Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = stiffener locations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 829 KiB  
Review
The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation
by Pim A. de Jong, Daniel Bos, Huiberdina L. Koek, Pieter T. Deckers, Netanja I. Harlianto, Ynte M. Ruigrok, Wilko Spiering, Jaco Zwanenburg and Willem P.Th.M. Mali
J. Pers. Med. 2025, 15(8), 356; https://doi.org/10.3390/jpm15080356 - 4 Aug 2025
Abstract
A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst [...] Read more.
A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst the distal portion is highly flexible. This flexible part in combination with the specific curves lead to lower pulsatility at the cost of energy deposition in the arterial wall. This deposited energy contributes to damage and calcification. Severe siphon calcification stiffens the distal part of the siphon, leading to less damping of the pulsatility. Increased blood flow pulsatility is a possible cause of stroke and cognitive disorders. In this review, based on comprehensive multimodality imaging, we first describe the anatomy and physiology of the carotid siphon. Subsequently, we review the in vivo imaging data, which indeed suggest that the siphon attenuates pulsatility. Finally, the data as available in the literature are shown to provide convincing evidence that severe siphon calcifications and the calcification pattern are linked to incident stroke and dementia. Interventional studies are required to test whether this association is causal and how an assessment of pulsatility and the siphon calcification pattern can improve personalized medicine, working to prevent and treat brain disease. Full article
(This article belongs to the Special Issue Advances in Cardiothoracic Surgery)
Show Figures

Figure 1

24 pages, 9006 KiB  
Article
X-Ray Exposure Induces Structural Changes in Human Breast Proteins
by Ren Jie Tuieng, Sarah H. Cartmell, Cliona C. Kirwan, Alexander Eckersley and Michael J. Sherratt
Int. J. Mol. Sci. 2025, 26(12), 5696; https://doi.org/10.3390/ijms26125696 - 13 Jun 2025
Viewed by 578
Abstract
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix [...] Read more.
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix (ECM) proteins remains poorly understood. This study characterises the response of ECM proteins, including the major tissue components collagen I and fibronectin (FN), to X-ray doses similar to those used in clinical practice (50 Gy, as employed in breast radiotherapy, and 100 Gy), using a combination of gel electrophoresis, biochemical assays, and mass spectrometry-based peptide location fingerprinting (PLF) analysis. In purified protein solutions, 50 Gy X-ray exposure led to the fragmentation of constituent collagen I α chains. Irradiation of purified plasma FN (pFN) induced localised changes in peptide yields (detected by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and PLF) and enhanced its binding to collagen I. In complex environments, such as newly synthesised fibroblast-derived ECM and mature ex vivo breast tissue, X-ray exposure induced peptide yield changes in not only collagen I and FN but also key basement membrane proteins, including collagen IV, laminin, and perlecan. Intracellular proteins associated with gene expression (RPS3, MeCP2), the cytoskeleton (moesin, plectin), and the endoplasmic reticulum (calnexin) were also found to be impacted. These X-ray-induced structural changes may impair the ECM integrity and alter cell–ECM interactions, with potential implications for tissue stiffening, fibrosis, and impaired wound healing in irradiated tissues. Full article
Show Figures

Figure 1

25 pages, 843 KiB  
Review
Considerations on the Development of Therapeutics in Vascular Calcification
by Ana M. Valentin Cabrera, Sophie K. Ashbrook and Joshua D. Hutcheson
J. Cardiovasc. Dev. Dis. 2025, 12(6), 206; https://doi.org/10.3390/jcdd12060206 - 29 May 2025
Viewed by 1059
Abstract
Cardiovascular disease is the leading cause of death worldwide. Vascular calcification, the deposition of calcium phosphate mineral in the arterial wall, is the most significant predictor of morbidity and mortality. Vascular calcification can present as either medial or intimal calcification. Medial calcification is [...] Read more.
Cardiovascular disease is the leading cause of death worldwide. Vascular calcification, the deposition of calcium phosphate mineral in the arterial wall, is the most significant predictor of morbidity and mortality. Vascular calcification can present as either medial or intimal calcification. Medial calcification is most prevalent among patients with chronic kidney disease. Intimal calcification is associated with atherosclerosis and chronic inflammation. In both cases, vascular smooth muscle cells undergo osteogenic differentiation, leading to mineral deposition and associated wall stiffening; however, the effects on cardiovascular function and morbidity vary depending on mineral morphology and location. This review investigates vascular calcification, the mechanisms leading to calcium deposition, and what to consider when developing therapeutics for vascular calcification. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Graphical abstract

15 pages, 6842 KiB  
Article
Finite Element Analysis of Post-Buckling Failure in Stiffened Panels: A Comparative Approach
by Jakiya Sultana and Gyula Varga
Machines 2025, 13(5), 373; https://doi.org/10.3390/machines13050373 - 29 Apr 2025
Cited by 1 | Viewed by 475
Abstract
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of [...] Read more.
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of an aluminum stiffened panel having a dimension of 1244 mm (Length) × 957 mm (width) × 3.5 mm (thickness), with three stiffener blades located 280 mm away from each other. Both the critical buckling load and post-buckling ultimate failure load of the panel are validated against the experimental data found in the available literature, where the edges towards the length are clamped and simply supported, and the other two edges are free. For nonlinear buckling analysis, a plasticity power law is adopted with a small geometric imperfection of 0.4% at the middle of the panel. After the numerical validation, the investigation is further carried out considering four different lateral pressures, specifically 0.013 MPa, 0.065 MPa, 0.085 MPa, and 0.13 MPa, along with the compressive loading boundary conditions. It was found that even though the pressure application of 0.013 MPa did not significantly impact the critical buckling load of the panel, the ultimate collapse load was reduced by 18.5%. In general, the ultimate collapse load of the panel was severely affected by the presence of lateral pressure while edge compressing. Three opening shapes—namely, square, circular, and rectangular/hemispherical—were also investigated to understand the behavior of the panel with openings. It was found that the openings significantly affected the critical buckling load and ultimate collapse load of the stiffened panel, with the lateral pressure also contributing to this effect. Finally, in critical areas with higher lateral pressure load, a titanium panel can be a good alternative to the aluminum panel since it can provide almost twice to thrice better buckling stability and ultimate collapse load to the panels with a weight nearly 1.6 times higher than aluminum. These findings highlight the significance of precision manufacturing, particularly in improving and optimizing the structural efficiency of stiffened panels in aerospace industries. Full article
Show Figures

Figure 1

17 pages, 6706 KiB  
Article
Research on the Local Damage Characteristics of Steel Box Girder Structures Under the Effects of Explosive Shock Waves
by Shouyi Qu and Yumin Song
Appl. Sci. 2025, 15(3), 1113; https://doi.org/10.3390/app15031113 - 23 Jan 2025
Viewed by 750
Abstract
This study investigates the local damage characteristics and influencing factors of steel box girder structures under explosive shock waves. The single-box, double-chamber steel box girder commonly used in urban road bridges was chosen as the research object. Based on model validation of the [...] Read more.
This study investigates the local damage characteristics and influencing factors of steel box girder structures under explosive shock waves. The single-box, double-chamber steel box girder commonly used in urban road bridges was chosen as the research object. Based on model validation of the explosion test values of a 1:10 scaled-down model of the steel box girder, a 1:1 numerical model of the steel box girder structure was established. The research analyzed failure modes under varying explosive charge weights and detonation locations. The results showed that failure primarily occurred in the top plate, base plate, and internal partitions, with the top plate experiencing the most severe damage due to direct impact. The effectiveness of transverse and longitudinal partitions in mitigating damage was highlighted, with unpartitioned sections exhibiting up to a 70% increase in damage area. Additionally, stiffening ribs influenced the deflection of base plate cracks, with maximum offset distances ranging from 0.5 m to 1.5 m as explosive weight increased. These findings emphasize the critical role of structural features in enhancing the blast resistance of steel box girder bridges, providing valuable insights for improving protective designs against explosive threats. Full article
Show Figures

Figure 1

23 pages, 9139 KiB  
Article
Experimental and Numerical Simulation Study on the Mechanical Properties of Integrated Sleeve Mortise and Tenon Steel–Wood Composite Joints
by Zhanguang Wang, Weihan Yang, Zhenyu Gao, Jianhua Shao and Dongmei Li
Buildings 2025, 15(1), 137; https://doi.org/10.3390/buildings15010137 - 4 Jan 2025
Cited by 2 | Viewed by 1183
Abstract
In view of the application status and technical challenges of steel–wood composite joints in architecture, this paper proposes an innovative connection technology to solve issues such as susceptibility to pry-out at beam–column joints and low load-bearing capacity and to provide various reinforcement methods [...] Read more.
In view of the application status and technical challenges of steel–wood composite joints in architecture, this paper proposes an innovative connection technology to solve issues such as susceptibility to pry-out at beam–column joints and low load-bearing capacity and to provide various reinforcement methods in order to meet the different structural requirements and economic benefits. By designing and manufacturing four groups of beam–column joint specimens with different reinforcement methods, including no reinforcement, structural adhesive and angle steel reinforcement, 4 mm thick steel sleeve reinforcement, and 6 mm thick steel sleeve reinforcement, monotonic loading tests and finite element simulations were carried out, respectively. This research found that unreinforced specimens and structural adhesive angle steel-reinforced joints exhibited obvious mortise and tenon compression deformation and, moreover, tenon pulling phenomena at load values of approximately 2 kN and 2.6 kN, respectively. However, the joint reinforced by a steel sleeve showed a significant improvement in the tenon pulling phenomenon and demonstrated excellent initial stiffness characteristics. The failure mode of the steel sleeve-reinforced joints is primarily characterized by the propagation of cracks at the edges of the steel plate and the tearing of the wood, but the overall structure remains intact. The initial rotational stiffness of the joints reinforced with angle steel and self-tapping screws, the joints reinforced with 4 mm thick steel sleeves, and the joints reinforced with 6 mm thick steel sleeves are 3.96, 6.99, and 13.62 times that of the pure wooden joints, while the ultimate bending moments are 1.97, 7.11, and 7.39 times, respectively. Using finite element software to simulate four groups of joints to observe their stress changes, the areas with high stress in the joints without sleeve reinforcement are mainly located at the upper and lower ends of the tenon, where the compressive stress at the upper edge of the tenon and the tensile stress at the lower flange are both distributed along the grain direction of the beam. The stress on the column sleeve of the joints reinforced with steel sleeves and bolts is relatively low, while the areas with high strain in the beam sleeve are mainly concentrated on the side with the welded stiffeners and its surroundings; the strain around the bolt holes is also quite noticeable. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 13616 KiB  
Article
Investigation of Fatigue Assessment Method for Glass Fiber Reinforced Composite Hull Structures Based on Stiffness Degradation
by Kaiyan Li, Guanyi Gao, Guoqing Feng, Yaozhong Fan and Yiyang Han
J. Mar. Sci. Eng. 2024, 12(12), 2324; https://doi.org/10.3390/jmse12122324 - 18 Dec 2024
Viewed by 915
Abstract
A study was conducted on the fatigue assessment method for composite ship structures under complex marine environments, and a fatigue assessment method based on the principle of stiffness degradation was proposed. Fatigue tests were performed on the composite material of the target ship [...] Read more.
A study was conducted on the fatigue assessment method for composite ship structures under complex marine environments, and a fatigue assessment method based on the principle of stiffness degradation was proposed. Fatigue tests were performed on the composite material of the target ship to obtain the stiffness degradation parameters under tension–compression loading. Four fatigue hotspot areas in the midsection of the hull were selected, and mesh refinement was applied to these locations to accurately capture the variations in stress gradients. The structural stress response transfer function was calculated, and the short-term and long-term distribution data of wave loads were obtained. Finally, the fatigue life of the target ship hotspots was predicted by combining spectral fatigue analysis with the stiffness degradation theory. The results indicate that the connection between the bulkhead stiffener and the inner bottom plate has the shortest fatigue life, and its dimensions were optimized. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2163 KiB  
Article
Non-Invasive Nanometer Resolution Assessment of Cell–Soft Hydrogel System Mechanical Properties by Scanning Ion Conductance Microscopy
by Tatiana N. Tikhonova, Anastasia V. Barkovaya, Yuri M. Efremov, Vugara V. Mamed-Nabizade, Vasilii S. Kolmogorov, Peter S. Timashev, Nikolay N. Sysoev, Victor V. Fadeev, Petr V. Gorelkin, Lihi Adler-Abramovich, Alexander S. Erofeev and Evgeny A. Shirshin
Int. J. Mol. Sci. 2024, 25(24), 13479; https://doi.org/10.3390/ijms252413479 - 16 Dec 2024
Viewed by 1289
Abstract
Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this [...] Read more.
Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel. Moreover, it is demonstrated that the map of Young’s modulus distribution obtained by the SICM method allows for determining the core location. The Young’s modules for MCF-7 cells decrease with the substrate stiffening, with values of 1050 Pa, 835 Pa, and 600 Pa measured on a Petri dish, Fmoc-FF hydrogel, and Fmoc-FF/chitosan hydrogel, respectively. A comparative analysis of the SICM results and the data obtained by atomic force microscopy was in good agreement, allowing for the use of a composite cell–substrate model (CoCS) to evaluate the ‘soft substrate effect’. Using the CoCS model allowed us to conclude that the MCF-7 softening was due to the cells’ mechanical properties variations due to cytoskeletal changes. This research provides immediate insights into changes in cell mechanical properties resulting from different soft scaffold substrates. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

20 pages, 4733 KiB  
Article
Experimental Compressive Assessment of Different Stiffened Plate Welding Configurations
by S. Saad-Eldeen, Mohamed Mansour and Menat-Allah Eltaramsy
J. Mar. Sci. Eng. 2024, 12(12), 2238; https://doi.org/10.3390/jmse12122238 - 5 Dec 2024
Viewed by 1167
Abstract
The application of fillet welding in the shipbuilding industry is essential for composing different structural components such as stiffened plates and panels, which are the sub-structural elements of the entire hull. The connection between the base plating and its reinforcement members as stiffeners [...] Read more.
The application of fillet welding in the shipbuilding industry is essential for composing different structural components such as stiffened plates and panels, which are the sub-structural elements of the entire hull. The connection between the base plating and its reinforcement members as stiffeners may be found in different fillet welding configurations such as continuous and intermittent chain welding. The application of each welding configuration may differ according to the importance of the structural component, its location and the acting load. The aim of the present work is to experimentally evaluate the ultimate compressive capacity of a stiffened plate with different base plating thicknesses and a welded stiffener using different fillet welding configurations. The results are presented in the form of different relationships between axial force–vertical/lateral displacement relationships and corresponding collapse modes. Discussion and analysis of results are performed for a deep understating of both the local and global behaviour of the stiffened plate, accounting for the absorbed energy within the elastic regime and up to the ultimate limit, with developed regression formulations. Also, a comparison between the experimental results and existing empirical formulations is performed, showing a good agreement and reasonable behaviour. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 12379 KiB  
Article
Experimental and Numerical Investigation of Acoustic Emission Source Localization Using an Enhanced Guided Wave Phased Array Method
by Jiaying Sun, Zexing Yu, Chao Xu and Fei Du
Sensors 2024, 24(17), 5806; https://doi.org/10.3390/s24175806 - 6 Sep 2024
Cited by 1 | Viewed by 1300
Abstract
To detect damage in mechanical structures, acoustic emission (AE) inspection is considered as a powerful tool. Generally, the classical acoustic emission detection method uses a sparse sensor array to identify damage and its location. It often depends on a pre-defined wave velocity and [...] Read more.
To detect damage in mechanical structures, acoustic emission (AE) inspection is considered as a powerful tool. Generally, the classical acoustic emission detection method uses a sparse sensor array to identify damage and its location. It often depends on a pre-defined wave velocity and it is difficult to yield a high localization accuracy for complicated structures using this method. In this paper, the passive guided wave phased array method, a dense sensor array method, is studied, aiming to obtain better AE localization accuracy in aluminum thin plates. Specifically, the proposed method uses a cross-shaped phased array enhanced with four additional far-end sensors for AE source localization. The proposed two-step method first calculates the real-time velocity and the polar angle of the AE source using the phased array algorithm, and then solves the location of the AE source with the additional far-end sensor. Both numerical and physical experiments on an aluminum flat panel are carried out to validate the proposed method. It is found that using the cross-shaped guided wave phased array method with enhanced far-end sensors can localize the coordinates of the AE source accurately without knowing the wave velocity in advance. The proposed method is also extended to a stiffened thin-walled structure with high localization accuracy, which validates its AE source localization ability for complicated structures. Finally, the influences of cross-shaped phased array element number and the time window length on the proposed method are discussed in detail. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring and Damage Detection)
Show Figures

Figure 1

17 pages, 9750 KiB  
Article
A Density Clustering RAPID Based on an Array-Compensated Damage Index for Quantitative Damage Diagnosis
by Qiao Bao, Tian Xie, Yan Zhuang and Qiang Wang
Sensors 2024, 24(15), 4904; https://doi.org/10.3390/s24154904 - 29 Jul 2024
Cited by 1 | Viewed by 1035
Abstract
Guided wave array-based structural health monitoring (SHM) is a promising solution for diagnosing damage in metal-connected structures. In this field, the reconstruction algorithm for probabilistic inspection (RAPID) is one of the most widely used algorithms for performing damage localization. In this paper, a [...] Read more.
Guided wave array-based structural health monitoring (SHM) is a promising solution for diagnosing damage in metal-connected structures. In this field, the reconstruction algorithm for probabilistic inspection (RAPID) is one of the most widely used algorithms for performing damage localization. In this paper, a density clustering RAPID based on an array-compensated damage index is proposed. A new probability distribution function was constructed based on a new damage index, which is adaptive to different elements in the sensor array to compensate for performance variation. Then, the imaging matrix of the RAPID algorithm was density-clustered to obtain the location and degree of damage. Finally, the method was verified by experiments on a stiffened aluminum plate. The experimental results demonstrate that the method achieves damage localization and enables quantitative damage diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 23326 KiB  
Article
Fatigue Consideration for Tension Flange over Intermediate Support in Skewed Continuous Steel I-Girder Bridges
by Dariya Tabiatnejad, Seyed Saman Khedmatgozar Dolati, Armin Mehrabi and Todd A. Helwig
Infrastructures 2024, 9(7), 99; https://doi.org/10.3390/infrastructures9070099 - 26 Jun 2024
Cited by 5 | Viewed by 2467
Abstract
Skewed supports complicate load paths in continuous steel I-girder bridges, causing secondary stresses and differential deformations. For a continuous bridge where tensile stresses are developed in the top flange of the steel girders over the intermediate supports, these effects may exacerbate potential fatigue [...] Read more.
Skewed supports complicate load paths in continuous steel I-girder bridges, causing secondary stresses and differential deformations. For a continuous bridge where tensile stresses are developed in the top flange of the steel girders over the intermediate supports, these effects may exacerbate potential fatigue issues for the top flanges. There is a gap in knowledge regarding the level of stress one can expect at these locations, and the stress level can render the problem either serious or trivial. This paper has been successful in providing this information, which was not available before. The study examines the fatigue performance of the top flange in girders over skewed supports. Results are presented from a detailed investigation consisting of 3D finite element modeling to evaluate 26 skewed bridges in the State of Florida that represent the wide range of geometries found in practice. The analysis focused on stress ranges in the top flanges and axial demands on end cross-frame members under fatigue truck loading. A preliminary analysis helped to select the appropriate element type and support conditions. The maximum factored stress range of 3.63 ksi obtained for the selected group of bridges remains below the 10 ksi fatigue threshold for an AASHTO Category C connection, alleviating the concerns about the fatigue performance of the continuous girder top flange over the intermediate pier. Hence, fatigue is unlikely to be a concern in the flanges at this location. Statistics on computed stress ranges and cross-frame forces that provide an understanding of the expected values and guidance for detailing practices are also presented. A limited comparative refined FE analysis on two different types of end cross-frame to girder connections also provided useful insight into the fatigue sensitivities of the skew connections. Half-Round Bearing Stiffener (HRBS) connections performed better than the customary bent plate connections. The HRBS connection reduces girder flange stress concentration range by at least 18% compared to the bent plate connection. The maximum stress concentration range in bent plate components is significantly higher than in the HRBS connection components. The work documented in this paper is important for understanding the fatigue performance of the cross-frames and girders in support regions in the upcoming 10th edition of the AASHTO Bridge Design Specifications that may include plate stiffeners oriented either normally or skewed to the girder web, or Half-Round Bearing Stiffeners. Full article
Show Figures

Figure 1

19 pages, 11998 KiB  
Article
Structural Influence of the Cargo Holds of a 3000 m3 Wellboat on a Double-Bottom Floor
by Arturo Silva-Campillo and Francisco Pérez-Arribas
J. Mar. Sci. Eng. 2024, 12(6), 994; https://doi.org/10.3390/jmse12060994 - 14 Jun 2024
Viewed by 1391
Abstract
In order to reduce weight and facilitate maintenance, servicing and inspection, ship structures usually have openings and cutouts. However, these modifications frequently weaken the plates’ ability to buckle. In this work, the combined effects of geometric discontinuities (such as openings and cutouts) under [...] Read more.
In order to reduce weight and facilitate maintenance, servicing and inspection, ship structures usually have openings and cutouts. However, these modifications frequently weaken the plates’ ability to buckle. In this work, the combined effects of geometric discontinuities (such as openings and cutouts) under diverse in-plane loads (such as horizontal compression, vertical compression, biaxial compression, and in-plane edge shear loading) are taken into consideration as the perforated plates located in the double-bottom floor of a 3000 m3 wellboat are investigated for their linear and elastic buckling behavior. In order to assess the effects of various stiffening methods and their interactions with different load scenarios, as well as fluctuating plate slenderness ratios, the research combines experimental and numerical analyses. This thorough study identifies the best stiffening technique and suggests alternative geometries that minimize structural weight through topology optimization. The research’s findings are helpful in comprehending the mechanisms underlying structural failure and in offering design and recommendation guidelines that enhance hull inspections and the assessment of structural flaws. Full article
(This article belongs to the Special Issue Advances in the Performance of Ships and Offshore Structures)
Show Figures

Figure 1

17 pages, 5624 KiB  
Article
Local Stiffness Assessment of Geogrid-Stabilized Unbound Aggregates in a Large-Scale Testbed
by Mingu Kang, Han Wang, Issam I. A. Qamhia, Erol Tutumluer and Jeb S. Tingle
Appl. Sci. 2024, 14(1), 352; https://doi.org/10.3390/app14010352 - 30 Dec 2023
Cited by 4 | Viewed by 1535
Abstract
This paper integrates and extends an earlier article presented at the 20th International Conference on Soil Mechanics and Geotechnical Engineering. The generation of a stiffened zone in the proximity of a geogrid is one of the primary mechanisms of mechanical stabilization of pavement [...] Read more.
This paper integrates and extends an earlier article presented at the 20th International Conference on Soil Mechanics and Geotechnical Engineering. The generation of a stiffened zone in the proximity of a geogrid is one of the primary mechanisms of mechanical stabilization of pavement unbound aggregate layers using geogrids. This paper focuses on the quantification of the stiffened zone through a local stiffness assessment using bender element (BE) sensors. Unbound aggregate base layers were constructed in a large-scale laboratory testbed. Geogrid-stabilized layers had geogrids with different-sized triangular apertures contributing to the geogrid-stiffened zone. Shear wave velocities were measured at three different heights using BE sensors, and the vertical stiffness profiles of the mechanically stabilized aggregate layers were evaluated. In addition, the conversion method between small-strain stiffness and large-strain stiffness was established from the repeated load triaxial tests with BE pairs to transform the vertical stiffness profile into that of the resilient modulus. Furthermore, dynamic cone penetration (DCP) and light-weight deflectometer (LWD) tests were performed at multiple locations into the stabilized and unstabilized unbound aggregates. From the large-scale experimental study, the local stiffness improvement owing to the geogrid enhancement was up to 16.2% in the vicinity of the geogrid location, and the extent of the local stiffened zone evaluated through various test methods was between 15.2 cm (6 in.) and 25.4 cm (10 in.) above the geogrid. Full article
Show Figures

Figure 1

23 pages, 9134 KiB  
Article
Transforming Simulated Data into Experimental Data Using Deep Learning for Vibration-Based Structural Health Monitoring
by Abhijeet Kumar, Anirban Guha and Sauvik Banerjee
Mach. Learn. Knowl. Extr. 2024, 6(1), 18-40; https://doi.org/10.3390/make6010002 - 27 Dec 2023
Cited by 3 | Viewed by 3430
Abstract
While machine learning (ML) has been quite successful in the field of structural health monitoring (SHM), its practical implementation has been limited. This is because ML model training requires data containing a variety of distinct instances of damage captured from a real structure [...] Read more.
While machine learning (ML) has been quite successful in the field of structural health monitoring (SHM), its practical implementation has been limited. This is because ML model training requires data containing a variety of distinct instances of damage captured from a real structure and the experimental generation of such data is challenging. One way to tackle this issue is by generating training data through numerical simulations. However, simulated data cannot capture the bias and variance of experimental uncertainty. To overcome this problem, this work proposes a deep-learning-based domain transformation method for transforming simulated data to the experimental domain. Use of this technique has been demonstrated for debonding location and size predictions of stiffened panels using a vibration-based method. The results are satisfactory for both debonding location and size prediction. This domain transformation method can be used in any field in which experimental data for training machine-learning models is scarce. Full article
Show Figures

Figure 1

Back to TopTop