Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = stock market behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 2504 KiB  
Article
News Sentiment and Stock Market Dynamics: A Machine Learning Investigation
by Milivoje Davidovic and Jacqueline McCleary
J. Risk Financial Manag. 2025, 18(8), 412; https://doi.org/10.3390/jrfm18080412 - 26 Jul 2025
Viewed by 785
Abstract
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective [...] Read more.
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective or neutral information, with only a small portion carrying subjective or emotive weight. There is a structural market bias toward upswings (bullish market states). Market behavior appears anticipatory rather than reactive: forward-looking implied sentiment captures a substantial share (≈45–50%) of the variation in stock returns. By contrast, sentiment scores, even when disaggregated into firm- and non-firm-specific subscores, lack robust predictive power. However, weekend and holiday sentiment contains modest yet valuable market signals. Algorithm-wise, Gradient Boosting Machine (GBM) stands out in both classification (bullish vs. bearish) and regression tasks. Neither FinBERT news sentiment, historical returns, nor implied volatility offer a consistently exploitable edge over market efficiency. Thus, our findings lend empirical support to both the weak-form and semi-strong forms of the Efficient Market Hypothesis. In the realm of exploitable trading strategies, markets remain an enigma against systematic alpha. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

29 pages, 498 KiB  
Article
Modeling the Determinants of Stock Market Investment Intention and Behavior Among Studying Adults: Evidence from University Students Using PLS-SEM
by Dostonbek Eshpulatov, Gayrat Berdiev and Andrey Artemenkov
Int. J. Financial Stud. 2025, 13(3), 138; https://doi.org/10.3390/ijfs13030138 - 25 Jul 2025
Viewed by 529
Abstract
The development of stock markets is pivotal for economic growth, particularly through the mobilization of idle resources into productive investments. Despite recent reforms to enhance Uzbekistan’s capital market, public engagement remains limited. This study examines the behavioral determinants of stock market investment intention [...] Read more.
The development of stock markets is pivotal for economic growth, particularly through the mobilization of idle resources into productive investments. Despite recent reforms to enhance Uzbekistan’s capital market, public engagement remains limited. This study examines the behavioral determinants of stock market investment intention and participation among university students, employing the Theory of Planned Behavior (TPB) and Partial Least Squares Structural Equation Modeling (PLS-SEM). The model investigates the influence of digital literacy, financial literacy, social interaction, herding behavior, overconfidence bias, risk tolerance, and financial well-being on investment intention and behavior. A survey of 369 university students was conducted to assess the proposed relationships. The results reveal that risk tolerance, overconfidence bias, and herding behavior significantly and positively affect investment intention, while digital literacy demonstrates a notable negative effect, suggesting caution in assuming technology readiness automatically translates to investment readiness. Investment intention, in turn, strongly predicts actual participation and mediates several of these effects. Conversely, financial literacy, financial well-being, and social interaction showed no significant direct or mediating influence. Additionally, differences according to gender and academic background were observed in how intention translates into behavior. The findings underscore the need for integrated financial and behavioral education to enhance market participation and contribute to policy discourse on youth financial engagement in emerging economies. Full article
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
Financial Market Resilience in the GCC: Evidence from COVID-19 and the Russia–Ukraine Conflict
by Farrukh Nawaz, Christopher Gan, Maaz Khan and Umar Kayani
J. Risk Financial Manag. 2025, 18(7), 398; https://doi.org/10.3390/jrfm18070398 - 19 Jul 2025
Viewed by 427
Abstract
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, [...] Read more.
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, but less is known about the comparative dynamics within the Gulf Cooperation Council (GCC) markets. Our study investigated volatility and asymmetric behavior within GCC stock markets during both crises. Furthermore, the econometric model E-GARCH(1,1) was applied to the daily frequency data of financial stock market returns from 11 March 2020 to 31 July 2023. This study examined volatility fluctuation patterns and provides a comparative assessment of GCC stock markets’ behavior during crises. Our findings reveal varying degrees of market volatility across the region during the COVID-19 crisis, with Qatar and the UAE exhibiting the highest levels of volatility persistence. In contrast, the Russia–Ukraine conflict has had a distinct effect on GCC markets, with Oman exhibiting the highest volatility persistence and Kuwait having the lowest volatility persistence. This study provides significant insights for policymakers and investors in managing risk and enhancing market resilience during economic and geopolitical uncertainty. Full article
(This article belongs to the Special Issue Behavioral Finance and Financial Management)
Show Figures

Figure 1

26 pages, 4067 KiB  
Article
Performance-Based Classification of Users in a Containerized Stock Trading Application Environment Under Load
by Tomasz Rak, Jan Drabek and Małgorzata Charytanowicz
Electronics 2025, 14(14), 2848; https://doi.org/10.3390/electronics14142848 - 16 Jul 2025
Viewed by 221
Abstract
Emerging digital technologies are transforming how consumers participate in financial markets, yet their benefits depend critically on the speed, reliability, and transparency of the underlying platforms. Online stock trading platforms must maintain high efficiency underload to ensure a good user experience. This paper [...] Read more.
Emerging digital technologies are transforming how consumers participate in financial markets, yet their benefits depend critically on the speed, reliability, and transparency of the underlying platforms. Online stock trading platforms must maintain high efficiency underload to ensure a good user experience. This paper presents performance analysis under various load conditions based on the containerized stock exchange system. A comprehensive data logging pipeline was implemented, capturing metrics such as API response times, database query times, and resource utilization. We analyze the collected data to identify performance patterns, using both statistical analysis and machine learning techniques. Preliminary analysis reveals correlations between application processing time and database load, as well as the impact of user behavior on system performance. Association rule mining is applied to uncover relationships among performance metrics, and multiple classification algorithms are evaluated for their ability to predict user activity class patterns from system metrics. The insights from this work can guide optimizations in similar distributed web applications to improve scalability and reliability under a heavy load. By framing performance not merely as a technical property but as a determinant of financial decision-making and well-being, the study contributes actionable insights for designers of consumer-facing fintech services seeking to meet sustainable development goals through trustworthy, resilient digital infrastructure. Full article
Show Figures

Figure 1

30 pages, 1477 KiB  
Article
Algebraic Combinatorics in Financial Data Analysis: Modeling Sovereign Credit Ratings for Greece and the Athens Stock Exchange General Index
by Georgios Angelidis and Vasilios Margaris
AppliedMath 2025, 5(3), 90; https://doi.org/10.3390/appliedmath5030090 - 15 Jul 2025
Viewed by 207
Abstract
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a [...] Read more.
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a multi-method analytical framework combining algebraic combinatorics and time-series econometrics. The methodology incorporates the construction of a directed credit rating transition graph, the partially ordered set representation of rating hierarchies, rolling-window correlation analysis, Granger causality testing, event study evaluation, and the formulation of a reward matrix with optimal rating path optimization. Empirical results indicate that credit rating announcements in Greece exert only modest short-term effects on the Athens Stock Exchange General Index, implying that markets often anticipate these changes. In contrast, sequential downgrade trajectories elicit more pronounced and persistent market responses. The reward matrix and path optimization approach reveal structured investor behavior that is sensitive to the cumulative pattern of rating changes. These findings offer a more nuanced interpretation of how sovereign credit risk is processed and priced in transparent and fiscally disciplined environments. By bridging network-based algebraic structures and economic data science, the study contributes a novel methodology for understanding systemic financial signals within sovereign credit systems. Full article
(This article belongs to the Special Issue Algebraic Combinatorics in Data Science and Optimisation)
Show Figures

Figure 1

19 pages, 2703 KiB  
Article
Identifying Risk Regimes in a Sectoral Stock Index Through a Multivariate Hidden Markov Framework
by Akara Kijkarncharoensin
Risks 2025, 13(7), 135; https://doi.org/10.3390/risks13070135 - 9 Jul 2025
Viewed by 417
Abstract
This study explores the presence of hidden market regimes in a sector-specific stock index within the Thai equity market. The behavior of such indices often deviates from broader macroeconomic trends, making it difficult for conventional models to detect regime changes. To overcome this [...] Read more.
This study explores the presence of hidden market regimes in a sector-specific stock index within the Thai equity market. The behavior of such indices often deviates from broader macroeconomic trends, making it difficult for conventional models to detect regime changes. To overcome this limitation, the study employs a multivariate Gaussian mixture hidden Markov model, which enables the identification of unobservable states based on daily and intraday return patterns. These patterns include open-to-close, open-to-high, and low-to-open returns. The model is estimated using various specifications, and the best-performing structure is chosen based on the Akaike Information Criterion and the Bayesian Information Criterion. The final model reveals three statistically distinct regimes that correspond to bullish, sideways, and bearish conditions. Statistical tests, particularly the Kruskal–Wallis method, confirm that return distributions, trading volume, and open interest differ significantly across these regimes. Additionally, the analysis incorporates risk measures, including expected shortfall, maximum drawdown, and the coefficient of variation. The results indicate that the bearish regime carries the highest risk, whereas the bullish regime is relatively stable. These findings offer practical insights for regime-aware portfolio management in sectoral equity markets. Full article
Show Figures

Figure 1

21 pages, 699 KiB  
Article
Stock Market Hype: An Empirical Investigation of the Impact of Overconfidence on Meme Stock Valuation
by Richard Mawulawoe Ahadzie, Peterson Owusu Junior, John Kingsley Woode and Dan Daugaard
Risks 2025, 13(7), 127; https://doi.org/10.3390/risks13070127 - 1 Jul 2025
Viewed by 1006
Abstract
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A [...] Read more.
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A range of overconfidence proxies is employed, including changes in trading volume, turnover rate, changes in outstanding shares, and alternative measures of excessive trading. We observe a significant positive relationship between overconfidence (as measured by changes in trading volume) and firm valuation, suggesting that investor biases contribute to notable pricing distortions. Leverage has a significant negative relationship with firm valuation. In contrast, market capitalization has a significant positive relationship with firm valuation, implying that meme stock investors respond to both speculative sentiment and traditional firm fundamentals. Robustness checks using alternative proxies reveal that turnover rate and changes in the number of shares are negatively related to valuation. This shows the complex dynamics of meme stocks, where psychological factors intersect with firm-specific indicators. However, results from a dynamic panel model estimated using the Dynamic System Generalized Method of Moments (GMM) show that the turnover rate has a significantly positive relationship with firm valuation. These results offer valuable insights into the pricing behavior of meme stocks, revealing how investor sentiment impacts periodic valuation adjustments in speculative markets. Full article
(This article belongs to the Special Issue Theoretical and Empirical Asset Pricing)
Show Figures

Figure 1

36 pages, 770 KiB  
Review
Stock Market Prediction Using Machine Learning and Deep Learning Techniques: A Review
by Mohammadreza Saberironaghi, Jing Ren and Alireza Saberironaghi
AppliedMath 2025, 5(3), 76; https://doi.org/10.3390/appliedmath5030076 - 24 Jun 2025
Viewed by 5114
Abstract
The rapid advancement of machine learning and deep learning techniques has revolutionized stock market prediction, providing innovative methods to analyze financial trends and market behavior. This review paper presents a comprehensive analysis of various machine learning and deep learning approaches utilized in stock [...] Read more.
The rapid advancement of machine learning and deep learning techniques has revolutionized stock market prediction, providing innovative methods to analyze financial trends and market behavior. This review paper presents a comprehensive analysis of various machine learning and deep learning approaches utilized in stock market prediction, focusing on their methodologies, evaluation metrics, and datasets. Popular models such as LSTM, CNN, and SVM are examined, highlighting their strengths and limitations in predicting stock prices, volatility, and trends. Additionally, we address persistent challenges, including data quality and model interpretability, and explore emerging research directions to overcome these obstacles. This study aims to summarize the current state of research, provide insights into the effectiveness of predictive models. Full article
(This article belongs to the Special Issue Optimization and Machine Learning)
Show Figures

Figure 1

13 pages, 1026 KiB  
Article
Do Natural Disasters Alter Tourism Industry Risks Differently over Time?
by Li-Ling Liu
Mathematics 2025, 13(13), 2046; https://doi.org/10.3390/math13132046 - 20 Jun 2025
Viewed by 400
Abstract
This study adopted the event study method to explore the effect of the Hualien earthquake on the performance of tourism stocks in Taiwan. This earthquake occurred on 3 April 2024 and affected Hualien and Taitung. The present study examined the short-term (10 trading [...] Read more.
This study adopted the event study method to explore the effect of the Hualien earthquake on the performance of tourism stocks in Taiwan. This earthquake occurred on 3 April 2024 and affected Hualien and Taitung. The present study examined the short-term (10 trading days), medium-term (12 weeks), and long-term (5 months) performance of all listed tourism companies in Taiwan (overall sample) and six listed tourism companies with a branch in Hualien or Taitung (six-company sample). The results indicated that the stocks of the overall sample rebounded soon after the earthquake but declined over the long-term period. By contrast, the stocks of the six-company sample exhibited a persistent negative return immediately after the earthquake and gradually recovered in the long term. The findings of this study enhance theoretical understanding regarding the effects of a disaster on the stock market. Moreover, they serve as a reference for practical decision-making related to government risk response, investor behavior, and corporate crisis management in high-risk industries, such as tourism. Strengthening disaster preparedness and corporate branding after a disaster is critical for stabilizing market sentiment and industry resilience. Full article
(This article belongs to the Special Issue Computational Economics and Mathematical Modeling)
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1564
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

19 pages, 1662 KiB  
Article
Highlighting the Role of Morality in News Framing and Its Short-Term Effects on Stock Market Fluctuations
by Paula T. Wang, Musa Malik and René Weber
Int. J. Financial Stud. 2025, 13(2), 107; https://doi.org/10.3390/ijfs13020107 - 9 Jun 2025
Viewed by 2203
Abstract
The Model of Intuitive Morality and Exemplars (MIME) suggests that news audiences, including investors, evaluate news based on their moral frames, and that these moral evaluations shape behavior. We extracted moral signals from 382,185 news articles across an 8-month period and examined their [...] Read more.
The Model of Intuitive Morality and Exemplars (MIME) suggests that news audiences, including investors, evaluate news based on their moral frames, and that these moral evaluations shape behavior. We extracted moral signals from 382,185 news articles across an 8-month period and examined their predictive effect on stock market movement. Results indicate that morality is a strong predictor during low economic periods and is driven by subversion and sanctity. Overall, our study suggests that moral framing and its foundations are important considerations for research on news effects, especially during periods of economic instability. The study provides an additional theoretical perspective on stock market fluctuations as well as practical implications for stakeholders with an interest in dampening collective panics and stabilizing investor sentiment. Full article
Show Figures

Figure 1

24 pages, 2193 KiB  
Article
The Effect of Fat Tails on Rules for Optimal Pairs Trading: Performance Implications of Regime Switching with Poisson Events
by Pablo García-Risueño, Eduardo Ortas and José M. Moneva
Int. J. Financial Stud. 2025, 13(2), 96; https://doi.org/10.3390/ijfs13020096 - 1 Jun 2025
Viewed by 763
Abstract
This study examines the impact that fat-tailed distributions of the spread residuals have on the optimal orders for pairs trading of stocks and cryptocurrencies. Using daily data from selected pairs, the spread dynamics has been modeled through a mean-reverting Ornstein–Uhlenbeck process and investigates [...] Read more.
This study examines the impact that fat-tailed distributions of the spread residuals have on the optimal orders for pairs trading of stocks and cryptocurrencies. Using daily data from selected pairs, the spread dynamics has been modeled through a mean-reverting Ornstein–Uhlenbeck process and investigates how deviations from normality affect strategy design and profitability. Specifically, we compared four fat-tailed distributions—Lévy stable, generalized hyperbolic, Johnson’s SU, and non-centered Student’s t—and showed how they modify optimal entry and exit thresholds, and performance metrics. The main findings reveal that the proposed pairs trading strategy correctly captures some key stylized facts of residual spreads such as large jumps, skewness, and excess Kurtosis. Interestingly, we considered regime-switching behaviors to account for structural changes in market dynamics, providing empirical evidence that optimal trading rules are regime-dependent and significantly influenced by the residual distribution’s tail behavior. Unlike conventional approaches, we optimized the entry signal and link heavy tails not only to volatility clustering but also to the nonlinearity in switching regimes. These findings suggest the need to account for distributional properties and dynamic regimes when designing robust pairs trading strategies, providing a more realistic and effective framework of these strategies in highly volatile and non-normal markets. Full article
Show Figures

Figure 1

23 pages, 297 KiB  
Article
Green Washing, Green Bond Issuance, and the Pricing of Carbon Risk: Evidence from A-Share Listed Companies
by Zhenyu Zhu, Yixiang Tian, Xiaoying Zhao and Huiling Huang
Sustainability 2025, 17(11), 4788; https://doi.org/10.3390/su17114788 - 23 May 2025
Viewed by 985
Abstract
As global climate change intensifies and carbon emission policies become increasingly stringent, carbon risk has emerged as a crucial factor influencing corporate operations and financial markets. Based on data from A-share listed companies in China from 2009 to 2022, this paper empirically examines [...] Read more.
As global climate change intensifies and carbon emission policies become increasingly stringent, carbon risk has emerged as a crucial factor influencing corporate operations and financial markets. Based on data from A-share listed companies in China from 2009 to 2022, this paper empirically examines the pricing mechanism of carbon risk in the Chinese capital market and explores how different corporate signaling behaviors affect the carbon risk premium. The findings reveal the following: (1) Carbon risk exhibits a significant positive premium (annualized at about 1.33% per standard deviation), which remains robust over longer time windows and after replacing the measurement variables. (2) Heterogeneity analysis shows that the carbon risk premium is not significant in high-energy-consuming industries or before the signing of the Paris Agreement, possibly due to changes in investor expectations and increased green awareness. Additionally, a significant difference in the carbon risk premium exists between brown and green stocks, reflecting a “labeling effect” of green attributes. (3) Issuing green bonds, as an active corporate signaling behavior, effectively mitigates the carbon risk premium, indicating that market investors highly recognize and favor firms that actively convey green signals. (4) A “greenwashing” indicator constructed from textual analysis of environmental information disclosure suggests that greenwashing leads to a mispricing of the carbon risk premium. Companies that issue false green signals—publicly committing to environmental protection but failing to implement corresponding emission reduction measures—may mislead investors and create adverse selection problems. Finally, this paper provides recommendations for corporate carbon risk management and policy formulation, offering insights for both research and practice in the field. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
20 pages, 495 KiB  
Article
The Use of the Fraud Pentagon Model in Assessing the Risk of Fraudulent Financial Reporting
by Georgiana Burlacu, Ioan-Bogdan Robu, Ion Anghel, Marius Eugen Rogoz and Ionela Munteanu
Risks 2025, 13(6), 102; https://doi.org/10.3390/risks13060102 - 22 May 2025
Viewed by 1965
Abstract
This study examines the relevance of the Fraud Pentagon Theory in detecting fraudulent financial reporting among companies listed on the Bucharest Stock Exchange. While financial reporting is essential for informed stakeholder decisions, requiring information to be accurate, reliable, and fairly presented and pressure [...] Read more.
This study examines the relevance of the Fraud Pentagon Theory in detecting fraudulent financial reporting among companies listed on the Bucharest Stock Exchange. While financial reporting is essential for informed stakeholder decisions, requiring information to be accurate, reliable, and fairly presented and pressure to meet expectations can lead to manipulation. The Fraud Pentagon Theory identifies five potential drivers of such behavior: pressure, opportunity, rationalization, capability, and arrogance. This research contributes to the literature by empirically testing the theory in the Romanian context, an emerging market with limited prior analysis, using a sample of 62 listed companies over the 2017–2021 period. Regression analysis was applied, using the Dechow F-score, which combines accrual quality and financial performance to assess the likelihood of fraudulent financial reporting. The findings reveal that not all dimensions of the theory significantly affect the likelihood of fraudulent reporting. Specifically, pressure-related factors (financial performance and financial stability) were found to be statistically significant, while external pressure, opportunity (external auditor quality and nature of industry), rationalization (change of auditor), capability (change of director), and arrogance (number of CEO’s pictures) did not show significant influence in the Romanian framework. These results highlight the importance of contextual factors such as market structure, governance practices, and stakeholder expectations, suggesting that fraudulent reporting risk indicators may vary across different economic environments. Full article
(This article belongs to the Special Issue Risk Analysis in Financial Crisis and Stock Market)
Show Figures

Figure 1

25 pages, 4462 KiB  
Article
Incorporating Media Coverage and the Impact of Geopolitical Events for Stock Market Predictions with Machine Learning
by Vinayaka Gude and Daniel Hsiao
J. Risk Financial Manag. 2025, 18(6), 288; https://doi.org/10.3390/jrfm18060288 - 22 May 2025
Viewed by 1015
Abstract
This paper explores the impact of the Israel–Palestine conflict on the stock performance of U.S. companies and their public positions on the conflict. In an era where corporate positions on geopolitical issues are increasingly scrutinized, understanding the market implications of such statements is [...] Read more.
This paper explores the impact of the Israel–Palestine conflict on the stock performance of U.S. companies and their public positions on the conflict. In an era where corporate positions on geopolitical issues are increasingly scrutinized, understanding the market implications of such statements is critical. This research aims to capture the complex, non-linear relationships between corporate actions, media coverage, and financial outcomes by integrating traditional statistical techniques with advanced machine learning models. To achieve this, we constructed a novel dataset combining public corporate announcements, media sentiment (including headline and article body tone), and philanthropic activities. Using both classification and regression models, we predicted whether companies had affiliations with Israel and then analyzed how these affiliations, combined with other features, affected their stock returns over a 30-day period. Among the models tested, ensemble learning methods such as stacking and boosting achieved the highest classification accuracy, while a Multi-Layer Perceptron (MLP) model proved most effective in forecasting abnormal stock returns. Our findings highlight the growing relevance of machine learning in financial forecasting, particularly in contexts shaped by geopolitical dynamics and public discourse. By demonstrating how sentiment and corporate stance influence investor behavior, this research offers valuable insights for investors, analysts, and corporate decision-makers navigating sensitive political landscapes. Full article
(This article belongs to the Special Issue Machine Learning-Based Risk Management in Finance and Insurance)
Show Figures

Figure 1

Back to TopTop