Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers
Abstract
1. Introduction
2. Concepts Behind Stimuli-Responsive Drug Delivery in Neurodegenerative Diseases
2.1. Drug Delivery Systems, Triggered by Endogenous Stimuli
2.1.1. pH-Responsive Approaches
2.1.2. Oxidation-Responsive Approaches
2.1.3. Enzyme-Responsive Approaches
2.1.4. Thermo-Responsive Approaches
2.2. Drug Delivery Systems Triggered by Exogenous Stimuli
2.2.1. Light-Responsive Approaches
2.2.2. Ultrasound-Responsive Approaches
2.2.3. Magnetic-Responsive Approaches
3. Stimuli-Responsive Nanotherapeutics for the Treatment of Neurodegenerative Disorders
3.1. Stimuli-Triggered Nanotherapeutics for Alzheimer’s Disease
Stimuli | Responsive Part | Main Components/Materials | Test Models | Stage | Ref. |
---|---|---|---|---|---|
pH | Carboxylic group | Pullulan acetate | Ex vivo | Preclinical | [107] |
pH | DPPC, DOTAP, Cholesterol | DPPC, DOTAP, Cholesterol | In vivo | Preclinical | [119] |
ROS | Boronic ester | MeO-PEG-NH2, alkynyl phenylboronic ester | In vitro/in vivo | Preclinical | [108] |
ROS and NIR | Boronic ester, Au nanocages | Au nanocages, 4-carbonylphenylboronic acid, | In vitro | Preclinical | [134] |
US | Octafluoropropane | PEG, COOOH—modified polystyrene, PLGA, octafluoropropane, human serum albumin | In vitro | Preclinical | [28] |
US | Perfluoropropane | DOPC, Cholesterol, DMG-PEG2000, perfluoropropane | In vitro | Preclinical | [132] |
US/Enzyme | Octafluoropropane, RR11-a, AAN, RGD | DPPC, (biotinylated DSPE-PEG (2000), RR11-a, octafluoropropane, Biotin-AAN and Biotin-RGD | In vivo | Preclinical | [131] |
Temperature | Poloxamer | Poloxamer 407, Chitosan, CTAB | In vivo | Preclinical | [127] |
Magnetite | Fe3O4 | FeCl3, FeO4S, Chitosan, Cholesterol | In vivo | Preclinical | [135] |
pH and Temperature | Poloxamer, Gellan gum | Poloxamer 407, Gellan gum, Sodium alginate | In vivo | Preclinical | [128] |
NIR, VIS/UV light | Fullerene (C60), NaGdF4:Yb/Er/Tm | Fullerene (C60), NaGdF4:Yb/Er/Tm nanoparticles, KLVF peptide | In vitro | Preclinical | [139] |
3.2. Stimuli-Triggered Nanotherapeutics for Parkinson’s Disease
Stimuli | Responsive Part | Main Components/Materials | Test Models | Stage | Ref. |
---|---|---|---|---|---|
pH | Amino group | acetal-PEG-SH, chloromethylstyrene | In vitro | Preclinical | [147] |
ROS | Ce3+/Ce4+ ratio | Cerium nitrate | In vitro/In silico | Preclinical | [146] |
ROS | Polydopamine, RVG29 | Dopamine hydrochloride, RVG29 peptide, Fmoc-NH-PEG-Mal | In vitro/In vivo | Preclinical | [142] |
ROS | Dopamine-thioketal-Dopamine | Dopamine, Thioketal | In vitro | Preclinical | [143] |
Temperature | PNIPAAm | PNIPAAm, PVP-K30 | In vitro/in vivo | Preclinical | [148] |
pH, Temperature, and Magnetism | PAA, PNIPAM, Fe3O4 | PNIPAAm, PAA k-carrageenan, FeCl3/FeCl4 | In vitro | Preclinical | [153] |
ROS and Magnetism | Fe3O4 | FeCl3/FeCl4, soy lecithin, OmpA protein, NH2-PEG12-COOH | In vitro | Preclinical | [150] |
NIR, Magnetism, and Thermosensitive | Au nanoparticles, Fe3O4, AA, NIPAAM | Au nanoparticles, FeCl3/FeCl4, AA, NIPAAM | In vitro | Preclinical | [151] |
NIR | MgO, Polydopamine | MgO, Polydopamine, PEG, Lactoferin | In vivo | Preclinical | [152] |
NIR | Polydopamin | Polydopamine, mPEG-DSPE | In vitro | Preclinical | [144] |
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AEP | Asparagine endopeptidase |
ApoE | Apolipoprotein E |
ATX | Astaxanthin |
BBB | Blood-brain barrier |
Biotinylated DSPE-PEG2000 | 1,2-distearoyl-sn-glyc-ero-3-phosphoethanolamine-N-[biotinylated(polyethylene glycol)-2000] |
CDs | Carbon dots |
CNS | Central nervous system |
CTAB | Cetyltrimethylammonium bromide |
DMG-PEG2000 | 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 |
DOPC | 1,2-dioleoyl-sn-glycero-3-phosphocholine |
DOTAP | 1,2-dioleoyl-3-trimethylammonium-propane |
DPPC | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine |
FUS | Focused ultrasound |
GDNF | Glial cell-derived neurotrophic factor |
GSH | Glutathione |
LCST | Lower critical solution temperature |
L-DOPA | Levodopa |
MLPs | Magnetoliposomes |
MMP | Metalloproteinases |
MRgFUS | Magnetic resonance-guided focused ultrasound |
NBs | Nanobubbles |
NDs | Neurodegenerative disorders |
NIPAAM | poly-N-isopropylacrylamide |
NIR | Near-infrared |
NPs | Nanoparticles |
Nrf2 | Nuclear factor (erythroid-derived 2)-like 2 |
PA | Phosphatidic acid |
PAA | Poly (acrylic acid) |
PC | Phosphatidycholine |
PD | Parkinson’s disease |
PEG | Polyetylenglycol |
PLA | Polylactic acid |
PNIPAAm | Poly(N-isopropylacrylamide) |
POEGMA | Poly(oligo(ethylene glycol) methyl ether methacrylate |
PVP-K30 | Polyvinylpyrrolidone K30 |
ROS | Reactive oxygen species |
SPION | Superparamagnetic iron oxide nanoparticles |
TfR | Transferrin receptor |
References
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The Global Burden of Neurological Disorders: Translating Evidence into Policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, V.; González-Acedo, A.; Melguizo-Rodríguez, L.; Pardo-Moreno, T.; Costela-Ruiz, V.J.; Montiel-Troya, M.; Ramos-Rodríguez, J.J. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines 2021, 9, 1910. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Rabbito, A.; Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, B. Biochemical Markers in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1989. [Google Scholar] [CrossRef]
- Muleiro Alvarez, M.; Cano-Herrera, G.; Osorio Martínez, M.F.; Vega Gonzales-Portillo, J.; Monroy, G.R.; Murguiondo Pérez, R.; Torres-Ríos, J.A.; Van Tienhoven, X.A.; Garibaldi Bernot, E.M.; Esparza Salazar, F.; et al. A Comprehensive Approach to Parkinson’s Disease: Addressing its Molecular, Clinical, and Therapeutic Aspects. Int. J. Mol. Sci. 2024, 25, 7183. [Google Scholar] [CrossRef]
- Cacabelos, R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017, 18, 551. [Google Scholar] [CrossRef]
- Noor, H.; Baqai, M.H.; Naveed, H.; Naveed, T.; Rehman, S.S.; Aslam, M.S.; Lakdawala, F.M.; Memon, W.A.; Rani, S.; Khan, H.; et al. Creutzfeldt-Jakob Disease: A Comprehensive Review of Current Understanding and Research. J. Neurol. Sci. 2024, 467, 123293. [Google Scholar] [CrossRef]
- Jurcau, M.C.; Jurcau, A.; Diaconu, R.G.; Hogea, V.O.; Nunkoo, V.S. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol. Int. 2024, 16, 1039–1065. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Buccellato, F.R.; D’Anca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of Oxidative Damage in Alzheimer’s Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants 2021, 10, 1353. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen Species and Prevention by Antioxidants. Brain Commun. 2023, 6, fcad356. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Sun, Z.; Gou, F.; Wang, J.; Fan, Q.; Zhao, D.; Yang, L. Oxidative Stress and Mitochondrial Impairment: Key Drivers in Neurodegenerative Disorders. Ageing Res. Rev. 2025, 104, 102667. [Google Scholar] [CrossRef] [PubMed]
- Twarowski, B.; Herbet, M. Inflammatory Processes in Alzheimer’s Disease—Pathomechanism, Diagnosis and Treatment: A Review. Int. J. Mol. Sci. 2023, 24, 6518. [Google Scholar] [CrossRef]
- Pajares, M.; Rojo, A.I.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells 2020, 9, 1687. [Google Scholar] [CrossRef]
- Lana, J.V.; Rios, A.; Takeyama, R.; Santos, N.; Pires, L.; Santos, G.S.; Rodrigues, I.J.; Jeyaraman, M.; Purita, J.; Lana, J.F. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024, 16, 2476. [Google Scholar] [CrossRef]
- Brett, B.L.; Gardner, R.C.; Godbout, J.; Dams-O’Connor, K.; Keene, C.D. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol. Psychiatry 2022, 91, 498–507. [Google Scholar] [CrossRef]
- Lillian, A.; Zuo, W.; Laham, L.; Hilfiker, S.; Ye, J.-H. Pathophysiology and Neuroimmune Interactions Underlying Parkinson’s Disease and Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 7186. [Google Scholar] [CrossRef]
- Hinge, N.S.; Kathuria, H.; Pandey, M.M. Engineering of Structural and Functional Properties of Nanotherapeutics and Nanodiagnostics for Intranasal Brain Targeting in Alzheimer’s. Appl. Mater. Today 2022, 26, 101303. [Google Scholar] [CrossRef]
- Akhtar, A.; Andleeb, A.; Waris, T.S.; Bazzar, M.; Moradi, A.-R.; Awan, N.R.; Yar, M. Neurodegenerative Diseases and Effective Drug Delivery: A Review of Challenges and Novel Therapeutics. J. Control. Release 2021, 330, 1152–1167. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Madamsetty, V.S.; Bhattacharya, D.; Roy Chowdhury, S.; Paul, M.K.; Mukherjee, A. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Adv. Funct. Mater. 2020, 30, 2003054. [Google Scholar] [CrossRef]
- Dhariwal, R.; Jain, M.; Mir, Y.R.; Singh, A.; Jain, B.; Kumar, P.; Tariq, M.; Verma, D.; Deshmukh, K.; Yadav, V.K.; et al. Targeted Drug Delivery in Neurodegenerative Diseases: The Role of Nanotechnology. Front. Med. 2025, 12, 1522223. [Google Scholar] [CrossRef]
- Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Wohlfart, S.; Gelperina, S.; Kreuter, J. Transport of Drugs across the Blood-Brain Barrier by Nanoparticles. J. Control. Release 2012, 161, 264–273. [Google Scholar] [CrossRef]
- Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle Transport Across the Blood Brain Barrier. Tissue Barriers 2016, 4, e1153568. [Google Scholar] [CrossRef]
- Jiménez, A.; Estudillo, E.; Guzmán-Ruiz, M.A.; Herrera-Mundo, N.; Victoria-Acosta, G.; Cortés-Malagón, E.M.; López-Ornelas, A. Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025, 17, 281. [Google Scholar] [CrossRef]
- Nance, E.; Timbie, K.; Miller, G.W.; Song, J.; Louttit, C.; Klibanov, A.L.; Shih, T.-Y.; Swaminathan, G.; Tamargo, R.J.; Woodworth, G.F.; et al. Non-Invasive Delivery of Stealth, Brain-Penetrating Nanoparticles Across the Blood-Brain Barrier Using MRI-Guided Focused Ultrasound. J. Control. Release 2014, 189, 123–132. [Google Scholar] [CrossRef]
- Du, Q.; Liu, Y.; Fan, M.; Wei, S.; Ismail, M.; Zheng, M. PEG Length Effect of Peptide-Functional Liposome for Blood Brain Barrier (BBB) Penetration and Brain Targeting. J. Control. Release 2024, 372, 85–94. [Google Scholar] [CrossRef]
- Hu, K.; Li, J.; Shen, Y.; Lu, W.; Gao, X.; Zhang, Q.; Jiang, X. Lactoferrin-Conjugated PEG–PLA Nanoparticles with Improved Brain Delivery: In Vitro and In Vivo Evaluations. J. Control. Release 2009, 134, 55–61. [Google Scholar] [CrossRef]
- Niazi, S.K. Non-Invasive Drug Delivery Across the Blood-Brain Barrier: A Prospective Analysis. Pharmaceutics 2023, 15, 2599. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, R.; Zhao, Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Multifunctional, Stimuli-Sensitive Nanoparticulate Systems for Drug Delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827. [Google Scholar] [CrossRef]
- Gvozdeva, Y.; Staynova, R. pH-Dependent Drug Delivery Systems for Ulcerative Colitis Treatment. Pharmaceutics 2025, 17, 226. [Google Scholar] [CrossRef]
- Ghaffar, A.; Yameen, B.; Latif, M.; Malik, M.I. pH-Sensitive Drug Delivery Systems. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–278. ISBN 978-0-12-816960-5. [Google Scholar]
- Kim, H.; Krishnamurthy, L.C.; Sun, P.Z. Brain pH Imaging and its Applications. Neuroscience 2021, 474, 51–62. [Google Scholar] [CrossRef]
- Zhang, X.; Alshakhshir, N.; Zhao, L. Glycolytic Metabolism, Brain Resilience, and Alzheimer’s Disease. Front. Neurosci. 2021, 15, 662242. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shao, X.; Yu, L.; Sun, J.; Yin, X.-S.; Chen, Z.; Xu, Y.; Wang, N.; Zhang, D.; Qiu, W.; et al. Changes in the pH Value of the Human Brain in Alzheimer’s Disease Pathology Correlated with CD68-Positive Microglia: A Community-Based Autopsy Study in Beijing, China. Mol. Brain 2025, 18, 10. [Google Scholar] [CrossRef]
- Decker, Y.; Németh, E.; Schomburg, R.; Chemla, A.; Fülöp, L.; Menger, M.D.; Liu, Y.; Fassbender, K. Decreased pH in the Aging Brain and Alzheimer’s Disease. Neurobiol. Aging 2021, 101, 40–49. [Google Scholar] [CrossRef]
- Lo, C.H.; Zeng, J. Defective Lysosomal Acidification: A New Prognostic Marker and Therapeutic Target for Neurodegenerative Diseases. Transl. Neurodegener. 2023, 12, 29. [Google Scholar] [CrossRef]
- Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and Application of pH-Responsive Drug Delivery Systems. J. Control. Release 2022, 348, 206–238. [Google Scholar] [CrossRef]
- Mu, Y.; Gong, L.; Peng, T.; Yao, J.; Lin, Z. Advances in pH-Responsive Drug Delivery Systems. OpenNano 2021, 5, 100031. [Google Scholar] [CrossRef]
- Liu, L.; Yao, W.; Rao, Y.; Lu, X.; Gao, J. pH-Responsive Carriers for Oral Drug Delivery: Challenges and Opportunities of Current Platforms. Drug Deliv. 2017, 24, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-Responsive Nanoparticles for Drug Delivery. Mol. Pharm. 2010, 7, 1913–1920. [Google Scholar] [CrossRef]
- Nuhn, L.; Van Herck, S.; Best, A.; Deswarte, K.; Kokkinopoulou, M.; Lieberwirth, I.; Koynov, K.; Lambrecht, B.N.; De Geest, B.G. FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angew. Chem. Int. Ed. 2018, 57, 10760–10764. [Google Scholar] [CrossRef]
- Hu, X.; Jazani, A.M.; Oh, J.K. Recent Advances in Development of Imine-Based Acid-Degradable Polymeric Nanoassemblies for Intracellular Drug Delivery. Polymer 2021, 230, 124024. [Google Scholar] [CrossRef]
- Cai, X.; Liu, M.; Zhang, C.; Sun, D.; Zhai, G. pH-Responsive Copolymers Based on Pluronic P123-Poly(β-Amino Ester): Synthesis, Characterization and Application of Copolymer Micelles. Colloids Surf. B Biointerfaces 2016, 142, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, T.; Wang, C.; Lin, Z.; Huang, G.; Sumer, B.D.; Gao, J. Molecular Basis of Cooperativity in pH-Triggered Supramolecular Self-Assembly. Nat. Commun. 2016, 7, 13214. [Google Scholar] [CrossRef]
- Rijcken, C.J.F.; Soga, O.; Hennink, W.E.; Nostrum, C.F.V. Triggered Destabilisation of Polymeric Micelles and Vesicles by Changing Polymers Polarity: An Attractive Tool for Drug Delivery. J. Control. Release 2007, 120, 131–148. [Google Scholar] [CrossRef]
- Griset, A.P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y.L.; Grinstaff, M.W. Expansile Nanoparticles: Synthesis, Characterization, and In Vivo Efficacy of an Acid-Responsive Polymeric Drug Delivery System. J. Am. Chem. Soc. 2009, 131, 2469–2471. [Google Scholar] [CrossRef]
- Poljsak, B.; Milisav, I. The Neglected Significance of “Antioxidative Stress”. Oxidative Med. Cell. Longev. 2012, 2012, 480895. [Google Scholar] [CrossRef]
- Ballance, W.C.; Qin, E.C.; Chung, H.J.; Gillette, M.U.; Kong, H. Reactive Oxygen Species-Responsive Drug Delivery Systems for the Treatment of Neurodegenerative Diseases. Biomaterials 2019, 217, 119292. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J. Am. Chem. Soc. 2018, 140, 4164–4171. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Martin, D.C. Sustained Release of Dexamethasone from Hydrophilic Matrices Using PLGA Nanoparticles for Neural Drug Delivery. Biomaterials 2006, 27, 3031–3037. [Google Scholar] [CrossRef]
- Shen, Y.; Cao, B.; Snyder, N.R.; Woeppel, K.M.; Eles, J.R.; Cui, X.T. ROS Responsive Resveratrol Delivery from LDLR Peptide Conjugated PLA-Coated Mesoporous Silica Nanoparticles Across the Blood-Brain Barrier. J. Nanobiotechnology 2018, 16, 13. [Google Scholar] [CrossRef]
- Cavet, M.E.; Harrington, K.L.; Vollmer, T.R.; Ward, K.W.; Zhang, J.-Z. Anti-Inflammatory and Anti-Oxidative Effects of the Green Tea Polyphenol Epigallocatechin Gallate in Human Corneal Epithelial Cells. Mol. Vis. 2011, 17, 533–542. [Google Scholar]
- Seo, Y.; Leong, J.; Teo, J.Y.; Mitchell, J.W.; Gillette, M.U.; Han, B.; Lee, J.; Kong, H. Active Antioxidizing Particles for On-Demand Pressure-Driven Molecular Release. ACS Appl. Mater. Interfaces 2017, 9, 35642–35650. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.Y.; Seo, Y.; Ko, E.; Leong, J.; Hong, Y.-T.; Yang, Y.Y.; Kong, H. Surface Tethering of Stem Cells with H2O2-Responsive Anti-Oxidizing Colloidal Particles for Protection Against Oxidation-Induced Death. Biomaterials 2019, 201, 1–15. [Google Scholar] [CrossRef]
- Mu, J.; Lin, J.; Huang, P.; Chen, X. Development of Endogenous Enzyme-Responsive Nanomaterials for Theranostics. Chem. Soc. Rev. 2018, 47, 5554–5573. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Xi, S.; Zhang, Y.; Sun, T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int. J. Nanomed. 2025, 20, 1443–1490. [Google Scholar] [CrossRef]
- Gvozdeva, Y. Nanotechnology-Based Delivery Systems for Enhanced Targeting of Tyrosine Kinase Inhibitors: Exploring Inorganic and Organic Nanoparticles as Targeted Carriers. Kinases Phosphatases 2025, 3, 9. [Google Scholar] [CrossRef]
- De La Rica, R.; Aili, D.; Stevens, M.M. Enzyme-Responsive Nanoparticles for Drug Release and Diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery. Nanoscale 2014, 6, 12273–12286. [Google Scholar] [CrossRef] [PubMed]
- Ammassam Veettil, R.; Sebastian, S.; McCallister, T.; Ghosh, S.; Hynds, D.L. Uptake of Surface-Functionalized Thermo-Responsive Polymeric Nanocarriers in Corticospinal Tract Motor Neurons. Biochem. Biophys. Res. Commun. 2024, 696, 149503. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Babu, A.; Chakraborty, S.; Van Guyse, J.F.R.; Hoogenboom, R.; Maji, S. Poly(N-isopropylacrylamide) and its Copolymers: A Review on Recent Advances in the Areas of Sensing and Biosensing. Adv. Funct. Mater. 2024, 34, 2402432. [Google Scholar] [CrossRef]
- Arjun, P.; Freeman, J.L.; Kannan, R.R. Neurospecific Fabrication and Toxicity Assessment of a PNIPAM Nanogel Encapsulated with Trans-Tephrostachin for Blood-Brain-Barrier Permeability in Zebrafish Model. Heliyon 2022, 8, e10237. [Google Scholar] [CrossRef]
- Thirupathi, K.; Phan, T.T.V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S.-C. pH and Thermoresponsive PNIPAm-Co-Polyacrylamide Hydrogel for Dual Stimuli-Responsive Controlled Drug Delivery. Polymers 2022, 15, 167. [Google Scholar] [CrossRef]
- Tam, R.Y.; Fuehrmann, T.; Mitrousis, N.; Shoichet, M.S. Regenerative Therapies for Central Nervous System Diseases: A Biomaterials Approach. Neuropsychopharmacology 2014, 39, 169–188. [Google Scholar] [CrossRef]
- Liu, J.; Debuigne, A.; Detrembleur, C.; Jérôme, C. Poly(N-vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field. Adv. Heal. Mater. 2014, 3, 1941–1968. [Google Scholar] [CrossRef]
- Rainbolt, E.A.; Washington, K.E.; Biewer, M.C.; Stefan, M.C. Towards Smart Polymeric Drug Carriers: Self-Assembling γ-Substituted Polycaprolactones with Highly Tunable Thermoresponsive Behavior. J. Mater. Chem. B 2013, 1, 6532. [Google Scholar] [CrossRef]
- Liu, M.; Du, H.; Zhang, W.; Zhai, G. Internal Stimuli-Responsive Nanocarriers for Drug Delivery: Design Strategies and Applications. Mater. Sci. Eng. C 2017, 71, 1267–1280. [Google Scholar] [CrossRef]
- Henry, R.; Deckert, M.; Guruviah, V.; Schmidt, B. Review of Neuromodulation Techniques and Technological Limitations. IETE Tech. Rev. 2016, 33, 368–377. [Google Scholar] [CrossRef]
- Blackmore, J.; Shrivastava, S.; Sallet, J.; Butler, C.R.; Cleveland, R.O. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med. Biol. 2019, 45, 1509–1536. [Google Scholar] [CrossRef]
- Falconieri, A.; De Vincentiis, S.; Raffa, V. Recent Advances in the Use of Magnetic Nanoparticles to Promote Neuroregeneration. Nanomed. 2019, 14, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Borisova, T.; Krisanova, N.; Borуsov, A.; Sivko, R.; Ostapchenko, L.; Babic, M.; Horak, D. Manipulation of Isolated Brain Nerve Terminals by an External Magnetic Field Using D-Mannose-Coated γ-Fe2O3 Nano-Sized Particles and Assessment of Their Effects on Glutamate Transport. Beilstein J. Nanotechnol. 2014, 5, 778–788. [Google Scholar] [CrossRef]
- Liu, T.; Bao, B.; Li, Y.; Lin, Q.; Zhu, L. Photo-Responsive Polymers Based on ο-Nitrobenzyl Derivatives: From Structural Design to Applications. Prog. Polym. Sci. 2023, 146, 101741. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Yang, Y.-P.; Nicol, C.J.B.; Wang, C.-J. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int. J. Mol. Sci. 2024, 25, 2360. [Google Scholar] [CrossRef]
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; et al. Near-Infrared Deep Brain Stimulation via Upconversion Nanoparticle–Mediated Optogenetics. Science 2018, 359, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Banghart, M.R.; Sabatini, B.L. Photoactivatable Neuropeptides for Spatiotemporally Precise Delivery of Opioids in Neural Tissue. Neuron 2012, 73, 249–259. [Google Scholar] [CrossRef]
- McClain, S.P.; Ma, X.; Johnson, D.A.; Johnson, C.A.; Layden, A.E.; Yung, J.C.; Lubejko, S.T.; Livrizzi, G.; He, X.J.; Zhou, J.; et al. In Vivo Photopharmacology with Light-Activated Opioid Drugs. Neuron 2023, 111, 3926–3940.e10. [Google Scholar] [CrossRef]
- Layden, A.E.; Ma, X.; Johnson, C.A.; He, X.J.; Buczynski, S.A.; Banghart, M.R. A Biomimetic C-Terminal Extension Strategy for Photocaging Amidated Neuropeptides. J. Am. Chem. Soc. 2023, 145, 19611–19621. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wu, Q.; Lou, B.; Liu, Z. DNA Nanostructures for Stimuli-Responsive Drug Delivery. Smart Mater. Med. 2022, 3, 66–84. [Google Scholar] [CrossRef]
- Kohman, R.E.; Cha, S.S.; Man, H.-Y.; Han, X. Light-Triggered Release of Bioactive Molecules from DNA Nanostructures. Nano Lett. 2016, 16, 2781–2785. [Google Scholar] [CrossRef] [PubMed]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, T.K.; Morstein, J.; Trauner, D. Photopharmacological Control of Cell Signaling with Photoswitchable Lipids. Curr. Opin. Pharmacol. 2022, 63, 102202. [Google Scholar] [CrossRef]
- DiFrancesco, M.L.; Lodola, F.; Colombo, E.; Maragliano, L.; Bramini, M.; Paternò, G.M.; Baldelli, P.; Serra, M.D.; Lunelli, L.; Marchioretto, M.; et al. Neuronal Firing Modulation by a Membrane-Targeted Photoswitch. Nat. Nanotechnol. 2020, 15, 296–306. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Gao, D.; Ren, S.; Li, L.; Li, N.; An, H.; Zhu, T.; Yang, Y.; Zhang, H.; et al. Photothermal Modulation of Depression-Related Ion Channel Function Through Conjugated Polymer Nanoparticles. Adv. Funct. Mater. 2021, 31, 2010757. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, W.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B.P.; Kohane, D.S. Ultrasensitive Phototriggered Local Anesthesia. Nano Lett. 2017, 17, 660–665. [Google Scholar] [CrossRef]
- Dasgupta, A.; Liu, M.; Ojha, T.; Storm, G.; Kiessling, F.; Lammers, T. Ultrasound-Mediated Drug Delivery to the Brain: Principles, Progress and Prospects. Drug Discov. Today Technol. 2016, 20, 41–48. [Google Scholar] [CrossRef]
- Ibsen, S.; Tong, A.; Schutt, C.; Esener, S.; Chalasani, S.H. Sonogenetics is a Non-Invasive Approach to Activating Neurons in Caenorhabditis Elegans. Nat. Commun. 2015, 6, 8264. [Google Scholar] [CrossRef]
- Airan, R.D.; Meyer, R.A.; Ellens, N.P.K.; Rhodes, K.R.; Farahani, K.; Pomper, M.G.; Kadam, S.D.; Green, J.J. Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions. Nano Lett. 2017, 17, 652–659. [Google Scholar] [CrossRef]
- Lea-Banks, H.; Meng, Y.; Wu, S.-K.; Belhadjhamida, R.; Hamani, C.; Hynynen, K. Ultrasound-Sensitive Nanodroplets Achieve Targeted Neuromodulation. J. Control. Release 2021, 332, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Ozdas, M.S.; Shah, A.S.; Johnson, P.M.; Patel, N.; Marks, M.; Yasar, T.B.; Stalder, U.; Bigler, L.; Von Der Behrens, W.; Sirsi, S.R.; et al. Non-Invasive Molecularly-Specific Millimeter-Resolution Manipulation of Brain Circuits by Ultrasound-Mediated Aggregation and Uncaging of Drug Carriers. Nat. Commun. 2020, 11, 4929. [Google Scholar] [CrossRef]
- D’Agata, F.; Ruffinatti, F.; Boschi, S.; Stura, I.; Rainero, I.; Abollino, O.; Cavalli, R.; Guiot, C. Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues. Molecules 2017, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.M.K.; Ficiarà, E.; Ruffinatti, F.A.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials 2019, 12, 465. [Google Scholar] [CrossRef]
- Guntnur, R.T.; Muzzio, N.; Gomez, A.; Macias, S.; Galindo, A.; Ponce, A.; Romero, G. On-Demand Chemomagnetic Modulation of Striatal Neurons Facilitated by Hybrid Magnetic Nanoparticles. Adv. Funct. Mater. 2022, 32, 2204732. [Google Scholar] [CrossRef]
- Nikitin, A.A.; Ivanova, A.V.; Semkina, A.S.; Lazareva, P.A.; Abakumov, M.A. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 11134. [Google Scholar] [CrossRef]
- Dey, A.; Ghosh, S.; Rajendran, R.L.; Bhuniya, T.; Das, P.; Bhattacharjee, B.; Das, S.; Mahajan, A.A.; Samant, A.; Krishnan, A.; et al. Alzheimer’s Disease Pathology and Assistive Nanotheranostic Approaches for its Therapeutic Interventions. Int. J. Mol. Sci. 2024, 25, 9690. [Google Scholar] [CrossRef] [PubMed]
- Daraban, B.S.; Popa, A.S.; Stan, M.S. Latest Perspectives on Alzheimer’s Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024, 29, 4056. [Google Scholar] [CrossRef]
- Elmahboub, Y.S.M.; Elkordy, A.A. Polymeric Nanoparticles: A Promising Strategy for Treatment of Alzheimer’s Disease. J. Taibah Univ. Med. Sci. 2024, 19, 549–565. [Google Scholar] [CrossRef]
- La Barbera, L.; Mauri, E.; D’Amelio, M.; Gori, M. Functionalization Strategies of Polymeric Nanoparticles for Drug Delivery in Alzheimer’s Disease: Current Trends and Future Perspectives. Front. Neurosci. 2022, 16, 939855. [Google Scholar] [CrossRef]
- Constantinou, C.; Meliou, K.; Skouras, A.; Siafaka, P.; Christodoulou, P. Liposomes Against Alzheimer’s Disease: Current Research and Future Prospects. Biomedicines 2024, 12, 1519. [Google Scholar] [CrossRef]
- Pei, J.; Palanisamy, C.P.; Natarajan, P.M.; Umapathy, V.R.; Roy, J.R.; Srinivasan, G.P.; Panagal, M.; Jayaraman, S. Curcumin-Loaded Polymeric Nanomaterials as a Novel Therapeutic Strategy for Alzheimer’s Disease: A Comprehensive Review. Ageing Res. Rev. 2024, 99, 102393. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Lopes, I.; Magalhães, L.; Sárria, M.P.; Machado, R.; Sousa, J.C.; Botelho, C.; Teixeira, J.; Gomes, A.C. Novel Concept of Exosome-Like Liposomes for the Treatment of Alzheimer’s Disease. J. Control. Release 2021, 336, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, M.; Malhotra, A.K.; Anantha, M.; Lo, C.; Dragowska, W.H.; Dos Santos, N.; Bally, M.B. Development of a Copper-Clioquinol Formulation Suitable for Intravenous Use. Drug Deliv. Transl. Res. 2018, 8, 239–251. [Google Scholar] [CrossRef]
- Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer’s Disease. Pharm. Res. 2015, 32, 3837–3849. [Google Scholar] [CrossRef] [PubMed]
- Revdekar, A.; Shende, P. Intranasal Administration of Silibinin-Loaded Pullulan Acetate Nanocarriers: A pH-Responsive Approach for Brain Targeting in Alzheimer’s Disease. J. Drug Deliv. Sci. Technol. 2024, 93, 105448. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Chen, Q.; Li, C.; Chu, Y.; Guo, Q.; Zhang, Y.; Zhou, W.; Chen, H.; Zhou, Z.; et al. Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer’s Disease by Inflammatory Microenvironment Modulation. Adv. Mater. 2021, 33, 2100746. [Google Scholar] [CrossRef]
- Nag, O.K.; Oh, E.; Delehanty, J.B. Fusogenic Liposomes for the Intracellular Delivery of Phosphocreatine. Pharmaceuticals 2024, 17, 1351. [Google Scholar] [CrossRef]
- Gu, Z.; Zhao, H.; Song, Y.; Kou, Y.; Yang, W.; Li, Y.; Li, X.; Ding, L.; Sun, Z.; Lin, J.; et al. PEGylated-Liposomal Astaxanthin Ameliorates Aβ Neurotoxicity and Alzheimer-Related Phenotypes by Scavenging Formaldehyde. J. Control. Release 2024, 366, 783–797. [Google Scholar] [CrossRef]
- Juhairiyah, F.; De Lange, E.C.M. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights are Essential. AAPS J. 2021, 23, 114. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Transferrin-Functionalized Liposomes Loaded with Vitamin VB12 for Alzheimer’s Disease Therapy. Int. J. Pharm. 2022, 626, 122167. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.; Pereira, M.C.; Loureiro, J.A. Caffeic Acid Loaded into Engineered Lipid Nanoparticles for Alzheimer’s Disease Therapy. Colloids Surf. B Biointerfaces 2023, 225, 113270. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.; Loureiro, J.A.; Pereira, M.C. Transferrin-Functionalized Liposomes for the Delivery of Gallic Acid: A Therapeutic Approach for Alzheimer’s Disease. Pharmaceutics 2022, 14, 2163. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Li, X.; Ni, Y.; Xiao, H.; Yao, Y.; Wang, Y.; Ju, R.; Li, H.; Liu, J.; Fu, M.; et al. Transferrin-Modified Osthole PEGylated Liposomes Travel the Blood-Brain Barrier and Mitigate Alzheimer’s Disease-Related Pathology in APP/PS-1 Mice. Int. J. Nanomed. 2020, 15, 2841–2858. [Google Scholar] [CrossRef]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef]
- Kato, N.; Yamada, S.; Suzuki, R.; Iida, Y.; Matsumoto, M.; Fumoto, S.; Arima, H.; Mukai, H.; Kawakami, S. Development of an Apolipoprotein E Mimetic Peptide-Lipid Conjugate for Efficient Brain Delivery of Liposomes. Drug Deliv. 2023, 30, 2173333. [Google Scholar] [CrossRef]
- Arora, S.; Layek, B.; Singh, J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer’s Disease. Mol. Pharm. 2021, 18, 714–725. [Google Scholar] [CrossRef]
- Attia, R.T.; Fahmy, S.A.; Abdel-Latif, R.T.; Ateyya, H.; Fayed, T.W.; El-Abhar, H.S. Cationic Lipid Based Nanoparticles-Formulated Artesunate as a Neurotherapeutic Agent in Alzheimer’s Disease: Targeting Inflammasome Activation and Pyroptosis Pathway. J. Drug Deliv. Sci. Technol. 2025, 107, 106803. [Google Scholar] [CrossRef]
- Song, Q.; Song, H.; Xu, J.; Huang, J.; Hu, M.; Gu, X.; Chen, J.; Zheng, G.; Chen, H.; Gao, X. Biomimetic ApoE-Reconstituted High Density Lipoprotein Nanocarrier for Blood-Brain Barrier Penetration and Amyloid Beta-Targeting Drug Delivery. Mol. Pharm. 2016, 13, 3976–3987. [Google Scholar] [CrossRef]
- Forcaia, G.; Formicola, B.; Terribile, G.; Negri, S.; Lim, D.; Biella, G.; Re, F.; Moccia, F.; Sancini, G. Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer’s Disease. Mol. Neurobiol. 2021, 58, 2824–2835. [Google Scholar] [CrossRef]
- Khairnar, P.; Singh, A.; Ahirwar, K.; Shukla, R. ApoE3 Anchored Liposomal Delivery of Rivastigmine for Brain Delivery: Formulation, Characterization, and In Vivo Pharmacokinetic Evaluation. AAPS PharmSciTech 2023, 24, 223. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Ng, I.-W.; Rajesh, R. Glutathione- and Apolipoprotein E-Grafted Liposomes to Regulate Mitogen-Activated Protein Kinases and Rescue Neurons in Alzheimer’s Disease. Mater. Sci. Eng. C 2021, 127, 112233. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Chaudhari, S.; Gupta, T.; Kalyane, D.; Sirsat, B.; Kathar, U.; Sengupta, P.; Tekade, R.K. Stimuli-Responsive Nanotherapeutics for Treatment and Diagnosis of Stroke. Pharmaceutics 2023, 15, 1036. [Google Scholar] [CrossRef] [PubMed]
- Conti, E.; Gregori, M.; Radice, I.; Da Re, F.; Grana, D.; Re, F.; Salvati, E.; Masserini, M.; Ferrarese, C.; Zoia, C.P.; et al. Multifunctional Liposomes Interact with Abeta in Human Biological Fluids: Therapeutic Implications for Alzheimer’s Disease. Neurochem. Int. 2017, 108, 60–65. [Google Scholar] [CrossRef]
- Sokolik, V.V.; Berchenko, O.G. The Cumulative Effect of the Combined Action of miR-101 and Curcumin in a Liposome on a Model of Alzheimer’s Disease in Mononuclear Cells. Front. Cell. Neurosci. 2023, 17, 1169980. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.D.C.; Sábio, R.M.; Luiz, M.T.; De Souza, L.C.; Fonseca-Santos, B.; Cides Da Silva, L.C.; Fantini, M.C.D.A.; Planeta, C.D.S.; Chorilli, M. Curcumin-Loaded Mesoporous Silica Nanoparticles Dispersed in Thermo-Responsive Hydrogel as Potential Alzheimer Disease Therapy. Pharmaceutics 2022, 14, 1976. [Google Scholar] [CrossRef]
- Chen, W.; Li, R.; Zhu, S.; Ma, J.; Pang, L.; Ma, B.; Du, L.; Jin, Y. Nasal Timosaponin BII Dually Sensitive in Situ Hydrogels for the Prevention of Alzheimer’s Disease Induced by Lipopolysaccharides. Int. J. Pharm. 2020, 578, 119115. [Google Scholar] [CrossRef]
- Dutta Gupta, Y.; Mackeyev, Y.; Krishnan, S.; Bhandary, S. Mesoporous Silica Nanotechnology: Promising Advances in Augmenting Cancer Theranostics. Cancer Nanotechnol. 2024, 15, 9. [Google Scholar] [CrossRef]
- Karthika, V.; Sridharan, B.; Nam, J.W.; Kim, D.; Gyun Lim, H. Neuromodulation by Nanozymes and Ultrasound during Alzheimer’s Disease Management. J. Nanobiotechnol. 2024, 22, 139. [Google Scholar] [CrossRef]
- Mi, X.; Du, H.; Guo, X.; Wu, Y.; Shen, L.; Luo, Y.; Wang, D.; Su, Q.; Xiang, R.; Yue, S.; et al. Asparagine Endopeptidase-Targeted Ultrasound-Responsive Nanobubbles Alleviate Tau Cleavage and Amyloid-β Deposition in an Alzheimer’s Disease Model. Acta Biomater. 2022, 141, 388–397. [Google Scholar] [CrossRef]
- Ogawa, K.; Kato, N.; Yoshida, M.; Hiu, T.; Matsuo, T.; Mizukami, S.; Omata, D.; Suzuki, R.; Maruyama, K.; Mukai, H.; et al. Focused Ultrasound/Microbubbles-Assisted BBB Opening Enhances LNP-Mediated mRNA Delivery to Brain. J. Control. Release 2022, 348, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.; Cressey, P.; Talianu, A.; Szychot, E.; Hargrave, D.; Thanou, M.; Pouliopoulos, A.N. Bi-Modal Confirmation of Liposome Delivery to the Brain After Focused Ultrasound-Induced Blood-Brain Barrier Opening. Heliyon 2024, 10, e39972. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Li, M.; Ren, J.; Qu, X. Gold Nanocage-Based Dual Responsive “Caged Metal Chelator” Release System: Noninvasive Remote Control with Near Infrared for Potential Treatment of Alzheimer’s Disease. Adv. Funct. Mater. 2013, 23, 5412–5419. [Google Scholar] [CrossRef]
- Abbas, H.; Refai, H.; El Sayed, N.; Rashed, L.A.; Mousa, M.R.; Zewail, M. Superparamagnetic Iron Oxide Loaded Chitosan Coated Bilosomes for Magnetic Nose to Brain Targeting of Resveratrol. Int. J. Pharm. 2021, 610, 121244. [Google Scholar] [CrossRef]
- Geng, H.; Yuan, H.; Qiu, L.; Gao, D.; Cheng, Y.; Xing, C. Inhibition and Disaggregation of Amyloid β Protein Fibrils Through Conjugated Polymer–Core Thermoresponsive Micelles. J. Mater. Chem. B 2020, 8, 10126–10135. [Google Scholar] [CrossRef]
- Chung, Y.J.; Kim, K.; Lee, B.I.; Park, C.B. Carbon Nanodot-Sensitized Modulation of Alzheimer’s β-Amyloid Self-Assembly, Disassembly, and Toxicity. Small 2017, 13, 1700983. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Duan, X.; Yu, Y.; Ni, R.; Song, G.; Yang, X.; Zhu, L.; Zhong, Y.; Zhang, K.; Qu, K.; et al. Target Functionalized Carbon Dot Nanozymes with Dual-Model Photoacoustic and Fluorescence Imaging for Visual Therapy in Atherosclerosis. Adv. Sci. 2024, 11, 2307441. [Google Scholar] [CrossRef]
- Du, Z.; Gao, N.; Wang, X.; Ren, J.; Qu, X. Near-Infrared Switchable Fullerene-Based Synergy Therapy for Alzheimer’s Disease. Small 2018, 14, 1801852. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bisaglia, M. Oxidative Stress and Neuroinflammation in Parkinson’s Disease: The Role of Dopamine Oxidation Products. Antioxidants 2023, 12, 955. [Google Scholar] [CrossRef]
- Lee, H.; Elkamhawy, A.; Rakhalskaya, P.; Lu, Q.; Nada, H.; Quan, G.; Lee, K. Small Molecules in Parkinson’s Disease Therapy: From Dopamine Pathways to New Emerging Targets. Pharmaceuticals 2024, 17, 1688. [Google Scholar] [CrossRef]
- Lei, L.; Tu, Q.; Zhang, X.; Xiang, S.; Xiao, B.; Zhai, S.; Yu, H.; Tang, L.; Guo, B.; Chen, X.; et al. Stimulus-Responsive Curcumin-Based Polydopamine Nanoparticles for Targeting Parkinson’s Disease by Modulating α-Synuclein Aggregation and Reactive Oxygen Species. Chem. Eng. J. 2023, 461, 141606. [Google Scholar] [CrossRef]
- Fan, Z.; Jin, H.; Tan, X.; Li, Y.; Shi, D.; Wang, Q.; Meng, J.; Li, W.; Chen, C.; Peng, L.; et al. ROS-Responsive Hierarchical Targeting Vehicle-Free Nanodrugs for Three-Pronged Parkinson’s Disease Therapy. Chem. Eng. J. 2023, 466, 143245. [Google Scholar] [CrossRef]
- Battaglini, M.; Marino, A.; Carmignani, A.; Tapeinos, C.; Cauda, V.; Ancona, A.; Garino, N.; Vighetto, V.; La Rosa, G.; Sinibaldi, E.; et al. Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation. ACS Appl. Mater. Interfaces 2020, 12, 35782–35798. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Zhang, S.; Ding, M.; Yu, N.; Li, J.; Wang, X.; Li, Z. Antibody-Conjugated Gold Nanoparticles as Nanotransducers for Second Near-Infrared Photo-Stimulation of Neurons in Rats. Nano Converg. 2022, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guan, Y.; Wang, J.; Wang, D. Cerium Oxide Nanoparticles Modulating the Parkinson’s Disease Conditions: From the Alpha Synuclein Structural Point of View and Antioxidant Properties of Cerium Oxide Nanoparticles. Heliyon 2024, 10, e21789. [Google Scholar] [CrossRef]
- Pichla, M.; Bartosz, G.; Stefaniuk, I.; Sadowska-Bartosz, I. pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson’s Disease. Molecules 2021, 26, 543. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Liu, Y.; Ma, R.; Luo, J.; Hong, H.; Chen, X.; Wang, S.; Liu, C.; Zhang, Y.; et al. Rational Design of Thermosensitive Hydrogel to Deliver Nanocrystals with Intranasal Administration for Brain Targeting in Parkinson’s Disease. Research 2021, 2021, 9812523. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhao, X.; Liang, X.; Ma, P.X.; Guo, B. Injectable Hydrogel Based on Quaternized Chitosan, Gelatin and Dopamine as Localized Drug Delivery System to Treat Parkinson’s Disease. Int. J. Biol. Macromol. 2017, 105, 1079–1087. [Google Scholar] [CrossRef]
- Cifuentes, J.; Cifuentes-Almanza, S.; Ruiz Puentes, P.; Quezada, V.; González Barrios, A.F.; Calderón-Peláez, M.-A.; Velandia-Romero, M.L.; Rafat, M.; Muñoz-Camargo, C.; Albarracín, S.L.; et al. Multifunctional Magnetoliposomes as Drug Delivery Vehicles for the Potential Treatment of Parkinson’s Disease. Front. Bioeng. Biotechnol. 2023, 11, 1181842. [Google Scholar] [CrossRef]
- Nam, E.-J.; Kwon, Y.; Ha, Y.; Paik, S.R. Fabrication of a Dual Stimuli-Responsive Assorted Film Comprising Magnetic- and Gold-Nanoparticles with a Self-Assembly Protein of α-Synuclein. ACS Appl. Bio. Mater. 2021, 4, 1863–1875. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, Y.; Chen, J.; Lin, D.; Liu, C.; Zhang, L.; Yin, L.; Yang, R.; Guan, Y. NIR-Assisted MgO-Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson’s Disease through the Blood-Brain Barrier. Adv. Healthc. Mater. 2022, 11, 2201655. [Google Scholar] [CrossRef] [PubMed]
- Bardajee, G.R.; Khamooshi, N.; Nasri, S.; Vancaeyzeele, C. Multi-Stimuli Responsive Nanogel/Hydrogel Nanocomposites Based on κ-Carrageenan for Prolonged Release of Levodopa as Model Drug. Int. J. Biol. Macromol. 2020, 153, 180–189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyuklieva, R.; Zahariev, N.; Simeonov, P.; Penkov, D.; Katsarov, P. Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers. Biomedicines 2025, 13, 1464. https://doi.org/10.3390/biomedicines13061464
Boyuklieva R, Zahariev N, Simeonov P, Penkov D, Katsarov P. Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers. Biomedicines. 2025; 13(6):1464. https://doi.org/10.3390/biomedicines13061464
Chicago/Turabian StyleBoyuklieva, Radka, Nikolay Zahariev, Plamen Simeonov, Dimitar Penkov, and Plamen Katsarov. 2025. "Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers" Biomedicines 13, no. 6: 1464. https://doi.org/10.3390/biomedicines13061464
APA StyleBoyuklieva, R., Zahariev, N., Simeonov, P., Penkov, D., & Katsarov, P. (2025). Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers. Biomedicines, 13(6), 1464. https://doi.org/10.3390/biomedicines13061464