Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = stormwater runoff reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5819 KiB  
Article
Future Development and Water Quality for the Pensacola and Perdido Bay Estuary Program: Applications for Urban Development Planning
by Tricia Kyzar, Michael Volk, Dan Farrah, Paul Owens and Thomas Hoctor
Land 2025, 14(7), 1446; https://doi.org/10.3390/land14071446 - 11 Jul 2025
Cited by 1 | Viewed by 382
Abstract
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these [...] Read more.
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these new residents, 801 km2 of wetlands were converted to developed uses between 1996 and 2016. These conversions present a significant threat to Florida’s unique ecosystems and highlight the need to prioritize conservation and water resource protection, both for the natural and human services that wetland and upland landscapes provide. To better understand the relationship between future development and water resources, we used future development and event mean concentration (EMC) models for Escambia and Santa Rosa counties in Florida (USA) to assess impacts from development patterns on water quality/runoff and water resource protection priorities. This study found that if future development densities increased by 30%, reductions of 7713 acres for developed land, 17,768 acre feet of stormwater volume, ~88k lb/yr total nitrogen, and ~15k lb/yr total phosphorus could be achieved. It also found that urban infill, redevelopment, and stormwater management are essential and complementary tools to broader growth management strategies for reducing sprawl while also addressing urban stormwater impacts. Full article
Show Figures

Figure 1

19 pages, 6342 KiB  
Article
Innovative Use of UHPC and Topology Optimization in Permeable Interlocking Pavers: Advancing Sustainable Pavement Solutions
by Fernanda Gadler, José Augusto Ferreira Sales de Mesquita, Francisco Helio Alencar Oliveira, Liedi Legi Bariani Bernucci, Rafael Giuliano Pileggi, Emilio Carlos Nelli Silva and Diego Silva Prado
Sustainability 2025, 17(13), 6039; https://doi.org/10.3390/su17136039 - 1 Jul 2025
Viewed by 395
Abstract
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. [...] Read more.
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. Nevertheless, their broader implementation is often hindered by issues such as clogging and limited mechanical strength resulting from high porosity. This study examines the design of interlocking permeable blocks utilizing ultra-high-performance concrete (UHPC) to strike a balance between enhanced drainage capacity and high structural performance. A topology optimization (TO) strategy was applied to numerically model the ideal block geometry, incorporating 105 drainage channels with a diameter of 6 mm—chosen to ensure manufacturability and structural integrity. The UHPC formulation was developed using particle packing optimization with ordinary Portland cement (OPC), silica fume, and limestone filler to reduce binder content while achieving superior strength and workability, guided by rheological assessments. Experimental tests revealed that the perforated UHPC blocks reached compressive strengths of 87.8 MPa at 7 days and 101.0 MPa at 28 days, whereas the solid UHPC blocks achieved compressive strengths of 125.8 MPa and 146.2 MPa, respectively. In contrast, commercial permeable concrete blocks reached only 28.9 MPa at 28 days. Despite a reduction of approximately 30.9% in strength due to perforations, the UHPC-105holes blocks still far exceed the 41 MPa threshold required for certain structural applications. These results highlight the mechanical superiority of the UHPC blocks and confirm their viability for structural use even with enhanced permeability features. The present research emphasizes mechanical and structural performance, while future work will address hydraulic conductivity and anticlogging behavior. Overall, the findings support the use of topology-optimized UHPC permeable blocks as a resilient solution for sustainable urban drainage systems, combining durability, strength, and environmental performance. Full article
(This article belongs to the Special Issue Green Infrastructure and Sustainable Stormwater Management)
Show Figures

Figure 1

19 pages, 3257 KiB  
Article
Total Phosphorus Loadings and Corrective Actions Needed to Restore Water Quality in a Eutrophic Urban Lake in Minnesota, USA: A Case Study
by Neal D. Mundahl and John Howard
Limnol. Rev. 2025, 25(3), 28; https://doi.org/10.3390/limnolrev25030028 - 1 Jul 2025
Viewed by 239
Abstract
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed [...] Read more.
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed runoff, internal loading, and wetland discharges) for total phosphorus (P) loading, with >900 kg P/year estimated entering the water columns of each basin. Updated data sources and newer watershed modeling resulted in significantly different (both higher and lower) P loading estimates for the various P sources, especially watershed runoff and internal loading. Overall, basin-specific loading estimates using the updated model were significantly lower (28–40%) than previous estimates: 680 and 546 kg P/year mobilized in the western and eastern basins, respectively. To achieve state water quality standards (<60 ppm P for the western basin, <40 ppm for the eastern basin), watershed and internal P loading each would need to be reduced by approximately 120 kg P/year across the two basins. Reductions could be achieved by a combination of alum treatments to reduce internal loading, removal of common carp (Cyprinus carpio) to prevent interference with alum treatments and nutrient releases via excretion and defecation, and six engineered structures to intercept P before it enters the lake. The different P reduction projects would cost USD 119 to 7920/kg P removed, totaling USD 5.2 million, or USD 40,310/hectare of lake surface area. Full article
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1211
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

22 pages, 2787 KiB  
Article
SWAT-Based Characterization of and Control Measures for Composite Non-Point Source Pollution in Yapu Port Basin, China
by Lina Chen, Yimiao Sun, Junyi Tan and Wenshuo Zhang
Water 2025, 17(12), 1759; https://doi.org/10.3390/w17121759 - 12 Jun 2025
Viewed by 430
Abstract
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the [...] Read more.
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the effectiveness of different mitigation strategies, focusing on both agricultural and urban non-point source pollution control. The watershed was divided into 39 sub-watersheds and 106 hydrologic response units (HRUs). Model calibration and validation were conducted using the observed data on runoff, total phosphorus (TP), and total nitrogen (TN). The results demonstrate good model performance, with coefficients of determination (R2) ≥ 0.85 and Nash–Sutcliffe efficiencies (NSEs) ≥ 0.84, indicating its applicability to the study area. Temporally, pollutant loads exhibited a positive correlation with precipitation, with peak values observed during the annual flood season. Spatially, pollution intensity increased from upstream to downstream, with the western region of the watershed showing higher loss intensity. Pollution was predominantly concentrated in the downstream region. Based on the composite source analysis, a series of management measures were designed targeting both agricultural and urban non-point source pollution. Among individual measures, fertilizer reduction in agricultural fields and the establishment of vegetative buffer strips demonstrated the highest effectiveness. Combined management strategies significantly enhanced pollution control, with average TN and TP load reductions of 22.18% and 22.70%, respectively. The most effective scenario combined fertilizer reduction, improved urban stormwater utilization, vegetative buffer strips, and grassed swales in both farmland and orchards, resulting in TN and TP reductions of 67.2% and 56.2%, respectively. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Viewed by 1037
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved [...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated. Full article
Show Figures

Figure 1

20 pages, 3031 KiB  
Article
Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields
by Sunyoung Jeon, Dogun Kim and Seokoh Ko
Water 2025, 17(11), 1650; https://doi.org/10.3390/w17111650 - 29 May 2025
Viewed by 515
Abstract
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, [...] Read more.
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, intensive fertilizer use, intensive use of irrigation water, and subsequent drainage. Therefore, the use of controlled drainage in paddy fields (Test) was evaluated for reduction in the discharged volumes and pollutant loads in drainage and stormwater runoff in comparison to plots using traditional drainages (Control). The results show that the loads were highly variable and that the reductions in the annual load of biochemical oxygen demand (BOD), suspended solid (SS), total nitrogen (T-N), total phosphorus (T-P), and total organic carbon (TOC) in the Test compared to that of the Control were 31.0 ± 28.9%, 83.5 ± 11.8%, 65.4 ± 12.2%, 69.1 ± 21.7%, and 64.9 ± 12.9%, respectively. It was shown that discharge in the post-harrowing and transplanting drainage (HD) was predominantly responsible for the total loads; therefore, the load reduction in HD was evaluated further at additional sites. The reduction at all studied sites was highly variable and as follows: 30.0 ± 33.6%, 70.9 ± 24.6%, 32.2 ± 45.5%, 45.7 ± 37.0%, and 27.0 ± 71.5%, for BOD, SS, T-N, T-P, and TOC, respectively. It was also demonstrated that controlled drainage contributed significantly to reducing the loads and volume of stormwater runoff from paddy fields. Correlations between paddy field conditions and multiple regression showed that the loads were significantly related to paddy water quality. The results of this study strongly suggest that controlled drainage is an excellent alternative for reducing the discharge of NPS pollutants from paddy fields. It is also suggested that the best discharge control would be achieved by combinations of various discharge mitigation alternatives, such as the management of irrigation, drainage, and fertilization, as well as drainage treatment, supported by more field tests, identification of the fates of pollutants, effects of rainfall, and climate changes. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

22 pages, 2748 KiB  
Article
Effects of Green Infrastructure Practices on Runoff and Water Quality in the Arroyo Colorado Watershed, Texas
by Pamela Mugisha and Tushar Sinha
Water 2025, 17(11), 1565; https://doi.org/10.3390/w17111565 - 22 May 2025
Viewed by 675
Abstract
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus [...] Read more.
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus and nitrogen and to mitigate issues of low dissolved oxygen, in some of its river segments. Consequently, the river’s potential to support aquatic life has been significantly reduced, thus highlighting the need for restoration. To achieve this restoration, a watershed protection plan was developed, comprising several preventive mitigation measures, including installing green infrastructure (GI) practices. However, for effective reduction of excessive nutrient loadings, there is a need to study the effects of different combinations of GI practices under current and future land use scenarios to guide decisions in implementing the cost-effective infrastructure while considering factors such as the existing drainage system, topography, land use, and streamflow. Therefore, this study coupled the Soil and Water Assessment Tool (SWAT) model with the System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model to determine the effects of different combinations of GI practices on the reduction of nitrogen and phosphorus under changing land use conditions in three selected Arroyo Colorado subwatersheds. Two land use maps from the U.S. Geological Survey (USGS) Forecasting Scenarios of land use (FORE-SCE) model for 2050, namely, A1B and B1, were implemented in the coupled SWAT-SUSTAIN model in this study, where the urban area is projected to increase by 6% and 4%, respectively, with respect to the 2018 land use scenario. As expected, runoff, phosphorus, and nitrogen slightly increased with imperviousness. The modeling results showed that implementing either vegetated swales or wet ponds reduces flow and nutrients to meet the Total Maximum Daily Loads (TMDLs) targets, which cost about USD 1.5 million under current land use (2018). Under the 2050 future projected land use changes (A1B scenario), the cost-effective GI practice was implemented in vegetated swales at USD 1.5 million. In contrast, bioretention cells occupied the least land area to achieve the TMDL targets at USD 2 million. Under the B1 scenario of 2050 projected land use, porous pavements were most cost effective at USD 1.5 million to meet the TMDL requirements. This research emphasizes the need for collaboration between stakeholders at the watershed and farm levels to achieve TMDL targets. This study informs decision-makers, city planners, watershed managers, and other stakeholders involved in restoration efforts in the Arroyo Colorado basin. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

20 pages, 12773 KiB  
Article
Multi-Scale Sponge Capacity Trading and SLSQP for Stormwater Management Optimization
by An-Kang Liu, Qing Xu, Wen-Jin Zhu, Yang Zhang, De-Long Huang, Qing-Hai Xie, Chun-Bo Jiang and Hai-Ruo Wang
Sustainability 2025, 17(10), 4646; https://doi.org/10.3390/su17104646 - 19 May 2025
Viewed by 396
Abstract
Low-impact development (LID) facilities serve as a fundamental approach in urban stormwater management. However, significant variations in land use among different plots lead to discrepancies in runoff reduction demands, frequently leading to either the over- or under-implementation of LID infrastructure. To address this [...] Read more.
Low-impact development (LID) facilities serve as a fundamental approach in urban stormwater management. However, significant variations in land use among different plots lead to discrepancies in runoff reduction demands, frequently leading to either the over- or under-implementation of LID infrastructure. To address this issue, we propose a cost-effective optimization framework grounded in the concept of “Capacity Trading (CT)”. The study area was partitioned into multi-scale grids (CT-100, CT-200, CT-500, and CT-1000) to systematically investigate runoff redistribution across heterogeneous land parcels. Integrated with the Sequential Least Squares Programming (SLSQP) optimization algorithm, LID facilities are allocated according to demand under two independent constraint conditions: runoff coefficient (φ ≤ 0.49) and runoff control rate (η ≥ 70%). A quantitative analysis was conducted to evaluate the construction cost and reduction effectiveness across different trading scales. The key findings include the following: (1) At a constant return period, increasing the trading scale significantly reduces the demand for LID facility construction. Expanding trading scales from CT-100 to CT-1000 reduces LID area requirements by 28.33–142.86 ha under the φ-constraint and 25.5–197.19 ha under the η-constraint. (2) Systematic evaluations revealed that CT-500 optimized cost-effectiveness by balancing infrastructure investments and hydrological performance. This scale allows for coordinated construction, avoiding the high costs associated with small-scale trading (CT-100 and CT-200) while mitigating the diminishing returns observed in large-scale trading (CT-1000). This study provides a refined and efficient solution for urban stormwater management, overcoming the limitations of traditional approaches and demonstrating significant practical value. Full article
(This article belongs to the Special Issue Sustainable Stormwater Management and Green Infrastructure)
Show Figures

Graphical abstract

23 pages, 2883 KiB  
Article
Effectiveness of Rain Gardens for Managing Non-Point Source Pollution from Urban Surface Storm Water Runoff in Eastern Texas, USA
by Shradhda Suman Jnawali, Matthew McBroom, Yanli Zhang, Kevin Stafford, Zhengyi Wang, David Creech and Zhongqian Cheng
Sustainability 2025, 17(10), 4631; https://doi.org/10.3390/su17104631 - 18 May 2025
Viewed by 1446
Abstract
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by [...] Read more.
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by increasing impervious surfaces that prevent natural infiltration. This study evaluated the efficacy of rain gardens, a nature-based best management practice (BMP), in mitigating NPS pollution from urban stormwater runoff. Stormwater samples were collected at inflow and outflow points of three rain gardens and analyzed for various water quality parameters, including pH, electrical conductivity, fluoride, chloride, nitrate, nitrite, phosphate, sulfate, salts, carbonates, bicarbonates, sodium, potassium, aluminum, boron, calcium, mercury, arsenic, copper iron lead magnesium, manganese and zinc. Removal efficiencies for nitrate, phosphate, and zinc exceeded 70%, while heavy metals such as lead achieved reductions up to 80%. However, certain parameters, such as calcium, magnesium and conductivity, showed increased outflow concentrations, attributed to substrate leaching. These increases resulted in a higher outflow pH. Overall, the pollutants were removed with an efficiency exceeding 50%. These findings demonstrate that rain gardens are an effective and sustainable solution for managing urban stormwater runoff and mitigating NPS pollution in eastern Texas, particularly in regions vulnerable to extreme precipitation events. Full article
Show Figures

Figure 1

26 pages, 9187 KiB  
Article
A New Perspective on Blue–Green Infrastructure for Climate Adaptation in Urbanized Areas: A Soil-Pipe System as a Multifunctional Solution
by Henrike Walther, Christoph Bennerscheidt, Dirk Jan Boudeling, Markus Streckenbach, Felix Simon, Christoph Mudersbach, Saphira Schnaut, Mark Oelmann and Markus Quirmbach
Land 2025, 14(5), 1065; https://doi.org/10.3390/land14051065 - 14 May 2025
Viewed by 939
Abstract
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the [...] Read more.
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the BoRSiS project developed the soil-pipe system (SPS), which repurposes the existing underground pipe trenches and roadway space to provide trees with significantly larger root zones without competing for additional urban space. This enhances tree-related ecosystem services, such as cooling, air purification, and runoff reduction. The SPS serves as a stormwater retention system by capturing excess rainwater during heavy precipitation events of up to 180 min, reducing the pressure on drainage systems. System evaluations show that, on average, each SPS module (20 m trench length) can store 1028–1285 L of water, enabling a moisture supply to trees for 3.4 to 25.7 days depending on the species and site conditions. This capacity allows the system to buffer short-term drought periods, which, according to climate data, recur with frequencies of 9 (7-day) and 2 (14-day) events per year. Geotechnical and economic assessments confirm the system stability and cost-efficiency. These findings position the SPS as a scalable, multifunctional solution for urban climate adaptation, tree vitality, and a resilient infrastructure. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

20 pages, 5116 KiB  
Review
Assessment of the Hydrological Performance of Grass Swales for Urban Stormwater Management: A Bibliometric Review from 2000 to 2023
by Xuefei Wang, Run Zhang, Qi Hu, Chuanhao Sun, Rana Muhammad Adnan Ikram, Mo Wang and Guo Cheng
Water 2025, 17(10), 1425; https://doi.org/10.3390/w17101425 - 9 May 2025
Viewed by 740
Abstract
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale [...] Read more.
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale applications. Findings highlighted the growing emphasis on optimizing hydrological performance, particularly in response to intensifying climate change and urban flood risks. Experimental and simulation-based studies have demonstrated that grass swale efficiency is influenced by multiple design factors, including vegetation type, substrate composition, hydraulic retention time, and slope gradient. Notably, pollutant removal efficiency varies significantly, with total suspended solids (TSS) reduced by 34.09–89.90%, chemical oxygen demand (COD) by 7.75–56.71%, and total nitrogen (TN) by 32.37–56.71%. Additionally, studies utilizing the Storm Water Management Model (SWMM) and TRAVA models have demonstrated that integrating grass swales into urban drainage systems can result in a 17% reduction in total runoff volume and peak flow attenuation. Despite these advancements, key research gaps remain, including cost-effective design strategies, long-term maintenance protocols, and integration with other green infrastructure systems. Future research should focus on developing innovative, low-cost swale designs, refining optimal vegetation selection, and assessing seasonal variations in performance. Addressing these challenges will enhance the scientific foundation for grass swale implementation, ensuring their sustainable integration into climate-resilient urban planning. Full article
Show Figures

Figure 1

17 pages, 5360 KiB  
Article
Performance Analysis of Residential Detention Tanks Based on Spatial Arrangement in an Urbanized Basin in the Federal District, Brazil
by Artur Borges Barros, Maria Elisa Leite Costa and Sérgio Koide
Sustainability 2025, 17(9), 4032; https://doi.org/10.3390/su17094032 - 30 Apr 2025
Viewed by 384
Abstract
This study evaluated the allocation of residential detention tanks in the Alto da Boa Vista Condominium, Federal District, Brazil, using hydrological and hydraulic modeling using the PCSWMM software (version 7.6.3610). The objective was to investigate the impact of urbanization on local hydrology, considering [...] Read more.
This study evaluated the allocation of residential detention tanks in the Alto da Boa Vista Condominium, Federal District, Brazil, using hydrological and hydraulic modeling using the PCSWMM software (version 7.6.3610). The objective was to investigate the impact of urbanization on local hydrology, considering the occurrence of erosive processes in the area. Critical points in the infrastructure and regions susceptible to flooding were identified. The methodology involved implementing residential detention tanks in different allocation scenarios, including the use of isochrones. Isochrones, which represent lines of equal concentration time in the drainage network, were employed to segment the basin into three main regions: upstream (ISO 1+2), central (ISO 3+4), and downstream (ISO 5+6). The isochrone-based scenarios enabled the assessment of the impact of concentrating residential detention tanks in these specific zones. Additionally, two other scenarios were analyzed: one with the residential detention tanks uniformly distributed throughout the basin and another without the presence of these devices. Finally, a scenario with a random distribution of residential detention tanks was tested, encompassing a total of 54 distinct configurations, to investigate the influence of different spatial arrangements on the basin’s hydraulic performance. The results indicated that the number of residential detention tanks installed is the main determinant for peak flow attenuation at the basin’s outlet. It was observed that, regardless of the distribution of the devices, whether in concentrated scenarios (upstream, central, and downstream, as defined by the isochrones) or in randomly distributed configurations, the results were similar. In all cases, installing residential detention tanks in more than 30% of the basin area resulted in an approximately 5% reduction in peak flow at the outlet. It is concluded that implementing residential detention tanks is an effective and feasible solution for sustainable stormwater management, significantly contributing to surface runoff control and peak flow mitigation in urbanized areas. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

28 pages, 2378 KiB  
Article
A Multi-Dimensional Contribution-Based Framework for Evaluating Urban Stormwater Management Efficiency
by Kun Mao, Junqi Li and Jiawei Li
Water 2025, 17(9), 1246; https://doi.org/10.3390/w17091246 - 22 Apr 2025
Cited by 1 | Viewed by 422
Abstract
Urbanization and climate change amplify urban flooding risks, demanding efficient, data-minimal tools to strengthen flood resilience. This study presents a pioneering multi-dimensional framework that quantifies the contributions of source reduction, stormwater pipes, and drainage/flood control systems, circumventing the need for intricate hydrological models. [...] Read more.
Urbanization and climate change amplify urban flooding risks, demanding efficient, data-minimal tools to strengthen flood resilience. This study presents a pioneering multi-dimensional framework that quantifies the contributions of source reduction, stormwater pipes, and drainage/flood control systems, circumventing the need for intricate hydrological models. Leveraging rainfall depth (mm), runoff volume (m3), and peak flow rate (m3/h) provides a comprehensive evaluation of stormwater management efficacy. Applied to a hypothetical city, City A, under 30- and 50-year rainfall scenarios, the framework reveals efficiencies of 91.0% for rainfall depth and runoff volume, and 90.8% for peak flow in the 30-year case (9% shortfall), declining to 75.7% peak flow efficiency with a 24.3% deficit in the 50-year scenario, underscoring constraints in extreme-event response. Contributions analysis shows stormwater pipes (42.8–47.6%, mean: 46.0%) and drainage/flood control (40.8–43.2%, mean: 41.6%) predominate, while source reduction adds 11.6–14.0% (mean: 12.4%). A primary contribution lies in reducing data demands by approximately 70% compared to traditional approaches, rendering this framework a practical, scalable solution for flood management and sponge city design in data-limited settings. These findings elucidate system vulnerabilities and offer actionable strategies, advancing urban flood resilience both theoretically and practically. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Significance in Numerical Simulation and Optimization Method Based on Multi-Indicator Sensitivity Analysis for Low Impact Development Practice Strategy
by Qian Zhang, Mucheng Zhang, Wanjun Jiang, Yizhi Sheng, Yingwei Yuan and Meng Zhang
Appl. Sci. 2025, 15(8), 4165; https://doi.org/10.3390/app15084165 - 10 Apr 2025
Viewed by 403
Abstract
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model [...] Read more.
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model is developed to simulate the hydrological processes and reveal the temporal and spatial variation of runoff in relation to impervious surfaces and concave herbaceous fields. The applicability of the 3D modules was evaluated using the Chicago rain pattern formula under three recurrence periods: precipitation within one, five, and ten years. The results indicate that the thickness and slope of planting soil are the most sensitive factors regarding sponge city performance, with comprehensive factors of 0.754 and 0.461. The optimal structural parameters of the concave herbaceous field were obtained as follows: aquifer height, 200 mm; planting soil thickness, 600 mm; planting soil slope, 1.5%; planting soil porosity, 0.45; overflow pipeline porosity, 0.3. The flood peak reduction rate, delay rate, and total runoff control rate were the best in a recurrence period of 5a, with 88.93%, 51.11%, and 78.76%, respectively. This study offers technical and conformed methodological support for simulating water quantity processes in sponge cities, and for the control of waterlogging and the recycling of runoff. Full article
Show Figures

Figure 1

Back to TopTop