Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,188)

Search Parameters:
Keywords = strategic modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 (registering DOI) - 2 Aug 2025
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

22 pages, 1893 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 (registering DOI) - 2 Aug 2025
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
23 pages, 2497 KiB  
Article
Biosphere Reserves in Spain: A Holistic Commitment to Environmental and Cultural Heritage Within the 2030 Agenda
by Juan José Maldonado-Briegas, María Isabel Sánchez-Hernández and José María Corrales-Vázquez
Heritage 2025, 8(8), 309; https://doi.org/10.3390/heritage8080309 (registering DOI) - 2 Aug 2025
Abstract
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network [...] Read more.
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network of Biosphere Reserves to the United Nations 2030 Agenda and the Sustainable Development Goals (SDGs). Using a survey-based research design, this study assesses the extent to which the reserves have integrated the SDGs into their strategic frameworks and operational practices. It also identifies and analyses successful initiatives and best practices implemented across Spain that exemplify this integration. The findings highlight the need for enhanced awareness and understanding of the 2030 Agenda among stakeholders, alongside stronger mechanisms for participation, cooperation, and governance. The conclusion emphasises the importance of equipping all reserves with strategic planning tools and robust systems for monitoring, evaluation, and accountability. Moreover, the analysis of exemplary cases reveals the transformative potential of sustainability-oriented projects—not only in advancing environmental goals but also in revitalizing local economies and reinforcing cultural heritage. These insights contribute to a broader understanding of how BRs can act as dynamic laboratories for sustainable development and heritage preservation. Full article
(This article belongs to the Section Biological and Natural Heritage)
Show Figures

Figure 1

34 pages, 7571 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 (registering DOI) - 2 Aug 2025
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Cover Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 (registering DOI) - 1 Aug 2025
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

20 pages, 401 KiB  
Article
The Impact of Mergers and Acquisitions on Firm Environmental Performance: Empirical Evidence from China
by Thi Hai Oanh Le and Jing Yan
Sustainability 2025, 17(15), 7018; https://doi.org/10.3390/su17157018 (registering DOI) - 1 Aug 2025
Abstract
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed [...] Read more.
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed firms (2008–2022), we estimate a two-way fixed effect model. The Propensity Score Matching and the instrumental variable method address potential endogeneity concerns, and robustness checks validate the findings. We found that M&As have a significantly positive effect on firm environmental performance, with heterogeneous impacts across regions, industries, and M&A types. The environmental benefits are most pronounced in heavily polluting industries and hybrid M&A deals. Eastern China shows more modest improvements. The results of mechanism tests revealed that M&As enhance environmental performance primarily by boosting total factor productivity and fostering innovation. This study offers a novel perspective by linking M&A activities to environmental sustainability, enriching the literature on both M&As and corporate environmental performance. We show that even conventional M&A deals (not sustainability-focused) can improve environmental performance through operational synergies. Expanding beyond polluting industries, we reveal how sector characteristics shape M&A’s environmental impacts. We identify practical mechanisms through which standard M&A activities can advance sustainability goals, helping firms balance economic and environmental objectives. It provides empirical evidence from China, an emerging market with distinct institutional and regulatory contexts. The findings offer guidance for firms engaging in M&A to strategically improve sustainability performance. Policymakers can leverage these insights to design incentives for M&A in pollution-intensive industries, aligning economic growth with environmental goals. By demonstrating that M&As can enhance environmental outcomes, this study supports the potential for market-driven mechanisms to contribute to broader societal sustainability objectives, such as reduced industrial pollution and greener production practices. Full article
44 pages, 941 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
18 pages, 12398 KiB  
Article
Optimizing Advertising Billboard Coverage in Urban Networks: A Population-Weighted Greedy Algorithm with Spatial Efficiency Enhancements
by Jiaying Fu and Kun Qin
ISPRS Int. J. Geo-Inf. 2025, 14(8), 300; https://doi.org/10.3390/ijgi14080300 (registering DOI) - 1 Aug 2025
Abstract
The strategic allocation of advertising billboards has become a critical aspect of urban planning and resource management. While previous studies have explored site selection based on road network and population data, they have often overlooked the diminishing marginal returns of overlapping coverage and [...] Read more.
The strategic allocation of advertising billboards has become a critical aspect of urban planning and resource management. While previous studies have explored site selection based on road network and population data, they have often overlooked the diminishing marginal returns of overlapping coverage and neglected to efficiently process large-scale urban datasets. To address these challenges, this study proposes two complementary optimization methods: an enhanced greedy algorithm based on geometric modeling and spatial acceleration techniques, and a reinforcement learning approach using Proximal Policy Optimization (PPO). The enhanced greedy algorithm incorporates population-weighted road coverage modeling, employs a geometric series to capture diminishing returns from overlapping coverage, and integrates spatial indexing and parallel computing to significantly improve scalability and solution quality in large urban networks. Meanwhile, the PPO-based method models billboard site selection as a sequential decision-making process in a dynamic environment, where agents adaptively learn optimal deployment strategies through reward signals, balancing coverage gains and redundancy penalties and effectively handling complex multi-step optimization tasks. Experiments conducted on Wuhan’s road network demonstrate that both methods effectively optimize population-weighted billboard coverage under budget constraints while enhancing spatial distribution balance. Quantitatively, the enhanced greedy algorithm improves coverage effectiveness by 18.6% compared to the baseline, while the PPO-based method further improves it by 4.3% with enhanced spatial equity. The proposed framework provides a robust and scalable decision-support tool for urban advertising infrastructure planning and resource allocation. Full article
28 pages, 694 KiB  
Article
Artificial Intelligence-Enabled Digital Transformation in Circular Logistics: A Structural Equation Model of Organizational, Technological, and Environmental Drivers
by Ionica Oncioiu, Diana Andreea Mândricel and Mihaela Hortensia Hojda
Logistics 2025, 9(3), 102; https://doi.org/10.3390/logistics9030102 (registering DOI) - 1 Aug 2025
Abstract
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a [...] Read more.
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a strategic vision, a flexible organizational culture, and the ability to support decisions through artificial intelligence (AI)-based systems. Methods: This study proposes an extended conceptual model using structural equation modelling (SEM) to explore the relationships between five constructs: technological change, strategic and organizational readiness, transformation environment, AI-enabled decision configuration, and operational redesign. The model was validated based on a sample of 217 active logistics specialists, coming from sectors such as road transport, retail, 3PL logistics services, and manufacturing. The participants are involved in the digitization of processes, especially in activities related to operational decisions and sustainability. Results: The findings reveal that the analysis confirms statistically significant relationships between organizational readiness, transformation environment, AI-based decision processes, and operational redesign. Conclusions: The study highlights the importance of an integrated approach in which technology, organizational culture, and advanced decision support collectively contribute to the transition to digital and circular logistics chains. Full article
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 (registering DOI) - 1 Aug 2025
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

19 pages, 521 KiB  
Article
The Importance of Emotional Intelligence in Managers and Its Impact on Employee Performance Amid Turbulent Times
by Madonna Salameh-Ayanian, Natalie Tamer and Nada Jabbour Al Maalouf
Adm. Sci. 2025, 15(8), 300; https://doi.org/10.3390/admsci15080300 (registering DOI) - 1 Aug 2025
Abstract
In crisis-stricken economies, leadership effectiveness increasingly hinges not on technical expertise alone but on emotional competence. While emotional intelligence (EI) has been widely acknowledged as a catalyst for effective leadership and employee outcomes, its role in volatile and resource-scarce contexts remains underexplored. This [...] Read more.
In crisis-stricken economies, leadership effectiveness increasingly hinges not on technical expertise alone but on emotional competence. While emotional intelligence (EI) has been widely acknowledged as a catalyst for effective leadership and employee outcomes, its role in volatile and resource-scarce contexts remains underexplored. This study addresses this critical gap by investigating the impact of five core EI dimensions, namely self-awareness, self-regulation, motivation, empathy, and social skills, on employee performance amid Lebanon’s ongoing multidimensional crisis. Drawing on Goleman’s EI framework and the Job Demands–Resources theory, the research employs a quantitative, cross-sectional design with data collected from 398 employees across sectors in Lebanon. Structural Equation Modeling revealed that all EI dimensions significantly and positively influenced employee performance, with self-regulation (β = 0.485) and empathy (β = 0.361) emerging as the most potent predictors. These findings underscore the value of emotionally intelligent leadership in fostering productivity, resilience, and team cohesion during organizational instability. This study contributes to the literature by contextualizing EI in an under-researched, crisis-affected setting, offering nuanced insights into which emotional competencies are most impactful during prolonged uncertainty. Practically, it positions EI as a strategic leadership asset for crisis management and sustainable human resource development in fragile economies. The results inform leadership training, policy design, and organizational strategies that aim to enhance employee performance through emotionally intelligent practices. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

35 pages, 1049 KiB  
Article
Strategic Human Resource Development for Industry 4.0 Readiness: A Sustainable Transformation Framework for Emerging Economies
by Kwanchanok Chumnumporn Vong, Kalaya Udomvitid, Yasushi Ueki, Nuchjarin Intalar, Akkaranan Pongsathornwiwat, Warut Pannakkong, Somrote Komolavanij and Chawalit Jeenanunta
Sustainability 2025, 17(15), 6988; https://doi.org/10.3390/su17156988 (registering DOI) - 1 Aug 2025
Abstract
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) [...] Read more.
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) contributes to sustainable transformation, defined as the enduring alignment between workforce capabilities and technological advancement. The qualitative phase involved case studies of five Thai manufacturing firms at varying levels of Industry 4.0 adoption, utilizing semi-structured interviews with executives and HR leaders. Thematic findings informed the development of a structured survey, distributed to 144 firms. Partial Least Squares Structural Equation Modeling (PLS SEM) was used to test the hypothesized relationships among business pressures, leadership support, HRD preparedness, and technological readiness. The analysis reveals that business pressures significantly influence leadership and HRD, which in turn facilitate technological readiness. However, business pressures alone do not directly enhance readiness without the support of intermediaries. These results underscore the critical role of integrated HRD and leadership frameworks in enabling sustainable digital transformation. This study contributes to theoretical perspectives by integrating HRD, leadership, and technological readiness, offering practical guidance for firms aiming to navigate the complexities of Industry 4.0. Full article
Show Figures

Figure 1

Back to TopTop