. It advocates for mixed-density zoning and pedestrian-first interventions in Amman’s Master Plan. By integrating a GIS with social surveys, this study offers a replicable model for addressing socio-spatial divides in cities facing displacement and inequality. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop