Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = stimuli sensitive systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1090 KiB  
Article
Behavioral Interference by Emotional Stimuli: Sequential Modulation by Perceptual Conditions but Not by Emotional Primes
by Andrea De Cesarei, Virginia Tronelli, Serena Mastria, Vera Ferrari and Maurizio Codispoti
Vision 2025, 9(3), 66; https://doi.org/10.3390/vision9030066 (registering DOI) - 1 Aug 2025
Abstract
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application [...] Read more.
Previous studies observed that emotional scenes, presented as distractors, capture attention and interfere with an ongoing task. This behavioral interference has been shown to be elicited by the semantic rather than by the perceptual properties of a scene, as it resisted the application of low-pass spatial frequency filters. Some studies observed that the visual system can adapt to perceptual conditions; however, little is known concerning whether attentional capture by emotional stimuli can also be modulated by the sequential repetition of viewing conditions or of emotional content. In the present study, we asked participants to perform a parity task while viewing irrelevant natural scenes, which could be either emotional or neutral. These scenes could be either blurred (low-pass filter) or perceptually intact, and the order of presentation was balanced to study the effects of sequential repetition of perceptual conditions. The results indicate that affective modulation was most pronounced when the same viewing condition (either intact or blurred) was repeated, with faster responses when perceptual conditions were repeated for neutral distractors, but to a lesser extent for emotional ones. These data suggest that emotional interference in an attentional task can be modulated by serial sensitization in the processing of spatial frequencies. Full article
(This article belongs to the Section Visual Neuroscience)
Show Figures

Figure 1

53 pages, 3300 KiB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Viewed by 302
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 4639 KiB  
Article
CNTs/CNPs/PVA–Borax Conductive Self-Healing Hydrogel for Wearable Sensors
by Chengcheng Peng, Ziyan Shu, Xinjiang Zhang and Cailiu Yin
Gels 2025, 11(8), 572; https://doi.org/10.3390/gels11080572 - 23 Jul 2025
Viewed by 273
Abstract
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This [...] Read more.
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This hydrogel exhibits excellent conductivity, mechanical flexibility, and self-recovery properties. Serving as a highly sensitive piezoresistive sensor, it efficiently converts mechanical stimuli into reliable electrical signals. Sensing tests demonstrate that the CNT/CNP/PVA–borax hydrogel sensor possesses an extremely fast response time (88 ms) and rapid recovery time (88 ms), enabling the detection of subtle and rapid human motions. Furthermore, the hydrogel sensor also exhibits outstanding cyclic stability, maintaining stable signal output throughout continuous loading–unloading cycles exceeding 3200 repetitions. The hydrogel sensor’s characteristics, including rapid self-healing, fast-sensing response/recovery, and high fatigue resistance, make the CNT/CNP/PVA–borax conductive hydrogel an ideal choice for multifunctional wearable sensors. It successfully monitored various human motions. This study provides a promising strategy for high-performance self-healing sensing devices, suitable for next-generation wearable health monitoring and human–machine interaction systems. Full article
Show Figures

Figure 1

10 pages, 1668 KiB  
Article
Hepatic Inflammation Primes Vascular Dysfunction Following Treatment with LPS in a Murine Model of Pediatric Fatty Liver Disease
by Hong Huang, Robin Shoemaker, Yasir Alsiraj, Margaret Murphy, Troy E. Gibbons and John A. Bauer
Int. J. Mol. Sci. 2025, 26(14), 6802; https://doi.org/10.3390/ijms26146802 - 16 Jul 2025
Viewed by 263
Abstract
Obesity and pediatric fatty liver disease are increasingly prevalent, yet the underlying mechanisms linking these conditions to heightened inflammatory and immune responses remain poorly understood. Using a murine model reflecting early-life obesity and hepatic steatosis, we tested the hypothesis that obesity-driven hepatic inflammation [...] Read more.
Obesity and pediatric fatty liver disease are increasingly prevalent, yet the underlying mechanisms linking these conditions to heightened inflammatory and immune responses remain poorly understood. Using a murine model reflecting early-life obesity and hepatic steatosis, we tested the hypothesis that obesity-driven hepatic inflammation intensifies systemic immune responses and exacerbates vascular dysfunction following innate immune activation. Newly weaned C57BL/6 mice were fed either a high-saturated-fat, high-cholesterol diet (HFD) or a control diet (CD) for four weeks, modeling adolescence in humans. HFD-fed mice exhibited hepatic and splenic enlargement, elevated plasma cholesterol levels, increased activity levels of liver enzymes (alanine and aspartate aminotransferases), and higher plasma serum amyloid A (SAA) concentrations. Following a sublethal dose of lipopolysaccharide (LPS), the expression of hepatic inflammatory genes (VCAM-1 and iNOS) was significantly elevated in HFD-fed mice, indicating an exaggerated local immune response. Mice fed an HFD also showed significant impairment in endothelium-dependent vasorelaxation compared to CD mice and saline-treated controls, while endothelium-independent responses remained intact. These vascular changes occurred in the context of hepatic inflammation, suggesting that early-life diet-induced steatosis sensitizes the vasculature to inflammatory insult. These findings suggest that obesity-driven hepatic inflammation primes exaggerated systemic immune responses to innate immune stimuli, potentially contributing to the vascular dysfunction and variable clinical morbidity observed in pediatric inflammatory conditions. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Figure 1

10 pages, 572 KiB  
Article
Alpha-Amylase Activity in Feline Saliva: An Analytical Validation of an Automated Assay for Its Measurement and a Pilot Study on Its Changes Following Acute Stress and Due to Urinary Tract Pathologies
by Esmeralda Cañadas-Vidal, Alberto Muñoz-Prieto, Juan D. García-Martínez, Jose J. Ceron, Luis Pardo-Marín and Asta Tvarijonaviciute
Animals 2025, 15(14), 2074; https://doi.org/10.3390/ani15142074 - 14 Jul 2025
Viewed by 266
Abstract
Salivary alpha-amylase (sAA) increases in response to stressful stimuli in a number of animal species, and it is considered a biomarker of sympathetic nervous system activation. However, no studies have been performed in which sAA has been measured in cats. The aim of [...] Read more.
Salivary alpha-amylase (sAA) increases in response to stressful stimuli in a number of animal species, and it is considered a biomarker of sympathetic nervous system activation. However, no studies have been performed in which sAA has been measured in cats. The aim of this study was to perform an analytical and clinical validation of a commercially available automated assay for the determination of sAA in feline saliva. For the analytical validation, the precision, accuracy, and lower limit of quantification (LLOQ) were determined. To evaluate its response to acute stress, sAA was evaluated in feline saliva before and after stressful stimuli, consisting of a blood extraction. In addition, the sAA activity was compared between cats suffering from urinary tract pathologies and healthy controls. Analytical validation studies confirmed the method as being precise, accurate, and sufficiently sensitive for the sAA determination in cats. When the response to stress was evaluated, a statistically significant increase was detected in sAA in comparison with its activity before the blood extraction. In addition, cats with urinary tract diseases presented higher sAA activity than controls. The results of the present study indicate that sAA can be measured in feline saliva. This study could contribute to a wider use of the measurements of sAA in the saliva of cats and serve as a basis for future investigations aiming to assess acute stress in this species in a non-invasive manner. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

18 pages, 1513 KiB  
Article
Perceptual Decision Efficiency Is Modifiable and Associated with Decreased Musculoskeletal Injury Risk Among Female College Soccer Players
by Gary B. Wilkerson, Alejandra J. Gullion, Katarina L. McMahan, Lauren T. Brooks, Marisa A. Colston, Lynette M. Carlson, Jennifer A. Hogg and Shellie N. Acocello
Brain Sci. 2025, 15(7), 721; https://doi.org/10.3390/brainsci15070721 - 4 Jul 2025
Viewed by 313
Abstract
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, [...] Read more.
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, and consistency of body movements corresponding to stimulus–response instructions for the completion of a forced-choice task. Methods: A cohort of 26 female college soccer players (age 19.5 ± 1.3 years) included 10 players who participated in a baseline assessment, 10 perceptual-response training (PRT) sessions, a post-training assessment that preceded the first soccer practice, and a post-season assessment. The remaining 16 players completed an assessment prior to the team’s first pre-season practice session, and a post-season assessment. The assessments and training sessions involved left- or right-directed neck rotation, arm reach, and step-lunge reactions to 40 presentations of different types of horizontally moving visual stimuli. The PRT program included 4 levels of difficulty created by changes in initial stimulus location, addition of distractor stimuli, and increased movement speed, with ≥90% response accuracy used as the criterion for training progression. Perceptual latency (PL) was defined as the time elapsed from stimulus appearance to initiation of neck rotation toward a peripheral virtual target. The speed–accuracy tradeoff was represented by Rate Correct per Second (RCS) of PL, and inconsistency across trials derived from their standard deviation for PL was represented by intra-individual variability (IIV). Perceptual Decision Efficiency (PDE) represented the ratio of RCS to IIV, which provided a single value representing speed, accuracy, and consistency. Statistical procedures included the bivariate correlation between RCS and IIV, dependent t-test comparisons of pre- and post-training metrics, repeated measures analysis of variance for group X session pre- to post-season comparisons, receiver operating characteristic analysis, and Kaplan–Meier time to injury event analysis. Results: Statistically significant (p < 0.05) results were found for pre- to post-training change, and pre-season to post-season group differences, for RCS, IIV, and PDE. An inverse logarithmic relationship was found between RCS and IIV (Spearman’s Rho = −0.795). The best discriminator between injured and non-injured statuses was PDE ≤ 21.6 (93% Sensitivity; 42% Specificity; OR = 9.29). Conclusions: The 10-session PRT program produced significant improvement in perceptual decision-making that appears to provide a transfer benefit, as the PDE metric provided good prospective prediction of musculoskeletal injury. Full article
Show Figures

Figure 1

25 pages, 1218 KiB  
Review
Probiotics in Nanotechnology-Driven Wound Healing: From Mechanistic Insight to Clinical Promise
by Milind Umekar, Anis Ahmad Chaudhary, Monali Manghani, Supriya Shidhaye, Pratiksha Khajone, Jayashri Mahore, Hassan Ahmad Rudayni and Rashmi Trivedi
Pharmaceutics 2025, 17(7), 805; https://doi.org/10.3390/pharmaceutics17070805 - 21 Jun 2025
Viewed by 929
Abstract
Chronic wounds, including diabetic foot ulcers and pressure sores, are becoming more prevalent due to aging populations and increased metabolic problems. These wounds often persist due to impaired healing, chronic inflammation, oxidative stress, and infections caused by multidrug-resistant pathogens, making conventional treatments—including antibiotics [...] Read more.
Chronic wounds, including diabetic foot ulcers and pressure sores, are becoming more prevalent due to aging populations and increased metabolic problems. These wounds often persist due to impaired healing, chronic inflammation, oxidative stress, and infections caused by multidrug-resistant pathogens, making conventional treatments—including antibiotics and antiseptics—largely inadequate. This creates an urgent need for advanced, biologically responsive therapies that can both combat infection and promote tissue regeneration. Probiotics have surfaced as a viable option owing to their capacity to regulate immune responses, impede pathogenic biofilms, and generate antibacterial and antioxidant metabolites. However, their clinical application is limited by poor viability, sensitivity to environmental conditions, and short retention at wound sites. Nanotechnology-based delivery systems address these limitations by protecting probiotics from degradation, enhancing site-specific delivery, and enabling controlled, stimuli-responsive release. Encapsulation techniques using materials like chitosan, PLGA, liposomes, nanogels, nanofibers, and microneedles have shown significant success in improving wound healing outcomes in preclinical and clinical models. This review summarizes the current landscape of chronic wound challenges and presents recent advances in probiotic-loaded nanotechnologies. It explores various nano-delivery systems, their mechanisms of action, biological effects, and therapeutic outcomes, highlighting the synergy between probiotics and nanocarriers as a novel, multifaceted strategy for managing chronic wounds. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

25 pages, 2139 KiB  
Review
Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers
by Radka Boyuklieva, Nikolay Zahariev, Plamen Simeonov, Dimitar Penkov and Plamen Katsarov
Biomedicines 2025, 13(6), 1464; https://doi.org/10.3390/biomedicines13061464 - 13 Jun 2025
Viewed by 624
Abstract
Nanotherapeutics have emerged as novel unparalleled drug delivery systems (DDSs) for the treatment of neurodegenerative disorders. By applying different technological approaches, nanoparticles can be engineered to possess different functionalities. In recent years, the developed, stimuli-responsive nanocarriers stand out as novel complex DDSs ensuring [...] Read more.
Nanotherapeutics have emerged as novel unparalleled drug delivery systems (DDSs) for the treatment of neurodegenerative disorders. By applying different technological approaches, nanoparticles can be engineered to possess different functionalities. In recent years, the developed, stimuli-responsive nanocarriers stand out as novel complex DDSs ensuring selective and specific drug delivery in response to different endogenous and exogenous stimuli. Due to the multifaceted pathophysiology of the nervous system, a major challenge in modern neuropharmacology is the development of effective therapies ensuring high efficacy and low toxicity. Functionalization of the nanocarriers to react to specific microenvironmental changes in the nervous system tissues or external stimulations significantly enhances the efficacy of drug delivery. This review discusses the microenvironmental characteristics of some common neurological diseases in-depth and provides a comprehensive overview on the progress of the development of exogenous and endogenous stimuli-sensitive nanocarriers for the treatment of Alzheimer’s and Parkinson’s disease. Full article
(This article belongs to the Special Issue Advanced Research in Neuroprotection)
Show Figures

Figure 1

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1173
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

18 pages, 1534 KiB  
Article
Heart Rate Variability in Adolescents with Autistic Spectrum Disorder Practicing a Virtual Reality Using Two Different Interaction Devices (Concrete and Abstract): A Prospective Randomized Crossover Controlled Trial
by Étria Rodrigues, Ariane Livanos, Joyce A. L. Garbin, Susi M. S. Fernandes, Amanda O. Simcsik, Tânia B. Crocetta, Eduardo D. Dias, Carlos B. M. Monteiro, Fernando H. Magalhães, Alessandro H. N. Ré, Íbis A. P. Moraes and Talita D. Silva-Magalhães
Healthcare 2025, 13(12), 1402; https://doi.org/10.3390/healthcare13121402 - 12 Jun 2025
Viewed by 922
Abstract
Individuals with autism spectrum disorder (ASD) often experience dysregulation of the autonomic nervous system, as evidenced by alterations in heart rate variability (HRV). It can be influenced by virtual reality (VR), which affects physiological responses due to its sensitivity to environmental and emotional [...] Read more.
Individuals with autism spectrum disorder (ASD) often experience dysregulation of the autonomic nervous system, as evidenced by alterations in heart rate variability (HRV). It can be influenced by virtual reality (VR), which affects physiological responses due to its sensitivity to environmental and emotional stimuli. Objectives: This study aimed to assess HRV in individuals with ASD before, during, and after VR-based tasks over a 10-day period, specifically examining how HRV fluctuated in response to concrete (touchscreen) and abstract (webcam) interactions. Methods: Twenty-two male participants were randomly assigned to two sequences based on the order of tasks performed (starting with either the concrete or abstract task). Results: The findings revealed significant changes in HRV indices (RMSSD, SD1, SDNN, and SD2) between the two task types. Conclusions: The participants engaged in abstract tasks demonstrated higher motor demands, which were indicated by decreased parasympathetic activity and an increased LF/HF ratio, suggesting greater activation of the sympathetic nervous system. Full article
Show Figures

Figure 1

43 pages, 2715 KiB  
Review
Phase-Inversion In Situ Systems: Problems and Prospects of Biomedical Application
by Elena O. Bakhrushina, Svetlana A. Titova, Polina S. Sakharova, Olga N. Plakhotnaya, Viktoriya V. Grikh, Alla R. Patalova, Anna V. Gorbacheva, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Pharmaceutics 2025, 17(6), 750; https://doi.org/10.3390/pharmaceutics17060750 - 6 Jun 2025
Cited by 1 | Viewed by 826
Abstract
Stimuli-sensitive (in situ) drug delivery systems are a dynamically developing area of pharmaceutical research. Over the past decade, the number of studies on such systems has doubled. Among these, phase-inversion (or phase-sensitive) formulations, which were among the earliest proposed, offer significant advantages, including [...] Read more.
Stimuli-sensitive (in situ) drug delivery systems are a dynamically developing area of pharmaceutical research. Over the past decade, the number of studies on such systems has doubled. Among these, phase-inversion (or phase-sensitive) formulations, which were among the earliest proposed, offer significant advantages, including enhanced stability and stimuli-responsiveness. However, phase-inversion systems have remained relatively understudied. Despite the existence of three patented technologies (Atrigel®, BEPO®, FluidCrystal®) for delivery systems utilizing phase inversion for various routes of administration, the absence of unified approaches to development and standardization has significantly impeded the introduction of novel, effective drugs into clinical practice. This review examined the main polymers and solvents used to create phase-inversion compositions and discussed the feasibility of introducing other excipients to modify the systems’ physicochemical properties. The most commonly used polymers included polylactide-co-glycolide, shellac, and polylactic acid. The most frequently used solvents were N-methylpyrrolidone and dimethyl sulfoxide. Following an analysis of clinical studies of phase-sensitive drugs conducted over the past 25 years, as well as original research indexed in PubMed, ScienceDirect, and Google Scholar, the main problems hindering the broader adoption of phase-inversion systems in clinical practice were identified, and recommendations for further development in this promising area were provided. Full article
Show Figures

Graphical abstract

15 pages, 2665 KiB  
Article
Development of Thermo-Responsive and Salt-Adaptive Ultrafiltration Membranes Functionalized with PNIPAM-co-PDMAC Copolymer
by Lauran Mama, Johanne Pirkin-Benameur, Vincent Bouad, David Fournier, Patrice Woisel, Joël Lyskawa, Karim Aissou and Damien Quemener
Membranes 2025, 15(6), 164; https://doi.org/10.3390/membranes15060164 - 28 May 2025
Cited by 1 | Viewed by 1023
Abstract
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive [...] Read more.
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive properties of PNIPAM with the hydrophilic characteristics of PDMAC, these membranes exhibit dual-stimuli responsiveness to temperature and ionic strength, allowing for precise control of permeability and fouling resistance. The experimental results demonstrated that the copolymer’s hydration state and dynamic pore size modulation are sensitive to changes in salinity and temperature, with sodium chloride (NaCl) significantly influencing the transition behavior. Preliminary fouling tests confirmed the antifouling capabilities of these membranes, with salt-triggered hydration transitions effectively reducing irreversible fouling and extending membrane durability. The membranes’ reversible properties and adaptability to dynamic operating conditions highlight their potential to enhance the efficiency and sustainability of water treatment processes. Future investigations will focus on scaling up the fabrication process and assessing the long-term stability of these membranes under real-world conditions. This study underscores the promise of smart membrane systems for advancing global water sustainability. Full article
Show Figures

Figure 1

21 pages, 813 KiB  
Review
Light, Sound, and Melatonin: Investigating Multisensory Pathways for Visual Restoration
by Dario Rusciano
Medicina 2025, 61(6), 1009; https://doi.org/10.3390/medicina61061009 - 28 May 2025
Cited by 1 | Viewed by 856
Abstract
Multisensory integration is fundamental for coherent perception and interaction with the environment. While cortical mechanisms of multisensory convergence are well studied, emerging evidence implicates specialized retinal ganglion cells—particularly melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs)—in crossmodal processing. This review explores how hierarchical brain [...] Read more.
Multisensory integration is fundamental for coherent perception and interaction with the environment. While cortical mechanisms of multisensory convergence are well studied, emerging evidence implicates specialized retinal ganglion cells—particularly melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs)—in crossmodal processing. This review explores how hierarchical brain networks (e.g., superior colliculus, parietal cortex) and ipRGCs jointly shape perception and behavior, focusing on their convergence in multisensory plasticity. We highlight ipRGCs as gatekeepers of environmental light cues. Their anatomical projections to multisensory areas like the superior colliculus are well established, although direct evidence for their role in human audiovisual integration remains limited. Through melanopsin signaling and subcortical projections, they may modulate downstream multisensory processing, potentially enhancing the salience of crossmodal inputs. A key theme is the spatiotemporal synergy between melanopsin and melatonin: melanopsin encodes light, while melatonin fine-tunes ipRGC activity and synaptic plasticity, potentially creating time-sensitive rehabilitation windows. However, direct evidence linking ipRGCs to audiovisual rehabilitation remains limited, with their role primarily inferred from anatomical and functional studies. Future implementations should prioritize quantitative optical metrics (e.g., melanopic irradiance, spectral composition) to standardize light-based interventions and enhance reproducibility. Nonetheless, we propose a translational framework combining multisensory stimuli (e.g., audiovisual cues) with circadian-timed melatonin to enhance recovery in visual disorders like hemianopia and spatial neglect. By bridging retinal biology with systems neuroscience, this review redefines the retina’s role in multisensory processing and offers novel, mechanistically grounded strategies for neurorehabilitation. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

14 pages, 2397 KiB  
Article
Revisiting Chirality in Slime Mold: On the Emergence and Absence of Lateralized Movement in Physarum polycephalum Influenced by Various Stimuli
by Rowena Gehrke and Jannes Freiberg
Symmetry 2025, 17(5), 756; https://doi.org/10.3390/sym17050756 - 14 May 2025
Viewed by 702
Abstract
Behavioral lateralization in animals is a well-known phenomenon; however, it has only rarely been studied in unicellular organisms. A groundbreaking study found lateralized movement in T-mazes in the formless plasmodia of the slime mold Physarum polycephalum. In this work, a replication of [...] Read more.
Behavioral lateralization in animals is a well-known phenomenon; however, it has only rarely been studied in unicellular organisms. A groundbreaking study found lateralized movement in T-mazes in the formless plasmodia of the slime mold Physarum polycephalum. In this work, a replication of that study was conducted in a specially designed, elaborated T-maze system. Considering the amoeboid organism’s diverse sensory capabilities, we further comprehensively investigated the influence of light, artificial magnetic fields, the magnetic field of the Earth, and vibration on movement direction. Two different clonal lines were tested to assess genetic diversity, encompassing over 1600 individual plasmodia. Our results show that no general lateralized behavior exists in the absence of stimuli in both clonal lines. On the other hand, Physarum’s sensitivity to strong magnetic fields and vibration induces significant true lateralization in previously nonlateralized plasmodia (37.6% right and 62.4% left, respectively). Possible mechanisms behind this induced lateralization are discussed. We conclude that previous findings showing lateralization are likely to have been influenced by unknown external stimuli. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

36 pages, 4378 KiB  
Review
Corneal Sensory Receptors and Pharmacological Therapies to Modulate Ocular Pain
by Ryan Park, Samantha Spritz, Anne Y. Zeng, Rohith Erukulla, Deneb Zavala, Tasha Merchant, Andres Gascon, Rebecca Jung, Bianca Bigit, Dimitri T. Azar, Jin-Hong Chang, Elmira Jalilian, Ali R. Djalilian, Victor H. Guaiquil and Mark I. Rosenblatt
Int. J. Mol. Sci. 2025, 26(10), 4663; https://doi.org/10.3390/ijms26104663 - 13 May 2025
Viewed by 1425
Abstract
Nociceptors respond to noxious stimuli and transmit pain signals to the central nervous system. In the cornea, the nociceptors located in the most external layer provide a myriad of sensation modalities. Damage to these corneal nerve fibers can induce neuropathic pain. In response, [...] Read more.
Nociceptors respond to noxious stimuli and transmit pain signals to the central nervous system. In the cornea, the nociceptors located in the most external layer provide a myriad of sensation modalities. Damage to these corneal nerve fibers can induce neuropathic pain. In response, corneal nerves become sensitized to previously non-noxious stimuli. Assessing corneal pain origin is a complex ophthalmic challenge due to variations in its causes and manifestations. Current FDA-approved therapies for corneal nociceptive pain, such as acetaminophen and NSAIDs, provide only broad-acting relief with unwanted side effects, highlighting the need for precision medicine for corneal nociceptive pain. A few targeted treatments, including perfluorohexyloctane (F6H8) eye drops and Optive Plus (TRPV1 antagonist), are FDA-approved, while others are in preclinical development. Treatments that target signaling pathways related to neurotrophic factors, such as nerve growth factors and ion channels, such as the transient receptor potential (TRP) family or tropomyosin receptor kinase A, may provide a potential combinatory therapeutic approach. This review describes the roles of nociceptors in corneal pain. In addition, it evaluates molecules within nociceptor signaling pathways for their potential to serve as targets for efficient therapeutic strategies for corneal nociceptive pain aimed at modulating neurotrophic factors and nociceptive channel sensitivity. Full article
(This article belongs to the Special Issue Innovations in Neuropharmacology for Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop