Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,994)

Search Parameters:
Keywords = static stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3543 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
21 pages, 5973 KiB  
Article
Soft Conductive Textile Sensors: Characterization Methodology and Behavioral Analysis
by Giulia Gamberini, Selene Tognarelli and Arianna Menciassi
Sensors 2025, 25(14), 4448; https://doi.org/10.3390/s25144448 - 17 Jul 2025
Abstract
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize [...] Read more.
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize fabric-based resistive stretching sensors, focusing on both static and dynamic performance, for application in a smart vascular simulator for surgical training. Five sensors, called #1–#5, were developed using conductive fabrics integrated into soft silicone. Stability and fatigue tests were performed to evaluate their behavior. The surface structure and fiber distribution were analyzed using digital microscopy and scanning electron microscopy, while element analysis was performed via Energy-Dispersive X-ray Spectroscopy. Sensors #1 and #3 are the most stable with a low relative standard deviation and good sensitivity at low strains. Sensor #3 showed the lowest hysteresis, while sensor #1 had the widest operating range (0–30% strain). Although all sensors showed non-monotonic behavior across 0–100% strain, deeper investigation suggested that the sensor response depends on the configuration of conductive paths within and between fabric layers. Soft fabric-based resistive sensors represent a promising technical solution for physical simulators for surgical training. Full article
(This article belongs to the Special Issue Sensor Technology in Robotic Surgery)
Show Figures

Graphical abstract

18 pages, 1149 KiB  
Article
Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study
by Alexandru Grigorie Nastase, Alin Mihai Vasilescu, Ana Maria Trofin, Mihai Zabara, Ramona Cadar, Ciprian Vasiluta, Nutu Vlad, Bogdan Mihnea Ciuntu, Corina Lupascu Ursulescu, Cristina Muzica, Irina Girleanu, Iulian Buzincu, Florin Iftimie and Cristian Dumitru Lupascu
Life 2025, 15(7), 1112; https://doi.org/10.3390/life15071112 - 16 Jul 2025
Viewed by 151
Abstract
Introduction: Liver transplantation remains the definitive treatment for end-stage liver disease but faces critical challenges including organ shortages and preservation difficulties, particularly with extended criteria donor (ECD) grafts. Hypothermic machine perfusion (HMP) represents a promising alternative to traditional static cold storage (SCS). Methods: [...] Read more.
Introduction: Liver transplantation remains the definitive treatment for end-stage liver disease but faces critical challenges including organ shortages and preservation difficulties, particularly with extended criteria donor (ECD) grafts. Hypothermic machine perfusion (HMP) represents a promising alternative to traditional static cold storage (SCS). Methods: This retrospective study analyzed outcomes from 62 liver transplant recipients between 2016 and 2025, comparing 8 grafts preserved by HMP using the Liver Assist® system and 54 grafts preserved by SCS. Parameters assessed included postoperative complications, hemodynamic stability, ischemia times, and survival outcomes. Results: HMP significantly reduced surgical (0% vs. 75.9%, p = 0.01) and biliary complications (0% vs. 34.4%, p = 0.004), improved hemodynamic stability post-reperfusion (∆MAP%: 1 vs. 21, p = 0.006), and achieved superior one-year survival rates (100% vs. 84.4%). Despite longer ischemia periods, grafts treated with HMP exhibited fewer adverse effects from ischemia-reperfusion injury. Discussion: These findings highlight the substantial benefits of HMP, particularly in improving graft quality from marginal donors and reducing postoperative morbidity. Further adoption of this technology could significantly impact liver transplantation outcomes by expanding the viable donor pool. Conclusions: The study underscores the effectiveness of hypothermic machine perfusion (HMP) as a superior preservation method compared to traditional static cold storage (SCS), HMP appears to be associated with improved short-term outcomes in liver transplantation. By substantially reducing postoperative complications and enhancing graft viability, HMP emerges as a pivotal strategy for maximizing the use of marginal donor organs. Further research and broader clinical implementation are recommended to validate these promising results and to fully harness the potential of HMP in liver transplantation. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 136
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 87
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 4282 KiB  
Article
Optimizing Perforated Duct Systems for Energy-Efficient Ventilation in Semi-Closed Greenhouses Through Process Regulation
by Chuanqing Wang, Jianlu Fu, Qiusheng Zhang, Baoyong Sheng, Fen He, Guanshan Zhang, Xiaoming Ding and Nan Cao
Processes 2025, 13(7), 2253; https://doi.org/10.3390/pr13072253 - 15 Jul 2025
Viewed by 157
Abstract
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), [...] Read more.
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), and inlet velocity (4–8 m/s)—are co-optimized. Model validation showed that the mean relative errors were 8.6% for velocity, 2.3% for temperature, and pressure deviations below 5 Pa, with the response surface model achieving an R2 of 0.9831 (p < 0.0001). Larger hole diameters improved CV-v, while wider spacings led to a decrease in uniformity. Pressure loss followed an opposite trend. Temperature variation was mostly affected by inlet velocity. Sensitivity analysis revealed that hole diameter was the most influential factor, followed by spacing and velocity, with a significant interaction between diameter and spacing. Using entropy-weighted TOPSIS coupled with NSGA-II, the optimization identified an optimal configuration (hole diameter = 9.0 mm, spacing = 65 mm, velocity = 7.0 m/s). This solution achieved a 58.8% reduction in CV-v, a 10.8% decrease in ΔP, and a 5.2% improvement in CV-t, while stabilizing inlet static pressure at 72.8 Pa. Critically, it reduced power consumption by 17.4%—directly lowering operational costs for farmers. The “larger diameter, wider spacing” strategy resolves energy-uniformity conflicts, demonstrating how integrated multi-objective process control enables efficient greenhouse ventilation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 7278 KiB  
Article
A Study on Three-Dimensional Flexible Mesh Influence on the Stability of Reserved Tunnels in Cemented Backfill
by Xiaosheng Liu, Weijun Wang and Hao Li
Materials 2025, 18(14), 3291; https://doi.org/10.3390/ma18143291 - 12 Jul 2025
Viewed by 179
Abstract
Ordinary backfill has characteristics such as low compressive strength, low tensile strength, and easy bending, which cannot meet the stability requirements of reserved tunnels, but three-dimensional flexible mesh can be added to improve it. In this paper, mechanical characteristics and displacement were taken [...] Read more.
Ordinary backfill has characteristics such as low compressive strength, low tensile strength, and easy bending, which cannot meet the stability requirements of reserved tunnels, but three-dimensional flexible mesh can be added to improve it. In this paper, mechanical characteristics and displacement were taken as the evaluation index, an optimal three-dimensional flexible mesh was studied by a laboratory experiment of small samples, then backfill with a reserved roadway was used to carry out a large-sample similarity simulation experiment, and finally, a numerical simulation was carried out. The research shows that the three-dimensional flexible mesh had a strengthening effect on the backfill, especially on the tensile strength and shear strength of the backfill. The strengths increased by 1.57~2.00 times and 2.00~2.56 times, respectively. After backfill is damaged by external forces, three-dimensional flexible mesh can also hinder the detachment of backfill fragments. The effect of the three-dimensional flexible mesh on the backfill under static pressure was calculated by using numerical simulation, and it was found that the three-dimensional flexible mesh played an effective support role for the roadway inside the backfill, effectively reducing the displacement of the roadway roof by 21.43% and the strain energy by 40%. Full article
(This article belongs to the Special Issue Sustainable Materials for Engineering Applications)
Show Figures

Figure 1

14 pages, 1459 KiB  
Article
Research on the Dynamic Response of the Catenary of the Co-Located Railway for Conventional/High Speed Trains in High-Wind Area
by Guanghui Li, Yongzhi Gou, Binqian Guo, Hongmei Li, Enfan Cao and Junjie Ma
Infrastructures 2025, 10(7), 182; https://doi.org/10.3390/infrastructures10070182 - 11 Jul 2025
Viewed by 172
Abstract
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed [...] Read more.
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed under varying operational conditions. The key findings reveal that an elevated rated tension in the contact wire and messenger wire reduces the pantograph lift in wind areas with no crosswind compared to non-wind areas, with an average lift reduction of 8.52% and diminished standard deviation, indicating enhanced system stability. Under a 20 m/s crosswind, both tested pantograph designs maintain contact force and dynamic lift within permissible thresholds, while significant catenary undulations predominantly occur at mid-span locations. Active control strategies preserve the static lift force but induce pantograph flattening under compression, reducing aerodynamic drag and resulting in smaller contact force fluctuations relative to normal-speed sections. In contrast, passive control increases static lift, thereby causing greater fluctuations in contact force compared to baseline conditions. The superior performance of active control is attributed to its avoidance of static lift amplification, which dominates the dynamic response in passive systems. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

9 pages, 1693 KiB  
Proceeding Paper
Methodology for the Design and Verification of a Securing Structure for Transporting Cylindrical Rollers on Load Bogies
by Plamen Kasabov and Marian Kalestrov
Eng. Proc. 2025, 100(1), 26; https://doi.org/10.3390/engproc2025100026 - 10 Jul 2025
Viewed by 34
Abstract
The safe transport of cylindrical loads such as metal, paper, or polymer rollers requires specialized securing structures that address the complex dynamic forces encountered during rail movement. This paper presents a structured methodology for the design and verification of such securing systems, combining [...] Read more.
The safe transport of cylindrical loads such as metal, paper, or polymer rollers requires specialized securing structures that address the complex dynamic forces encountered during rail movement. This paper presents a structured methodology for the design and verification of such securing systems, combining theoretical analysis, standardized load models, and numerical simulations. The method includes load calculations based on EN 12195-1:2010, EN 15551, and Eurocode 1, and validation through finite element modeling in Ansys Workbench. The proposed structure ensures stability under static and dynamic loads, including acceleration, braking, turning, and wind forces, while optimizing wagon space utilization. Simulation results confirm that the design meets strength and safety criteria without exceeding material stress limits, offering a reliable solution for the secure transport of cylindrical rollers. Full article
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 259
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 1404 KiB  
Article
Government Revenue Structure and Fiscal Performance in the G7: Evidence from a Panel Data Analysis
by Costinela Fortea
World 2025, 6(3), 97; https://doi.org/10.3390/world6030097 - 9 Jul 2025
Viewed by 333
Abstract
In a global context characterized by budgetary pressures, aging populations, and accelerated economic transitions, the capacity of countries to mobilize stable and sustainable tax revenues represents a crucial pillar for maintaining macroeconomic stability and social cohesion. This research investigated the determinants of total [...] Read more.
In a global context characterized by budgetary pressures, aging populations, and accelerated economic transitions, the capacity of countries to mobilize stable and sustainable tax revenues represents a crucial pillar for maintaining macroeconomic stability and social cohesion. This research investigated the determinants of total tax revenues in the developed economies of the G7 group (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) during the period 2000–2022, employing both static and dynamic panel econometric approaches. The estimated model considered total tax revenues as the dependent variable, while the explanatory variables encompassed the main categories of government revenues: direct taxes (personal and corporate income), indirect taxes (consumption, trade, and other taxes), social contributions, grants, other non-tax revenues, and institutional quality indicators (regulatory quality and control of corruption). The empirical findings revealed that all tax components analyzed exert a positive and significant influence on total tax revenues, with particularly strong effects observed for consumption taxes, social contributions, and personal income taxes. Based on these results, the study provides policy recommendations aimed at diversifying revenue sources, balancing direct and indirect taxation, and broadening the tax base equitably. The study advances the literature on international taxation by offering an integrated and comparative analysis of the revenue structures in advanced economies, while also identifying relevant pathways for sustainable tax reforms in a dynamic global environment. Full article
Show Figures

Figure 1

21 pages, 4409 KiB  
Article
Differences in Time Comparison and Positioning of BDS-3 PPP-B2b Signal Broadcast Through GEO
by Hongjiao Ma, Jinming Yang, Xiaolong Guan, Jianfeng Wu and Huabing Wu
Remote Sens. 2025, 17(14), 2351; https://doi.org/10.3390/rs17142351 - 9 Jul 2025
Viewed by 191
Abstract
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing [...] Read more.
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing and positioning. This paper investigates the disparities in time comparison and positioning capabilities associated with the PPP-B2b signals transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites (C59 and C61). Three stations in the Asia–Pacific region were selected to establish two time comparison links. The study evaluated the time transfer accuracy of PPP-B2b signals by analyzing orbit and clock corrections from BDS-3 GEO satellites C59 and C61. Using multi-GNSS final products (GBM post-ephemeris) as a reference, the performance of PPP-B2b-based time comparison was assessed. The results indicate that while both satellites achieve comparable time transfer accuracy, C59 demonstrates superior stability and availability compared to C61. Additionally, five stations from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) were selected to assess the positioning accuracy of PPP-B2b corrections transmitted by BDS-3 GEO satellites C59 and C61. Using IGS/iGMAS weekly solution positioning results as a reference, the analysis demonstrates that PPP-B2b enables centimeter-level static positioning and decimeter-level simulated kinematic positioning. Furthermore, C59 achieves higher positioning accuracy than C61. Full article
Show Figures

Figure 1

26 pages, 1315 KiB  
Article
Elasticities of Food Import Demand in Arab Countries: Implications for Food Security and Policy
by Rezgar Mohammed and Suliman Almojel
Sustainability 2025, 17(14), 6271; https://doi.org/10.3390/su17146271 - 8 Jul 2025
Viewed by 391
Abstract
Rising population, combined with declining home food production, in Arab nations has resulted in increased food imports that intensifies their dependence on international markets for vital food supplies. These nations face challenges in achieving food security because crude oil price volatility creates difficulties [...] Read more.
Rising population, combined with declining home food production, in Arab nations has resulted in increased food imports that intensifies their dependence on international markets for vital food supplies. These nations face challenges in achieving food security because crude oil price volatility creates difficulties in managing the expenses of imported food products. This research calculates the income and price elasticities of imported food demand to understand consumer behavior changes in response to income and price variations, which helps to explain their impact on regional food security. To our knowledge, this research presents the first analysis of imported food consumption patterns across Arab countries according to their income brackets. This study employs the static Almost Ideal Demand System model to examine food import data spanning from 1961 to 2020. The majority of imported food categories demonstrate inelastic price and income demand, which means that their essential food consumption remains stable despite cost fluctuations. The need for imports makes Arab nations vulnerable to external price changes, which endangers their food security. This research demonstrates why governments must implement policies through subsidies and taxation to reduce price volatility risks while ensuring food stability, which will lead to sustained food security for these nations. Full article
Show Figures

Figure 1

21 pages, 518 KiB  
Study Protocol
Development and Implementation of a Core Training Protocol: Effects on Muscle Activation, Hypertrophy, Balance, and Quality of Life in Recreationally Active Adults
by Ioannis Tsartsapakis, Aglaia Zafeiroudi, Ioannis Trigonis, Christos Lyrtzis and Konstantinos Astrapellos
Methods Protoc. 2025, 8(4), 77; https://doi.org/10.3390/mps8040077 - 8 Jul 2025
Viewed by 414
Abstract
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, [...] Read more.
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, static balance, and neuromuscular control in recreationally active, non-athletic adults. Participants will undertake a structured intervention comprising progressive triads targeting core stability, strength, and power. Assessment methods include surface electromyography (EMG), ultrasound imaging, three-dimensional force plates, Kinovea motion analysis, and the Satisfaction With Life Scale (SWLS) questionnaire. Expected outcomes include enhanced core muscle activation, improved static balance, and increased core-generated force during overhead medicine ball slam trials. Additionally, the intervention aims to facilitate hypertrophy of the transverse abdominis, internal oblique, and lumbar multifidus muscles, contributing to spinal resilience and motor control. This protocol bridges gaps in core training methodologies and advances their scalability for recreational populations. The proposed model offers a structured, evidence-informed framework for improving core activation, postural stability, muscle adaptation, movement efficiency, and perceived quality of life in recreationally active individuals. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

25 pages, 7875 KiB  
Article
A Comparative Study of Direct Power Control Strategies for STATCOM Using Three-Level and Five-Level Diode-Clamped Inverters
by Diyaa Mustaf Mohammed, Raaed Faleh Hassan, Naseer M. Yasin, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Energies 2025, 18(13), 3582; https://doi.org/10.3390/en18133582 - 7 Jul 2025
Viewed by 312
Abstract
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, [...] Read more.
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, such as Virtual Synchronous Generator (VSG) and Static Compensator (STATCOM) configurations. DPC accomplishes several significant goals by avoiding the inner current control loops and doing away with coordinating transformations. The application of STATCOM based on three- and five-level diode-clamped inverters is covered in this work. The study checks the abilities of DPC during power control adjustments during diverse grid operation scenarios while detailing how multilevel inverters affect system stability and power reliability. Proportional Integral (PI) controllers are used to control active and reactive power levels as part of the control approach. This study shows that combining DPC with Sinusoidal Pulse Width Modulation (SPWM) increases the system’s overall electromagnetic performance and control accuracy. The performance of STATCOM systems in power distribution and transient response under realistic operating conditions is assessed using simulation tools applied to three-level and five-level inverter topologies. In addition to providing improved voltage quality and accurate reactive power control, the five-level inverter structure surpasses other topologies by maintaining a total harmonic distortion (THD) below 5%, according to the main findings. The three-level inverter operates efficiently under typical grid conditions because of its straightforward design, which uses less processing power and computational complexity. Full article
Show Figures

Figure 1

Back to TopTop