Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = steel–UHPC composite slab

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1915 KB  
Article
Thermal Effect on Fiber-Reinforced Concrete Link Slab with Existing Bearing Modification
by Kuang-Yuan Hou, Yifan Zhu, Naiyi Li and Chung C. Fu
Infrastructures 2025, 10(9), 229; https://doi.org/10.3390/infrastructures10090229 - 31 Aug 2025
Viewed by 661
Abstract
This paper analyzes the long-term thermal effect of newly applied fiber-reinforced concrete link slabs on an existing steel bridge for a rehabilitation project of the Maryland Transportation Authority. To enhance structural resilience, thermal movement is one of the major concerns in concrete link [...] Read more.
This paper analyzes the long-term thermal effect of newly applied fiber-reinforced concrete link slabs on an existing steel bridge for a rehabilitation project of the Maryland Transportation Authority. To enhance structural resilience, thermal movement is one of the major concerns in concrete link slab design. To accommodate the global thermal expansion of a full bridge, the existing fixed bearings were modified to expansion bearings to release the longitudinal thermal movement of the super-structure. Their movements were measured by the installed LVDT devices. In this pilot study for the Maryland Transportation Authority (MDTA), engineered cementitious composite (ECC) and ultra-high-performance concrete (UHPC) were selected as candidate materials for link slabs to replace traditional steel expansion joints. To evaluate the performances of ECC and UHPC, built-in strain gauges were implemented for long-term field monitoring to ensure the durability of link slabs. For comparison, the measured data were collected over two full years to study their thermal effects in order to evaluate their sustainability. The novelty of the study is in comparing the performance of different materials side-by-side using true sensor measurements and numerical simulation. Thermal movement performance, including thermal cracking, will be one of the major selection criteria for the link slab material. Full article
Show Figures

Figure 1

24 pages, 9251 KB  
Article
Shear Lag Effect in Steel-UHPC Composite Girders of Cable-Stayed Bridges Considering Slip Under Asymmetric Axial Loading
by Hua Luo, Qincong She, Bin Li, Wan Wu, Yahua Pan and Chen Yang
Buildings 2025, 15(16), 2945; https://doi.org/10.3390/buildings15162945 - 20 Aug 2025
Viewed by 842
Abstract
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial [...] Read more.
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial forces significantly exacerbate the shear lag effect. Decreasing the width-to-span ratio reduces the shear lag coefficient, while reducing the width-to-depth ratio increases it. The parametric analysis indicates that, under asymmetric axial loading, increasing the strength of the concrete is an effective method to reduce the shear lag effect of the composite girders. Increasing the thickness of the UHPC slab proves to be effective in reducing the shear lag effect. Furthermore, the study indicates that when the b2/b1 ratio is less than 1, it has a tiny impact on the shear lag effect; however, when the b2/b1 ratio is greater than 1, the shear lag effect becomes more pronounced with increasing b2/b1. Additionally, the thickness of the flange plate and web plate of the steel girder has no significant effect on the shear lag effect. The results of the analysis can provide references for similar designs and constructions of composite structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7594 KB  
Article
FE Parametric Study of Composite Cold-Formed Steel Beams Under Positive and Negative Loadings
by Mahmoud T. Nawar, Ayman El-Zohairy, Ahmed S. Eisa, Amal Mohammed and Shady Gomaa
J. Compos. Sci. 2025, 9(5), 209; https://doi.org/10.3390/jcs9050209 - 26 Apr 2025
Viewed by 1169
Abstract
Composite structures are increasingly being utilized in modern construction. This computational analysis focuses on the structural performance of composite beams formed by thin-walled, cold-formed steel channel sections strengthened with concrete. The primary objective of this research was to enhance the strength and stability [...] Read more.
Composite structures are increasingly being utilized in modern construction. This computational analysis focuses on the structural performance of composite beams formed by thin-walled, cold-formed steel channel sections strengthened with concrete. The primary objective of this research was to enhance the strength and stability of composite cold-formed steel beams. In this study, back-to-back C-channel sections and concrete slabs with various stiffener configurations were analyzed. The key parameters considered include stiffener spacing, type, and thickness. Additionally, different beam cross-sections, such as C-channel and sigma sections, were investigated. A finite element analysis was conducted using the ABAQUS program, incorporating both geometric and material nonlinearities. The developed models were validated against experimental results from previous research and existing design guidelines. Three beam specimens were examined in this study to assess their structural behavior under static loading conditions. A novel aspect of this research is the investigation of composite cold-formed steel beams under a combination of ultra-high-performance concrete (UHPC) and negative moment effects. The load–deflection behavior of all beam specimens was analyzed, considering variations in cross-sectional dimensions and span lengths. Additionally, the study highlights key material properties, including the maximum compressive strength of concrete, the yield strength of cold-formed steel channels, and the cross-sectional area of the steel components for each beam specimen. This research provides valuable insights for structural engineers, contributing to the optimization of composite cold-formed steel beam design for enhanced performance in practical applications. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

21 pages, 9680 KB  
Article
Flexural Performance of an Innovative Girder-to-Pier Joint for Composite Bridges with Integral Piers: Full-Scale Test
by Wei Xie, Binju Zhang, Litao Yu, Qingtian Su and Fawas O. Matanmi
Materials 2025, 18(5), 1157; https://doi.org/10.3390/ma18051157 - 5 Mar 2025
Cited by 1 | Viewed by 926
Abstract
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared [...] Read more.
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared to the existing ones, this new joint has structural differences. The middle part of the embedded web is hollowed out to facilitate the construction, and the upper and bottom flanges of the steel girder within this joint are widened. Moreover, cast-in-place ultra-high-performance concrete (UHPC) is applied instead of normal concrete (NC) only on the top surface of the pier. A full-scale test was carried out for this new joint to evaluate the load–displacement relationship, load–strain relationship, crack initiation, and crack propagation. Compared with the numerical simulation results of the reference engineering, the test results demonstrated that the proposed joint exhibited excellent flexural performance and cracking resistance. This paper also proposes a calculation method for the elastic flexural capacity of the girder-to-pier joint incorporating the tensile strength of UHPC, and the calculated result was in good agreement with the experimental result. Full article
Show Figures

Figure 1

31 pages, 12348 KB  
Article
Research on the Bending Load-Bearing Capacity of UHPC-NC Prefabricated Hollow Composite Slabs in Cross-Section
by Ruochen Wang, Tianyu Shi, Yanzhu Zhu and Kun Wang
Buildings 2025, 15(4), 519; https://doi.org/10.3390/buildings15040519 - 8 Feb 2025
Cited by 1 | Viewed by 1330
Abstract
This study aims to investigate the bending load-bearing capacity of precast hollow composite slabs composed of ultra-high-performance concrete (UHPC) and Normal Concrete (NC). Through finite element numerical analysis and verification, this study analyzes various key factors influencing the performance of the composite slab, [...] Read more.
This study aims to investigate the bending load-bearing capacity of precast hollow composite slabs composed of ultra-high-performance concrete (UHPC) and Normal Concrete (NC). Through finite element numerical analysis and verification, this study analyzes various key factors influencing the performance of the composite slab, including the wall thickness of the square steel tube, the diameter of transverse reinforcing bars, the thickness of the precast bottom slab, and the strength grade of the concrete. The results indicate that the use of UHPC significantly enhances the bending performance of the composite slab. As the wall thickness of the square steel tube and the strength of UHPC increase, both the yield load and ultimate load capacity of the composite slab show considerable improvement. By conducting an in-depth analysis, this study identifies different stages of the composite slab during the loading process, including the cracking stage, yielding stage, and ultimate stage, thereby providing important foundations for optimizing structural design. Furthermore, a set of bending load-bearing capacity calculation formulas applicable to UHPC-NC precast hollow composite slabs is proposed, offering practical tools and theoretical support for engineering design and analysis. The innovation of this study lies not only in providing a profound understanding of the application of composite materials in architectural design but also in offering feasible solutions to the energy efficiency and safety challenges faced by the construction industry in the future. This research demonstrates the tremendous potential of ultra-high-performance concrete and its combinations in modern architecture, contributing to the sustainable development of construction technology. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 9362 KB  
Article
A Numerical and Theoretical Investigation of the Flexural Behavior of Steel–Ultra-High-Performance Concrete Composite Slabs
by Changshui Li, Boyi Zhao, Dawei Hao, Xiaolong Gao, Hao Bian and Xuanzheng Zhang
Buildings 2025, 15(2), 166; https://doi.org/10.3390/buildings15020166 - 8 Jan 2025
Cited by 3 | Viewed by 2309
Abstract
The steel–Ultra-High-Performance concrete (UHPC) composite slab is a new type of structure made of steel and UHPC connected by pegs, and its flexural mechanical properties and related design methods need to be further investigated. Firstly, a detailed numerical model of the steel UHPC [...] Read more.
The steel–Ultra-High-Performance concrete (UHPC) composite slab is a new type of structure made of steel and UHPC connected by pegs, and its flexural mechanical properties and related design methods need to be further investigated. Firstly, a detailed numerical model of the steel UHPC composite slab is established and validated based on previous flexural behavior experimental research. Secondly, the flexural failure mechanisms of steel–UHPC composite slabs are clarified through finite element analysis. Under positive bending moments, when the degree of shear connection is lower than 100%, the ultimate load capacity of the composite slabs is determined by the shear capacity of the pegs. On the contrary, there are no significant changes in the load-carrying capacity of all the specimens, but there is a slight increase in stiffness. Under negative bending moments, the load-bearing capacity, stiffness, and crack resistance of the composite slab are improved as the degree of shear connection and reinforcement ratio increase. Finally, the method used to calculate the flexural capacity of steel–UHPC composite plates under positive and negative bending moments with high accuracy is proposed based on the analytical results. This paper provides a theoretical basis for the design of flexural performance of steel–UHPC composite slab. Full article
Show Figures

Figure 1

17 pages, 5005 KB  
Article
Study on Flexural Capacity of UHPC-NC Composite Slab with Reinforced Truss in the Normal Section
by Xin Wang, Ruochen Wang, Zhiyu Zhu and Kun Wang
Buildings 2024, 14(12), 3732; https://doi.org/10.3390/buildings14123732 - 23 Nov 2024
Cited by 3 | Viewed by 1624
Abstract
Ultra-high-performance concrete (UHPC) exhibits significantly higher tensile strength compared to normal concrete (NC). In this paper, the application of UHPC to the precast base plate of composite slabs was proposed, leading to the development of a reinforced truss UHPC-NC composite slab. This approach [...] Read more.
Ultra-high-performance concrete (UHPC) exhibits significantly higher tensile strength compared to normal concrete (NC). In this paper, the application of UHPC to the precast base plate of composite slabs was proposed, leading to the development of a reinforced truss UHPC-NC composite slab. This approach effectively enhanced the crack resistance of the slab. A finite element model (FEM) for the reinforced truss UHPC-NC composite slab was developed based on the ABAQUS (2016) platform, using appropriate material constitutive relationships for UHPC, NC, and steel reinforcement. The validity of the model was verified through comparison with relevant test results. Subsequently, the effects of parameters such as the cross-sectional area of the upper and lower truss chords, the reinforcement ratio of the precast base plate, the strength grade of the UHPC base plate, and the thickness of the UHPC base plate on the flexural capacity of the UHPC-NC composite slab were investigated. Finally, the equations for calculating the flexural capacity of the UHPC-NC composite slab were proposed. It was found that increasing the cross-sectional area of the lower truss chord improved the flexural capacity and stiffness of such slabs to some extent, though ductility was slightly reduced. On the other hand, increasing the upper chord cross-sectional area had limited impact on the flexural performance. Increasing the reinforcement ratio of the longitudinal reinforcement in the precast base plate significantly enhanced the load-bearing capacity and stiffness but similarly reduced ductility. As the UHPC grade of the precast base plate increased, the cracking load, yield load, and ultimate load of the slab also increased. However, when the UHPC grade exceeded C120, the improvement in flexural capacity became less significant. With an increase in thickness of the precast UHPC base plate, cracking, yield, and ultimate loads also rose, but ductility decreased. When the thickness of UHPC exceeded 60 mm, the increase in flexural capacity became modest. The proposed equations for calculating the flexural capacity of the reinforced truss UHPC-NC composite slab in the normal section agreed well with simulation results, providing theoretical and numerical support for the design and analysis of UHPC-NC composite slabs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 8059 KB  
Article
Study on the Flexural Performance of Ultrahigh-Performance Concrete–Normal Concrete Composite Slabs
by Zizhou Sun, Xianjing Li and Chao Liu
Materials 2024, 17(18), 4675; https://doi.org/10.3390/ma17184675 - 23 Sep 2024
Cited by 3 | Viewed by 1464
Abstract
In recent years, there have been an increasing number of examples of using ultrahigh-performance concrete (UHPC) as a pavement layer to form an ultrahigh-performance concrete–normal concrete (UHPC–NC) composite structure to improve the bearing capacity of bridges. In order to study the flexural performance [...] Read more.
In recent years, there have been an increasing number of examples of using ultrahigh-performance concrete (UHPC) as a pavement layer to form an ultrahigh-performance concrete–normal concrete (UHPC–NC) composite structure to improve the bearing capacity of bridges. In order to study the flexural performance of this kind of structure, this research studied the flexural performance of UHPC–NC composite slabs, with UHPC in the compression zone, using experiments, numerical simulation, and theoretical analysis. The results showed the following. Firstly, after the UHPC–NC interface had been chiseled, there was no obvious slip between the two materials during the test, and the composite plate was always subjected to synergistic stress. Secondly, the composite slabs in the compression zone of the UHPC were all subjected to bending failure, and the cooperative working performance of each part under the bending load was good, indicating that the composite slab had a unique failure mode and a high bearing capacity. Thirdly, increasing the thickness of the UHPC significantly improved the flexural capacity of the composite plate, and the maximum increase was about 15%. Increasing the reinforcement ratio of the tensile steel rebars also had an increasing effect, with a maximum increase of about 181%. Finally, the proposed formula for calculating the flexural capacity of composite slabs with UHPC in the compression zone could accurately predict the bearing capacity of said slabs. The calculated results were in good agreement with the experimental values, and the error was small. Full article
Show Figures

Figure 1

26 pages, 8836 KB  
Article
Shear Performance of Prefabricated Steel Ultra-High-Performance Concrete (UHPC) Composite Beams under Combined Tensile and Shear Loads: Single Embedded Nut Bolts vs. Studs
by Guodong Wang, Bingxiong Xian, Feiyang Ma and Shu Fang
Buildings 2024, 14(8), 2425; https://doi.org/10.3390/buildings14082425 - 6 Aug 2024
Cited by 9 | Viewed by 2883
Abstract
Ultra-high-performance concrete (UHPC) is widely used in precast concrete-steel composite beams because of its beneficial properties, including reduced structural weight, higher flexural rigidity, and reduced tensile crack formation. In comparison to conventional steel-concrete composite beams, steel-UHPC composite beams exhibit superior characteristics, including reduced [...] Read more.
Ultra-high-performance concrete (UHPC) is widely used in precast concrete-steel composite beams because of its beneficial properties, including reduced structural weight, higher flexural rigidity, and reduced tensile crack formation. In comparison to conventional steel-concrete composite beams, steel-UHPC composite beams exhibit superior characteristics, including reduced structural deadweight, enhanced flexural stiffness, and the capacity to withstand tensile cracking. One successful attempt at meeting the current demands for expedited girder engineering is the development of steel-UHPC composite beams with full-depth precast slabs as key components affecting the overall structural performance using dismountable single embedded nut bolts (SENBs) and widely used studs as competitive alternatives. In contrast, shear connectors are exposed to a combined tensile and shear stress in service life rather than shear only. The corresponding scientific problem is the problem of combined effects under stress in practical applications, but there is currently no relevant research. The shear performance of SENBs in precast steel-UHPC composite beams under tension and shear loads remains unclear. For this purpose, ten push-out specimens and theoretical analyses were performed in this paper, considering the influence of the connector’s type and tensile-to-shear ratio. However, ten specimens were conducted to investigate the tensile-to-shear ratio, and the connector’s type on shear performance is limited. In the future, an increasing number of specimens and test parameters should be considered to investigate the shear performance of precast steel-UHPC composite beams. An increase in the tension-to-shear ratio resulted in a substantial reduction in the ultimate shear capacity, initial shear stiffness, and ductility of the studs. The increase in the tensile-shear ratio from 0 to 0.47 resulted in a 16.9% decline in the ultimate shear capacity, a 30.4% reduction in the initial shear stiffness, and a 21.7% decrease in the ductility of the Series I samples. However, an increase in the tensile-to-shear ratio of the Series II samples from 0 to 0.47 resulted in a 31.3% decline in ultimate shear strength, a 33.2% decline in initial shear stiffness, and a 41.9% decline in ductility. The SENBs demonstrated minimal deviations in ultimate shear capacity compared to their stud counterparts, despite exhibiting notable differences in shear stiffness, and ductility. A lower tensile-to-shear ratio was recommended in practical engineering, which might achieve a larger ultimate shear capacity, stiffness, and ductility. The design-oriented models with enhanced applicability were developed to predict the tension-shear relationship and the load-slip curve of SENBs in prefabricated steel-UHPC composite beams subjected to combined tensile and shear loads. For a tensile-shear relationship model, the point error range was 0 to 0.08, with an average error of 0.03. The square coefficient (R2) was 0.99 for a load-slip curve model. The study findings could offer a credible reference for the shear mechanism of such economical and environmentally friendly precast steel-UHPC composite beams in accelerated bridge construction. Full article
Show Figures

Figure 1

20 pages, 7371 KB  
Article
Push-Out Analysis on the Shear Performance of a New Type of Bellow-Sleeved Stud
by Disheng Zou, Qingtian Su, Fei Wu, Zhiping Lin and Peiran Li
Buildings 2024, 14(5), 1483; https://doi.org/10.3390/buildings14051483 - 20 May 2024
Viewed by 1589
Abstract
For continuous steel–concrete composite girder bridges based on the post-combined method, the conventional rectangular group studs contribute to the isolation of the steel girder and the concrete slab before prestressing, leading to the majority of prestress forces being introduced to the concrete slab. [...] Read more.
For continuous steel–concrete composite girder bridges based on the post-combined method, the conventional rectangular group studs contribute to the isolation of the steel girder and the concrete slab before prestressing, leading to the majority of prestress forces being introduced to the concrete slab. However, rectangular-group stud holes cause the prestress forces to be unevenly distributed. In this study, a new type of bellow-sleeved stud (BSS) was developed to mitigate the weakening effects of rectangular group stud holes on the slab. A steel corrugated sleeve with a diameter of 60 mm was employed to cover the stud, which served as an internal formwork to prevent the concrete from bonding with the root of the stud. After prestressing was complete, the steel sleeve was filled with ultra-high-performance concrete (UHPC) to create a reliable combination between the concrete slab and the steel girder. To investigate the shear performance of this new type of connection, eight push-out test specimens were designed, and finite-element models were built. This study drew a comparison between the BSS and the ordinary headed stud (OHS). The research findings suggested that the BSS is subjected to less bending–shear coupling and offers a 4.5% increase in shear strength and a 31.9% increase in shear stiffness compared with the OHS. The study also analyzed the structural parameters influencing the shear performance of the BSS. It is found that the steel sleeve of the BSS has a negative effect on shear performance, but this can be mitigated by infusing high-strength material into the sleeve. Furthermore, the study examined the effect of construction quality on shear performance and suggested that sleeve deviation and grout leakage considerably reduced the shear performance of the BSS. Accordingly, strict control over the construction quality of the BSS is necessary. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

21 pages, 11447 KB  
Article
Flexural Performance of Steel–Normal Concrete–Ultra-High-Performance Concrete Composite Slabs with Steel Ribs
by Songsong Guo, Chao Liu and Xiaogang Ma
Buildings 2024, 14(5), 1301; https://doi.org/10.3390/buildings14051301 - 5 May 2024
Viewed by 1813
Abstract
For steel–concrete composite bridges, the cracking of concrete in the tensile zone influences the serviceability of bridges and decreases their durability. UHPC, as a high-tensile and -durability material, is used to replace a part of the concrete to enhance the tensile performance. Thus, [...] Read more.
For steel–concrete composite bridges, the cracking of concrete in the tensile zone influences the serviceability of bridges and decreases their durability. UHPC, as a high-tensile and -durability material, is used to replace a part of the concrete to enhance the tensile performance. Thus, the steel–normal concrete–UHPC composite slab, as a new composite structure, is formed. This paper investigates the flexural behaviours of steel–normal concrete–UHPC composite slabs through a full-scale experiment, numerical simulation, and theoretical analysis. The research results indicate that (1) UHPC enhances the flexural performance of the tensile zone and delays the development of cracks. The initial cracking force of concrete increases from 44 kN to 91 kN. (2) UHPC effectively enhances the carrying capacity of composite slabs. A 50 mm UHPC layer makes the flexural bearing capacity of steel–concrete composite slabs increase by 13.51%. (3) The construction methods influence the initial cracking force of composite slabs. For full-span scaffolding construction, the initial cracking force decreases from 91 kN to 69 kN compared with construction without brackets. (4) The theoretical model considering the tensile contribution of cracking UHPC can accurately predict the bearing capacity of the composite slabs. And the theoretical values of the bearing capacity are lower than the experimental values, which makes the composite slabs safer in service. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 8881 KB  
Article
Analysis of Structural Parameters of Steel–NC–UHPC Composite Beams
by Dawei Zhang, Xiaogang Ma, Huijie Shen, Songsong Guo and Chao Liu
Materials 2023, 16(16), 5586; https://doi.org/10.3390/ma16165586 - 11 Aug 2023
Cited by 5 | Viewed by 1877
Abstract
The cracking of the negative moment area of steel–normal concrete (NC) composite bridges is common owning to the low tensile strength of concrete. In order to solve the problem, Ultra High Performance Concrete (UHPC) is used to enhance the tensile performance of the [...] Read more.
The cracking of the negative moment area of steel–normal concrete (NC) composite bridges is common owning to the low tensile strength of concrete. In order to solve the problem, Ultra High Performance Concrete (UHPC) is used to enhance the tensile performance of the negative moment area. This paper conducted interface experiments to study the bonding behaviour of the UHPC–NC interface. The design parametric analysis of steel–NC–UHPC composite bridges was carried out based on the interface experimental results. Firstly, slant shear tests and flexural shear tests were carried out to study the rationality of the interface handling methods. Then, the finite element model was used to analyze the state of every component in the composite beams based on experimental results, such as the stress of UHPC, concrete and steel plate. Finally, the calculation results of finite analysis were compared and summarized. It is concluded that (1) the chiseling interface can meet the utilization requirements of physical bridges. The average shear stress and flexural tensile strength of the chiseling interface are 10.29 MPa and 1.93 MPa, respectively. In the failure state, a slight interface damage occurs for specimens with a chiseling interface. (2) The influence on overall performance is different for changes in different design parameters. The thickness of concrete has a significant influence on the stress distribution of composite slabs. (3) Reliable interface simulation is conducted in the finite element models based on interface test results. The stress variation patterns are reflected in the change of design parameters. Full article
(This article belongs to the Special Issue Ultra High Performance Concrete (UHPC): Current and Future Research)
Show Figures

Figure 1

21 pages, 9903 KB  
Article
Experimental Study on the Flexural Behaviors of Prestressed Segmental Ultra–High–Performance Concrete Channels and Reinforced Conventional Concrete Deck Composite Girders
by Yicong Chen, Jialiang Zhou, Fangzhi Guo, Baochun Chen and Camillo Nuti
Buildings 2023, 13(7), 1841; https://doi.org/10.3390/buildings13071841 - 20 Jul 2023
Cited by 3 | Viewed by 1767
Abstract
Flexural testing on two prestressed segmental ultra–high–performance concrete channels and reinforced conventional concrete deck composite girders (PSUC–RCCD) was carried out. One was made up of four segments with dry joints, and the other was formed of one channel beam without a dry joint. [...] Read more.
Flexural testing on two prestressed segmental ultra–high–performance concrete channels and reinforced conventional concrete deck composite girders (PSUC–RCCD) was carried out. One was made up of four segments with dry joints, and the other was formed of one channel beam without a dry joint. Both of them poured a conventional concrete deck slab on site. The mechanical behaviors of the girders, including the whole loading process, the crack pattern, and the failure mode were investigated and compared. The effect of the number of segments and the steel fiber volume fraction of UHPC on the bending behavior of the PSUC–RCCD girder was explored using the finite element method. This study showed that the loading process of semi-segmental and integral girders is similar; the whole loading process of the girders can be divided into the elastic phase, crack development, and the failure phase. The only notable difference between the two girders was the stage of crack development; specifically, after cracking, the stiffness of the semi-segmental girder reduced rapidly, while the “bridging effect” of the steel fibers in the integrated girder caused a slow reduction in rigidity. The flexural cracks in the semi-segmental girder were significantly less than those in the integral girder in terms of the number of cracks, and were present only at the joints. The finite element analysis showed that the number of segments had little influence on the flexural capacity of the girders, but the girders with even numbers of segments cracked earlier than those with odd segments. Increasing the steel fiber volume fraction in UHPC (ultra–high–performance concrete) had a small effect on the cracking load of the semi-segmental girders but enhanced its ultimate flexural capacity. Based on this experiment, a calculated method for estimating the flexural capacity of semi-sectional girders was proposed. The calculated values were in good agreement with the experimental and finite element values. In the preliminary design, the flexural capacity of the semi-segmental section could be estimated by multiplying the flexural capacity of the integral section by a resistance factor of 0.95. Full article
Show Figures

Figure 1

29 pages, 18541 KB  
Article
Experimental and Numerical Investigation of the Shear Performance of PSCC Shear Connectors with Poured UHPC
by Fengli Zhou, Chunwu Guo, Jiangtao Zhang, Jincen Guo, Jinlong Jiang and Lulin Ning
Buildings 2023, 13(1), 212; https://doi.org/10.3390/buildings13010212 - 12 Jan 2023
Cited by 4 | Viewed by 2905
Abstract
Assembled steel-composite bridges generally use stud connectors to achieve the connection between the deck slab and the steel main girders. However, the commonly-used cluster studs weaken the integrity of the precast deck slabs and are not conducive to reducing the size of the [...] Read more.
Assembled steel-composite bridges generally use stud connectors to achieve the connection between the deck slab and the steel main girders. However, the commonly-used cluster studs weaken the integrity of the precast deck slabs and are not conducive to reducing the size of the precast deck slabs. Based on the excellent mechanical performance of UHPC, a precast steel-concrete composite bridge system consisting of precast bridge deck slabs, bonding cavities, and steel girders was proposed in this study. The system was named PSCC (Precast Steel-Concrete Connectors). To verify the applicability of PSCC connectors in engineering, push-out tests and finite element analysis were carried out in this paper to investigate the shear performance and influence parameters of PSCC connectors. The results showed that compared with the full bonding at the steel-UHPC interface, the shear bearing capacity of the specimens with 30% debonded area rate (the ratio of defect area to total interface area) and the shear bearing capacity of the specimens with 60% debonded area rate decreased by 0.35% and 9.74%, the elastic stiffness decreased by 14.86% and 21.72%, and the elastic-plastic stiffness decreased by 1.6% and 12.8%, respectively. When the steel-UHPC percentage of debonded area is less than 30%, the shear resistance of PSCC connectors is affected very little. However, when the steel-UHPC percentage of debonded area is 60%, the shear resistance of PSCC connectors is greatly affected. Therefore, adequate filling of the UHPC connection layer should be ensured in the project. In addition, the PSCC connectors have excellent ductility, their characteristic slip value Su is much higher than the EC4 specification of 6 mm, and they have better shear performance than conventionally installed stud connectors. According to the results of the parametric analysis, it was found that the failure mode of the PSCC connectors was shear reinforcement fracture when the area ratio of shear reinforcement to stud was less than 1.55, under the premise of the same material strength. On the contrary, the failure mode of PSCC connections was stud fracture. When the transverse spacing of both studs and shear reinforcement is 4d, the PSCC connectors can maintain a high ultimate load capacity while reducing the amount of UHPC in the bonding cavity. Therefore, 4d was chosen as the best spacing for both studs and shear reinforcement. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 7628 KB  
Article
Study on Shear-Lag Effect of Steel–UHPC Ribbed Slab Composite Structures Using Bar Simulation Method
by Chengjun Tan, Yufei Zhang, Hua Zhao, Bin Zhang and Tie Du
Buildings 2022, 12(11), 1884; https://doi.org/10.3390/buildings12111884 - 4 Nov 2022
Cited by 8 | Viewed by 2705
Abstract
Recently, Ultra-High Performance Concrete (UHPC) has attracted increasing attention in civil engineering. Numerous steel–UHPC composite structures have been constructed around the world. The proper consideration of the shear-lag effect has a significant influence on the safety of structures. In view of the shear-lag [...] Read more.
Recently, Ultra-High Performance Concrete (UHPC) has attracted increasing attention in civil engineering. Numerous steel–UHPC composite structures have been constructed around the world. The proper consideration of the shear-lag effect has a significant influence on the safety of structures. In view of the shear-lag effect of steel–UHPC ribbed slab composite structure (SU-RSCS) in the elastic stage, a theoretical calculation model based on the bar simulation method is first developed. Then, the feasibility and accuracy of that are verified using both experimental data and numerical simulation. Moreover, many factors (including width-to-span ratio, the ratio of rib height to UHPC layer thickness, the ratio of rib width to rib spacing, and the number of transverse ribs) are parametrically investigated to further investigate the structural shear-lag effect using the proposed method. In addition, the orthogonal analysis is applied to determine the sensitivity of each parameter to the shear-lag effect. The parametric interactions are also considered. At last, the comparison between calculation results of the proposed method and specifications are discussed. The results show that the proposed approach can accurately predict the shear-lag effect on SU-RSCSs in the elastic stage. It is also found that the width-to-span ratio has a great influence on the structural shear-lag effect, while the number of transverse ribs has no significant influence on that. Full article
(This article belongs to the Special Issue Reinforced Concrete Buildings)
Show Figures

Graphical abstract

Back to TopTop