Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,088)

Search Parameters:
Keywords = strained films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1946 KiB  
Article
Three-Dimensional Modelling for Interfacial Behavior of a Thin Penny-Shaped Piezo-Thermo-Diffusive Actuator
by Hui Zhang, Lan Zhang and Hua-Yang Dang
Modelling 2025, 6(3), 78; https://doi.org/10.3390/modelling6030078 - 5 Aug 2025
Abstract
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, [...] Read more.
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, yielding a simplified equilibrium equation for the piezoelectric film. By employing potential theory and the Hankel transform technique, the surface strain of the substrate is analytically derived. Under the assumption of perfect bonding, a governing integral equation is established in terms of interfacial shear stress. The solution to this integral equation is obtained numerically using orthotropic Chebyshev polynomials. The derived results include the interfacial shear stress, stress intensity factors, as well as the radial and hoop stresses within the system. Finite element analysis is conducted to validate the theoretical predictions. Furthermore, parametric studies elucidate the influence of material mismatch and actuator geometry on the mechanical response. The findings demonstrate that, the performance of the piezoelectric actuator can be optimized through judicious control of the applied electrical-thermal-diffusive loads and careful selection of material and geometric parameters. This work provides valuable insights for the design and optimization of piezoelectric actuator structures in practical engineering applications. Full article
Show Figures

Figure 1

22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 - 2 Aug 2025
Viewed by 433
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 155
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

50 pages, 4603 KiB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 410
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

21 pages, 6746 KiB  
Article
Harnessing Wild Jackfruit Extract for Chitosan Production by Aspergillus versicolor AD07: Application in Antibacterial Biodegradable Sheets
by Adhithya Sankar Santhosh and Mridul Umesh
Appl. Microbiol. 2025, 5(3), 71; https://doi.org/10.3390/applmicrobiol5030071 - 20 Jul 2025
Viewed by 404
Abstract
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan [...] Read more.
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan production. Among the various media formulations, the highest chitosan yield (178.40 ± 1.76 mg/L) was obtained from the jackfruit extract medium with added peptone and dextrose. The extracted chitosan was characterized through FTIR, XRD (reported a crystallinity index of 55%), TGA/DTG, and DSC analysis, confirming the presence of key functional groups and high thermal resistance. The extracted chitosan was fabricated into a sheet incorporated with 1% lemongrass oil; the sheet exhibited strong antibacterial activity against Escherichia coli (30 mm) and Bacillus megaterium (48 mm). The biodegradation studies reported a weight loss of 38.93 ± 0.51% after 50 days of soil burial. Further, the chitosan film was tested as a packaging material for paneer, demonstrating better preservation by maintaining nutritional quality and reducing microbial load over a 14-day storage period. These findings highlight the potential of A. versicolor AD07-derived chitosan, cultivated on a waste substrate medium, as a sustainable biopolymer for food packaging applications. Full article
Show Figures

Figure 1

23 pages, 12860 KiB  
Article
Antimicrobial Composite Films Based on Alginate–Chitosan with Honey, Propolis, Royal Jelly and Green-Synthesized Silver Nanoparticles
by Corina Dana Dumitru, Cornelia-Ioana Ilie, Ionela Andreea Neacsu, Ludmila Motelica, Ovidiu Cristian Oprea, Alexandra Ripszky, Silviu Mirel Pițuru, Bianca Voicu Bălașea, Florica Marinescu and Ecaterina Andronescu
Int. J. Mol. Sci. 2025, 26(14), 6809; https://doi.org/10.3390/ijms26146809 - 16 Jul 2025
Viewed by 361
Abstract
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal [...] Read more.
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal jelly with silver nanoparticles in a biopolymer matrix offers a synergistic strategy to combat antibiotic-resistant bacterial infections. This approach supports progress in wound healing, soft tissue engineering and other domains where elimination of the microorganisms is needed like food packaging. In this study we have obtained antimicrobial films based on bee products and silver nanoparticles (AgNPs) incorporated in an alginate–chitosan blend. The novel biomaterials were analyzed by UV-Vis, fluorescence and FTIR spectroscopy or microscopy, SEM and thermal analysis. Antibacterial tests were conducted against both Gram-positive and Gram-negative bacteria, while the antifungal properties were tested against Candida albicans. The diameters for growth inhibition zones were up to 10 mm for bacterial strains and 8 mm for the fungal strain. Additionally, cytotoxicity assays were performed to evaluate the biocompatibility of the materials, the results indicating that the combination of honey, propolis, royal jelly and AgNPs does not produce synergistic toxicity. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 599
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

26 pages, 2000 KiB  
Review
Bionanocomposite Coating Film Technologies for Disease Management in Fruits and Vegetables
by Jonathan M. Sánchez-Silva, Ulises M. López-García, Porfirio Gutierrez-Martinez, Ana Yareli Flores-Ramírez, Surelys Ramos-Bell, Cristina Moreno-Hernández, Tomás Rivas-García and Ramsés Ramón González-Estrada
Horticulturae 2025, 11(7), 832; https://doi.org/10.3390/horticulturae11070832 - 14 Jul 2025
Viewed by 478
Abstract
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to [...] Read more.
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to the appearance of microbial strains resistant to these types of agrochemicals. Additionally, there is growing concern among consumers about the presence of these chemical residues in fruits and the negative impacts they cause on multiple ecosystems. In response, there is a growing need for safe, effective, green, and sustainable disease control technologies. Bionanocomposites, with their unique ability to combine nanomaterials and biopolymers that have attractive properties, represents a promising alternative for postharvest disease control. These technologies allow for the development of functional coatings and films with antimicrobial, antioxidant, and barrier properties, which are critical for extending shelf life and preserving fruit quality. Recent advances have demonstrated that integrating nanoparticles, such as ZnO, TiO2, Ag, and chitosan-based nanosystems, into biopolymeric matrices, like alginate, pectin, starch, or cellulose, can enhance mechanical strength, regulate gas exchange, and control the release of active agents. This review presents systematized information that is focused on the creation of coatings and films based on bionanocomposites for the management of disease in fruits and vegetables. It also discusses the use of diverse biopolymers and nanomaterials and their impact on the quality and shelf life of fruits and vegetables. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Thermal Error Analysis of Hydrostatic Turntable System
by Jianlei Wang, Changhui Ke, Kaiyu Hu and Jun Zha
Machines 2025, 13(7), 598; https://doi.org/10.3390/machines13070598 - 10 Jul 2025
Viewed by 206
Abstract
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the [...] Read more.
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the heat of the oil pump. The amount of heat mainly depends on the working parameters, such as the oil supply pressure and the oil film gap. The unreasonable parameter setting will cause the reduction in the internal flow of the hydrostatic bearing and the increase in the oil pump power, which makes the heat of the lubricating oil increase and the heat dissipation capacity decrease during the movement. Based on the established hydrostatic turntable system, in order to explore the main influencing factors of its thermal error, the temperature field model of the component is established by calculating the thermal balance of the key components of the system. The thermal coupling analysis of the component is carried out by using the model, and the temperature rise, deformation and strain curves of the hydrostatic turntable system under different service conditions are obtained. The results show that with the increase in the temperature, the deformation and strain of the bearing increase monotonously. For every 1 °C increase, the total deformation of the bearing increases by about 0.285 μm. The higher the oil supply pressure, the higher the temperature rise in the system. The larger the oil film gap, the lower the temperature rise in the system. The oil supply pressure has a greater influence on the temperature rise and thermal deformation than the oil film gap. This study provides a valuable reference for reducing the thermal error generated by the hydraulic turntable of the ultra-precision lathe. Full article
Show Figures

Figure 1

27 pages, 5530 KiB  
Article
The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons
by Anastasiia Krivoruchko, Daria Nurieva, Vadim Luppov, Maria Kuyukina and Irina Ivshina
Polymers 2025, 17(14), 1912; https://doi.org/10.3390/polym17141912 - 10 Jul 2025
Viewed by 357
Abstract
Extracellular polymeric substances (EPS) are multifunctional biopolymers that have significant biotechnological potential. In this study, forty-seven strains of Rhodococcus actinomycetes were screened for EPS production and the content of its main components: carbohydrates, lipids, proteins, and nucleic acids. The Rhodococcus strains produced lipid-rich [...] Read more.
Extracellular polymeric substances (EPS) are multifunctional biopolymers that have significant biotechnological potential. In this study, forty-seven strains of Rhodococcus actinomycetes were screened for EPS production and the content of its main components: carbohydrates, lipids, proteins, and nucleic acids. The Rhodococcus strains produced lipid-rich EPS (15.6 mg·L−1 to 71.7 mg·L−1) with carbohydrate concentrations varying from 0.6 mg·L−1 to 58.2 mg·L−1 and low amounts of proteins and nucleic acids. Biofilms of R. ruber IEGM 231 were grown on nitrocellulose filters in the presence of n-hexane, n-hexadecane, or diesel fuel. The distribution of β-polysaccharides, glycoconjugates, and proteins between cells and the extracellular matrix was examined using fluorescence microscopy. The observed release of β-polysaccharides into the biofilm matrix in the presence of n-hexane and diesel fuel was regarded as an adaptation to the assimilation of these toxic hydrocarbons by Rhodococcus cells. Atomic force microscopy of the dried EPS film revealed adhesion forces between 1.0 and 20.0 nN, while some sites were highly adhesive (Fa ≥ 20.0 nN). EPS biosynthetic genes were identified, with two glycosyltransferases correlating with an increase in carbohydrate production. The production of EPS by Rhodococcus cells exhibited strain-specific rather than species-specific patterns, reflecting a high genetic diversity of these bacteria. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers, 4th Edition)
Show Figures

Graphical abstract

20 pages, 5814 KiB  
Article
The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film
by Longbin Liu, Mengyang Fan and Xingfu Cui
Appl. Sci. 2025, 15(13), 7596; https://doi.org/10.3390/app15137596 - 7 Jul 2025
Viewed by 231
Abstract
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which [...] Read more.
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which have gradually become a new hot research topic. However, flexible wings rely on inflation pressure to maintain the shape and rigidity of the skin film, and the inflation pressure has a significant influence on the strain deformation and wing bearing characteristics of flexible wing skin film. Here, based on the flexible mechanics theory and balance principle of flexible inflatable film, a theoretical model of structural deformation and internal inflation pressure was constructed, and finite element simulation analysis under different internal inflation pressure conditions was carried out as well. The results demonstrate that the biaxial deformation of flexible wing skin film is closely related to internal inflation pressure, local size, configuration, and film material properties. However, strain deformation along the wingspan direction is quite distinguishing, skin films work under the condition of biaxial plane deformation, and the strain deformation of the spanning direction is obviously higher than that of the chord direction, which all increases with internal inflation pressure. Therefore, it is necessary to pay more attention to bearing strain deformation characteristics to meet the bearing stiffness requirements, which could effectively provide a theoretical reference for the structural optimization design and inflation scheme setting of flexible inflatable wings. Full article
Show Figures

Figure 1

11 pages, 2735 KiB  
Article
Tensile Properties and Mechanism of Carbon Fiber Triaxial Woven Fabric Composites
by Yunfei Rao, Chen Zhang and Miao Yi
Materials 2025, 18(13), 3154; https://doi.org/10.3390/ma18133154 - 3 Jul 2025
Viewed by 312
Abstract
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently [...] Read more.
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently studied. In this study, the resin transfer molding and resin film infusion were selected to fabricate carbon fiber triaxial woven fabric composites, with a specific focus on their effects on the tensile properties of carbon fiber triaxial woven composites. Compared with ordinary materials, the tensile load of carbon fiber triaxial woven fabric composites after yarn spreading has increased by more than 30%. The strength can reach 1133 MPa after yarn spreading of 3k carbon fiber, which was 39% higher than the original. Furthermore, acoustic emission monitoring shows that the counts of acoustic signals in the first half dropped from 10,000 to around 3000, mostly due to the reduction of resin and fiber/matrix debonding. The digital image correlation provided full-field strain analysis, which proved that the strain of the fibers at the interweaving points decreased significantly during the stretching process after yarn spreading. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 23523 KiB  
Article
A Wrist Brace with Integrated Piezoelectric Sensors for Real-Time Biomechanical Monitoring in Weightlifting
by Sofia Garcia, Ethan Ortega, Mohammad Alghamaz, Alwathiqbellah Ibrahim and En-Tze Chong
Micromachines 2025, 16(7), 775; https://doi.org/10.3390/mi16070775 - 30 Jun 2025
Viewed by 374
Abstract
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage [...] Read more.
This study presents a self-powered smart wrist brace integrated with a piezoelectric sensor for real-time biomechanical monitoring during weightlifting activities. The system was designed to quantify wrist flexion across multiple loading conditions (0 kg, 0.5 kg, and 1.0 kg), leveraging mechanical strain-induced voltage generation to capture angular displacement. A flexible PVDF film was embedded within a custom-fitted wrist brace and tested on male and female participants performing controlled wrist flexion. The resulting voltage signals were analyzed to extract root-mean-square (RMS) outputs, calibration curves, and sensitivity metrics. To interpret the experimental results analytically, a lumped-parameter cantilever beam model was developed, linking wrist flexion angles to piezoelectric voltage output based on mechanical deformation theory. The model assumed a linear relationship between wrist angle and induced strain, enabling theoretical voltage prediction through simplified material and geometric parameters. Model-predicted voltage responses were compared with experimental measurements, demonstrating a good agreement and validating the mechanical-electrical coupling approach. Experimental results revealed consistent voltage increases with both wrist angle and applied load, and regression analysis demonstrated strong linear or mildly nonlinear fits with high R2 values (up to 0.994) across all conditions. Furthermore, surface plots and strain sensitivity analyses highlighted the system’s responsiveness to simultaneous angular and loading changes. These findings validate the smart wrist brace as a reliable, low-power biomechanical monitoring tool, with promising applications in injury prevention, rehabilitation, and real-time athletic performance feedback. Full article
Show Figures

Figure 1

11 pages, 2325 KiB  
Article
Enhancing the Interfacial Adhesion of a Ductile Gold Electrode with PDMS Using an Interlocking Structure for Applications in Temperature Sensors
by Shuai Shi, Penghao Zhao, Pan Yang, Le Zhao, Jingguang Yi, Zuohui Wang and Shihui Yu
Nanomaterials 2025, 15(13), 1001; https://doi.org/10.3390/nano15131001 - 28 Jun 2025
Viewed by 789
Abstract
The poor interfacial adhesion between ductile gold (Au) electrodes and polydimethylsiloxane (PDMS) substrates affects their application in flexible sensors. Here, a porous Au electrode is designed and combined with a flexible PDMS substrate to form a structure that embeds Au into the PDMS [...] Read more.
The poor interfacial adhesion between ductile gold (Au) electrodes and polydimethylsiloxane (PDMS) substrates affects their application in flexible sensors. Here, a porous Au electrode is designed and combined with a flexible PDMS substrate to form a structure that embeds Au into the PDMS film, thereby enhancing the interfacial adhesion of the Au/PDMS electrode. The resistivity change of the Au/PDMS electrode is only 12.3% after 100 tape peeling trials. The resistance of the Au/PDMS electrode remains stable at the 30% strain level after 2000 tensile cycling tests. This feature is mainly attributed to the deformation buffering effect of the porous Au film. After 100 min of ultrasonic oscillation testing, the resistivity change of the Au/PDMS electrode remains stable. It is also shown that the Au/PDMS electrode has excellent interfacial adhesion properties, which is mainly attributed to the interlocking effect of the Au/PDMS electrode structure. In addition, the temperature coefficient of resistance (TCR) of the temperature sensor based on the Au/PDMS electrode is approximately 0.00320/°C and the sensor’s sensitivity remains almost stable after 200 temperature measurement cycles. Au/PDMS electrodes have great potential for a wide range of applications in flexible electronics due to their excellent interfacial adhesion and electrical stability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

25 pages, 4932 KiB  
Article
Synthesis, Characterization, and Adhesion on Galvanized Steel of Original Thermoset Adhesive Films Based on Aza-Michael Addition Reaction
by Florian Cavodeau, Maurice Brogly, Jean-François Stumbe and Rémi Perrin
Polymers 2025, 17(13), 1796; https://doi.org/10.3390/polym17131796 - 27 Jun 2025
Viewed by 284
Abstract
This study focuses first on the synthesis through an aza-Michael addition reaction of original linear diamine prepolymers and original amine/acrylate thermoset adhesives, and second on their thermal, mechanical and adhesion characterization. The major advantage of the aza-Michael addition reaction is that it takes [...] Read more.
This study focuses first on the synthesis through an aza-Michael addition reaction of original linear diamine prepolymers and original amine/acrylate thermoset adhesives, and second on their thermal, mechanical and adhesion characterization. The major advantage of the aza-Michael addition reaction is that it takes place at room temperature, without a solvent and without a catalyst. Using the aza-Michael addition reaction, linear secondary diamine prepolymers were first synthesized with a control of the molecular weight, ranging from 867 to 1882 g mol−1. Then, aza-Michael reactions of diamine prepolymers with three different acrylates allowed the synthesis of new amine/acrylate thermoset adhesives. All the thermoset adhesives were characterized by rheology and thermal analysis, leading, once the crosslinking aza-Michael reaction had occurred, to soft thermoset networks with glass transition temperatures ranging from −23 to −8 °C, gel point times ranging from 40 min to 4 h, and a polar component of the surface energy ranging from 3 to 17 mJ m−2. Functionality of the acrylates directly influences the crosslinking rate, and a decreasing master curve is obtained when reporting crosslinking rate versus gel point time. Crosslinking density is controlled by the diamine prepolymer chain length. In a second step, thermoset adhesives were applied as thin films between two galvanized steel plates, and adhesion properties were evaluated through a lap-shear test. Results showed that the adhesive strength increases as the dynamic viscosity and molecular weight of the diamines prepolymer increases. Increasing the diamines prepolymer chain length results in an increase in strain at break, a decrease in the shear modulus, and a decrease in the maximum lap-shear strength. It is also observed that the adhesive strength decreases when the adhesive film thickness increases. Moreover, thermoset adhesives with high polarity and a surface energy similar to the surface energy of the substrate will favor high adhesion and a better adhesive strength of the assembly. Lastly, the nature of the acrylates and diamines prepolymer chain length allow tuning a wide range of adhesive strength and toughness of these original soft thermoset adhesives. Full article
Show Figures

Figure 1

Back to TopTop