Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = star fundamental parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2516 KB  
Article
A Novel Lightweight Deep Learning Model for Boar Sperm Head Detection in Microscopic Images: YOLO11_SRP
by Mingchao Pan, Lin Gao, Zhendong Zhu, Yingqi Li and Mingkang Gao
Animals 2026, 16(2), 258; https://doi.org/10.3390/ani16020258 - 15 Jan 2026
Abstract
Accurate and quantitative detection of boar sperm heads is essential for breeding selection and reproductive management. Manual microscopic counting is time-consuming, labor-intensive, and prone to subjective bias, while existing computer-based algorithms often struggle to recognize sperm cells accurately when they overlap or move [...] Read more.
Accurate and quantitative detection of boar sperm heads is essential for breeding selection and reproductive management. Manual microscopic counting is time-consuming, labor-intensive, and prone to subjective bias, while existing computer-based algorithms often struggle to recognize sperm cells accurately when they overlap or move rapidly in high-magnification microscopic images. This study proposes a lightweight boar sperm detection model, YOLO11_SRP, designed to improve small-object recognition in complex microscopic scenarios. The model integrates a lightweight StarNet backbone, a rectangular self-calibration module for enhanced spatial feature modeling, and an additional low-level detection layer optimized for tiny targets. We evaluated the model on a boar sperm microscopic image dataset and compared it with the standard YOLO11s framework. The results show that YOLO11_SRP achieves an mAP@0.5 of 91.9%, representing a 13.9% improvement over YOLO11s, while simultaneously reducing parameters by 39% and computational cost by 14.1%. These findings demonstrate that YOLO11_SRP provides efficient and accurate sperm detection, supporting the development of efficient and reliable automated sperm analysis pipelines, in which sperm head detection serves as a fundamental preprocessing step. Full article
Show Figures

Figure 1

13 pages, 342 KB  
Article
Evaluating Gaia Astrometric Quality and Distances for Galactic Hot Supergiants
by Nadezhda L. Vaidman, Shakhida T. Nurmakhametova, Aziza B. Umirova, Serik A. Khokhlov, Aldiyar T. Agishev and Berik S. Yermekbayev
Universe 2025, 11(11), 359; https://doi.org/10.3390/universe11110359 - 30 Oct 2025
Viewed by 712
Abstract
Distances to Galactic BA supergiants are essential for determining their luminosities, radii, and positions on the Hertzsprung–Russell diagram, yet Gaia parallaxes for these bright, extended sources are often affected by systematics. We compiled a homogeneous sample of 132 B0–A5 supergiants and re-evaluated their [...] Read more.
Distances to Galactic BA supergiants are essential for determining their luminosities, radii, and positions on the Hertzsprung–Russell diagram, yet Gaia parallaxes for these bright, extended sources are often affected by systematics. We compiled a homogeneous sample of 132 B0–A5 supergiants and re-evaluated their distances using a consistent, quality-controlled approach. Parallaxes from Gaia DR3 and EDR3 were corrected for a magnitude–colour zero-point bias and adjusted for excess noise through RUWE-dependent uncertainty inflation. A Bayesian inference with an exponentially decreasing space–density prior was then applied, adopting the catalogue with the smallest penalised total uncertainty. Distances were accepted only when the corrected parallax signal-to-noise ratio exceeded 2.5, the relative uncertainty was below 40%, and key Gaia quality indicators were nominal. The resulting catalogue delivers robust, quality-vetted distances with realistic uncertainties for each star, providing a reliable foundation for deriving fundamental parameters and for future studies of the flux-weighted gravity–luminosity relation and the evolution of Galactic BA supergiants. Full article
Show Figures

Figure 1

34 pages, 4140 KB  
Review
GW170817: A Short Review of the First Multimessenger Event in Gravitational Astronomy
by Rosa Poggiani
Galaxies 2025, 13(5), 112; https://doi.org/10.3390/galaxies13050112 - 19 Sep 2025
Cited by 1 | Viewed by 6311
Abstract
The first detection of gravitational waves from the binary black merger GW150914 started the era of gravitational astronomy. The observation of the binary neutron star merger GW170817 and of its associated electromagnetic counterpart GRB 170817A started multi-messenger gravitational astronomy. This short review discusses [...] Read more.
The first detection of gravitational waves from the binary black merger GW150914 started the era of gravitational astronomy. The observation of the binary neutron star merger GW170817 and of its associated electromagnetic counterpart GRB 170817A started multi-messenger gravitational astronomy. This short review discusses the discovery of GW170817 and the follow-up of the electromagnetic counterpart, together with the broad range of results in astrophysics and fundamental physics, including the Gamma-Ray Burst field. The GW170817/GRB 170817A observation showed that binary neutron star mergers can explain at least a fraction of short Gamma-Ray Bursts. The optical and infrared evolution of the associated AT 2017gfo transient showed that binary neutron star mergers are sites of r-process nucleo-synthesis. The combination of gravitational and electromagnetic observations has been used to estimate the Hubble parameter, the speed of gravitational waves, and the equation of state of nuclear matter. The increasing sensitivity of interferometric detectors and the forthcoming operation of third generation detectors will lead to an improved statistics of binary neutron star mergers. Full article
Show Figures

Figure 1

17 pages, 331 KB  
Article
Extensive and Intensive Aspects of Astrophysical Systems and Fine-Tuning
by Meir Shimon
Universe 2025, 11(8), 269; https://doi.org/10.3390/universe11080269 - 15 Aug 2025
Viewed by 648
Abstract
Most astrophysical systems (except for very compact objects such as, e.g., black holes and neutron stars) in our Universe are characterized by shallow gravitational potentials, with dimensionless compactness |Φ|rs/R1, where rs and [...] Read more.
Most astrophysical systems (except for very compact objects such as, e.g., black holes and neutron stars) in our Universe are characterized by shallow gravitational potentials, with dimensionless compactness |Φ|rs/R1, where rs and R are their Schwarzschild radius and typical size, respectively. While the existence and characteristic scales of such virialized systems depend on gravity, we demonstrate that the value of |Φ|—and thus the non-relativistic nature of most astrophysical objects—arises from microphysical parameters, specifically the fine structure constant and the electron-to-proton mass ratio, and is fundamentally independent of the gravitational constant, G. In fact, the (generally extensive) gravitational potential becomes ‘locally’ intensive at the system boundary; the compactness parameter corresponds to the binding energy (or degeneracy energy, in the case of quantum degeneracy pressure-supported systems) per proton, representing the amount of work that needs to be done in order to allow proton extraction from the system. More generally, extensive properties of gravitating systems depend on G, whereas intensive properties do not. It then follows that peak rms values of large-scale astrophysical velocities and escape velocities associated with naturally formed astrophysical systems are determined by electromagnetic and atomic physics, not by gravitation, and that the compactness, |Φ|, is always set by microphysical scales—even for the most compact objects, such as neutron stars, where |Φ| is determined by quantities like the pion-to-proton mass ratio. This observation, largely overlooked in the literature, explains why the Universe is not dominated by relativistic, compact objects and connects the relatively low entropy of the observable Universe to underlying basic microphysics. Our results emphasize the central but underappreciated role played by dimensionless microphysical constants in shaping the macroscopic gravitational landscape of the Universe. In particular, we clarify that this independence of the compactness, |Φ|, from G applies specifically to entire, virialized, or degeneracy pressure-supported systems, naturally formed astrophysical systems—such as stars, galaxies, and planets—that have reached equilibrium between self-gravity and microphysical processes. In contrast, arbitrary subsystems (e.g., a piece cut from a planet) do not exhibit this property; well within/outside the gravitating object, the rms velocity is suppressed and G reappears. Finally, we point out that a clear distinction between intensive and extensive astrophysical/cosmological properties could potentially shed new light on the mass hierarchy and the cosmological constant problems; both may be related to the large complexity of our Universe. Full article
(This article belongs to the Section Gravitation)
22 pages, 5394 KB  
Article
Unveiling the Variability and Chemical Composition of AL Col
by Surath C. Ghosh, Santosh Joshi, Samrat Ghosh, Athul Dileep, Otto Trust, Mrinmoy Sarkar, Jaime Andrés Rosales Guzmán, Nicolás Esteban Castro-Toledo, Oleg Malkov, Harinder P. Singh, Kefeng Tan and Sarabjeet S. Bedi
Galaxies 2025, 13(4), 93; https://doi.org/10.3390/galaxies13040093 - 14 Aug 2025
Viewed by 919
Abstract
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity [...] Read more.
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity characteristics. Using TESS short-cadence (120 s) SAP flux, we identified a rotational frequency of 0.09655 d1 (Prot=10.35733 d). Wavelet analysis reveals that while the amplitudes of the harmonic components vary over time, the strength of the primary rotational frequency remains stable. A SED analysis of multi-band photometric data yields an effective temperature (Teff) of 11,750 K. High-resolution spectroscopic observations covering wavelengthrange 4500–7000 Å provide refined estimates of Teff = 13,814 ± 400 K, logg = 4.09 ± 0.08 dex, and υsini = 16 ± 1 km s−1. Abundance analysis shows solar-like composition of O ii, Mg ii, S ii, and Ca ii, while helium is under-abundant by 0.62 dex. Rare earth elements (REEs) exhibit over-abundances of up to 5.2 dex, classifying the star as an Ap/Bp-type star. AL Col has a radius of R=3.74±0.48R, with its H–R diagram position estimating a mass of M=4.2±0.2M and an age of 0.12±0.01 Gyr, indicating that the star has slightly evolved from the main sequence. The TESS light curves were modeled using a three-evolving-spot configuration, suggesting the presence of differential rotation. This star is a promising candidate for future investigations of magnetic field diagnostics and the vertical stratification of chemical elements in its atmosphere. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

10 pages, 539 KB  
Article
Fundamental Parameters and Evolutionary Scenario of HD 327083
by Nadezhda L. Vaidman, Anatoly S. Miroshnichenko, Sergey V. Zharikov, Serik A. Khokhlov, Aldiyar T. Agishev and Berik S. Yermekbayev
Galaxies 2025, 13(3), 47; https://doi.org/10.3390/galaxies13030047 - 22 Apr 2025
Cited by 3 | Viewed by 984
Abstract
In this study, we present refined orbital and fundamental parameters of the Galactic B[e] supergiant binary system HD 327083 using the Bayesian Markov Chain Monte Carlo (MCMC) method applied to the radial velocities data of HD 327083. We found that the system is [...] Read more.
In this study, we present refined orbital and fundamental parameters of the Galactic B[e] supergiant binary system HD 327083 using the Bayesian Markov Chain Monte Carlo (MCMC) method applied to the radial velocities data of HD 327083. We found that the system is well described by a circular orbital model with the mass ratio of the components of q=1.15±0.07. We modeled the evolutionary history of the system using MESA code. Initially, the system was formed by a binary with the orbital period of Porb=108 day, which contained stars with 13.00 ±0.05 M and 11.50±0.05 M masses. They had a relatively slow rotation υrot=0.40±0.13υcrit and provided a strong stellar wind. The current system age is 13.6±0.1 Myr, and the state of the system corresponds to a close filling of the high massive component’s Roche lobe and a beginning of the mass transfer. The mass-transfer event will occur in a short interval of ≲0.1 Myr only. After that, the mass of the post-primary drops to ≈5 M, the post-secondary mass grows until ≈20 M, and the binary will convert to a detached system with a long orbital period of ≈700 days. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

11 pages, 2062 KB  
Article
IRAS 17449+2320: A Possible Binary System with the B[e] Phenomenon and a Strong Magnetic Field
by Sergey Zharikov, Anatoly Miroshnichenko, Inna Reva, Raushan Kokumbaeva, Chingis Omarov, Steve Danford, Alicia Aarnio, Nadine Manset, Ashish Raj, S. Drew Chojnowski and Joseph Daglen
Galaxies 2025, 13(2), 32; https://doi.org/10.3390/galaxies13020032 - 31 Mar 2025
Cited by 2 | Viewed by 1176
Abstract
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared [...] Read more.
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared excesses of these objects assumes an ongoing or past mass transfer between the components in binary systems. The object is the only star with a gaseous and dusty envelope, where a strong and variable magnetic field (5.5–7.2 kG) was found through the splitting of some spectral lines. Additionally, we discovered the regular appearance of a red-shifted absorption component in spectral lines of neutral hydrogen, helium, and oxygen as well as one of ionized silicon with a period of 36.13 ± 0.20 days. We show that the magnetic field strength also followed this period. The process was accompanied by increasing emission component strengths for the hydrogen lines as well as the helium and metallic absorption lines. We refined the fundamental parameters of the optical counterpart of IRAS 17449+2320 (Teff=9800±300 K, log L/L=1.86±0.06, vsini=9±2 km s−1) and concluded that the star was slightly metal-deficient and viewed nearly pole-on. No signs of a secondary component were found. Possible interpretations of the observed phenomena are suggested, and some earlier findings about the object’s nature are revised. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

19 pages, 5901 KB  
Article
Scaling Relations of Early-Type Galaxies in MOND
by Robin Eappen and Pavel Kroupa
Galaxies 2025, 13(2), 22; https://doi.org/10.3390/galaxies13020022 - 14 Mar 2025
Viewed by 1677
Abstract
We investigate the shape and morphology of early-type galaxies (ETGs) within the framework of Modified Newtonian Dynamics (MOND). Building on our previous studies, which demonstrated that the monolithic collapse of primordial gas clouds in MOND produces galaxies (noted throughout as ‘model relics’ in [...] Read more.
We investigate the shape and morphology of early-type galaxies (ETGs) within the framework of Modified Newtonian Dynamics (MOND). Building on our previous studies, which demonstrated that the monolithic collapse of primordial gas clouds in MOND produces galaxies (noted throughout as ‘model relics’ in the context of this work) with short star formation timescales and a downsizing effect as observationally found, we present new analyses on the resulting structural and morphological properties of these systems. Initially, the monolithically formed galaxies display disk-like structures. In this study, we further analyze the transformations that occur when these galaxies merge, observing that the resulting systems (noted throughout as ‘merged galaxies’ in the context of this work) take on elliptical-like shapes, with the (Vrot/Vσ)–ellipticity relations closely matching observational data across various projections. We extend this analysis by examining the isophotal shapes and rotational parameter (λR) of both individual relics and merged galaxies. The results indicate that ETGs may originate in pairs in dense environments, with mergers subsequently producing elliptical structures that align well with the observed kinematic and morphological characteristics. Finally, we compare both the model relics and merged galaxies with the fundamental plane and Kormendy relation of observed ETGs, finding close agreement. Together, these findings suggest that MOND provides a viable physical framework for the rapid formation and morphological evolution of ETGs. Full article
(This article belongs to the Special Issue Alternative Interpretations of Observed Galactic Behaviors)
Show Figures

Figure 1

21 pages, 1314 KB  
Article
Revisiting Holographic Dark Energy from the Perspective of Multi-Messenger Gravitational Wave Astronomy: Future Joint Observations with Short Gamma-Ray Bursts
by Tao Han, Ze Li, Jing-Fei Zhang and Xin Zhang
Universe 2025, 11(3), 85; https://doi.org/10.3390/universe11030085 - 6 Mar 2025
Cited by 8 | Viewed by 1210
Abstract
The advent of third-generation (3G) gravitational-wave (GW) detectors opens new opportunities for multi-messenger observations of binary neutron star merger events, holding significant potential for probing the history of cosmic expansion. In this paper, we investigate the holographic dark energy (HDE) model by using [...] Read more.
The advent of third-generation (3G) gravitational-wave (GW) detectors opens new opportunities for multi-messenger observations of binary neutron star merger events, holding significant potential for probing the history of cosmic expansion. In this paper, we investigate the holographic dark energy (HDE) model by using the future GW standard siren data observed from the 3G GW detectors and the short γ-ray burst THESEUS-like detector joint observations. We find that GW data alone can achieve a relatively precise estimation of the Hubble constant, with precision of 0.20.6%, but its ability to constrain other cosmological parameters remains limited. Nonetheless, since the GW data can break parameter degeneracies generated by the mainstream EM observations, CMB + BAO + SN (CBS), GW standard sirens play a crucial role in enhancing the accuracy of parameter estimation. With the addition of GW data to CBS, the constraints on cosmological parameters H0, c and Ωm can be improved by 63–88%, 27–44% and 55–70%. In summary, observations of GW standard sirens from 3G GW detectors could be pivotal in probing the fundamental nature of dark energy. Full article
Show Figures

Figure 1

10 pages, 551 KB  
Article
AS 314: A Massive Dusty Hypergiant or a Low-Mass Post-Asymptotic Giant Branch Object?
by Aigerim Bakhytkyzy, Anatoly S. Miroshnichenko, Valentina G. Klochkova, Vladimir E. Panchuk, Sergey V. Zharikov, Laurent Mahy, Hans Van Winckel, Aldiyar T. Agishev and Serik A. Khokhlov
Galaxies 2025, 13(2), 17; https://doi.org/10.3390/galaxies13020017 - 28 Feb 2025
Viewed by 1151
Abstract
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental [...] Read more.
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental parameters and evolutionary status. Comparison of high-resolution spectra of AS 314 taken over 20 years ago with those of Luminous Blue Variables and other high-luminosity objects suggested its observed properties can be explained by a strong stellar wind from a distant (D∼10 kpc) massive star, possibly in a binary system. However, a recent assessment of its low-resolution spectrum along with a new distance from a Gaia parallax (∼1.6 kpc) resulted in an alternative hypothesis that AS 314 is a low-mass post-asymptotic giant branch (post-AGB) star. The latter hypothesis ignored the high-resolution data, which gave rise to the former explanation. We collected over 30 mostly high-resolution spectra taken in 1997–2023, supplemented them with results of long-term photometric surveys, compared the spectra and the spectral energy distribution with those of post-AGB objects and B/A supergiants, and concluded that the observed properties AS 314 are more consistent with those of the latter. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

14 pages, 565 KB  
Article
A Parameter Study of 1D Atmospheric Models of Pulsating AGB Stars
by Henry A. Prager, Lee Anne M. Willson, Joyce A. Guzik, Michelle J. Creech-Eakman and Qian Wang
Galaxies 2024, 12(6), 81; https://doi.org/10.3390/galaxies12060081 - 29 Nov 2024
Viewed by 1669
Abstract
Using the atmospheric pulsation code written by George Bowen, we have performed a parameter study examining the effects of modifying various parameters of models of oxygen-rich AGB atmospheres pulsating in the fundamental and first-overtone modes. For each pulsation mode, we have examined the [...] Read more.
Using the atmospheric pulsation code written by George Bowen, we have performed a parameter study examining the effects of modifying various parameters of models of oxygen-rich AGB atmospheres pulsating in the fundamental and first-overtone modes. For each pulsation mode, we have examined the effects of adjusting the dust condensation temperature, dust condensation temperature range, pulsation amplitude, dust opacity, and metallicity. Our model grids are generated with the constraint that their luminosities are chosen to span the range of observed mass loss rates at a chosen mass. The dust condensation temperature, pulsation amplitude, and dust opacity have strong effects on the ultimate location and shape of the final model grids in the mass luminosity plane. The mass loss rate evolution of the fundamental and first-overtone mode models show a significant difference in behavior. While the fundamental mode models exhibit the typically assumed power–law relation with mass and luminosity, the first-overtone mode models show significant non-power law behavior at observed mass loss rates. Effectively, models in the first-overtone mode require somewhat higher luminosities to reach the same mass loss rates seen in fundamental mode models of the same mass, consistent with observed AGB stars. Full article
Show Figures

Figure 1

14 pages, 1078 KB  
Article
A “Wonderful” Reference Dataset of Mira Variables
by Dana K. Baylis-Aguirre, Michelle J. Creech-Eakman and Gerard T. van Belle
Galaxies 2024, 12(6), 72; https://doi.org/10.3390/galaxies12060072 - 31 Oct 2024
Viewed by 2347
Abstract
The conditions in Mira variable atmospheres make them wonderful laboratories to study a variety of stellar physics such as molecule–grain formation, dust production, shock chemistry, stellar winds, mass loss, opacity-driven pulsation, and shocks. We were awarded an NSF grant to analyze over a [...] Read more.
The conditions in Mira variable atmospheres make them wonderful laboratories to study a variety of stellar physics such as molecule–grain formation, dust production, shock chemistry, stellar winds, mass loss, opacity-driven pulsation, and shocks. We were awarded an NSF grant to analyze over a decade of synoptic observations from the Palomar Testbed Interferometer (PTI) of 106 Miras to curate a Mira Reference Dataset. The Miras included in this dataset include M-types, S-types, and C-types, and span a wide range of pulsation periods. PTI measured K-band angular sizes that when combined with a distance allow us to directly determine fundamental stellar parameters such as effective temperature, radial size, and bolometric flux. Supplementing observations with interferometric measurements of the stars opens the Mira laboratory to a wealth of different experiments. We provide two case studies to serve as examples of the power of the Mira Reference Dataset. The first case study describes combining PTI measurements with Spitzer IRS spectra of M-type Miras, which allowed us to fully characterize CO2 gas in their atmospheres. The second case study examines how PTI narrow-band data can be used to study phase-dependent pulsation effects on the stellar atmosphere. We provide a list of all the Miras (with coordinates) included in the set for anyone who would like to add them to their observing programs. All the data we produce and collate for this Mira Reference Dataset will be hosted and curated on a website open to the public so that other researchers and citizen scientists can participate in expanding the utility and body of knowledge on this set of “wonderful” stars. Full article
Show Figures

Figure 1

10 pages, 457 KB  
Article
The 17O/18O Ratio of Post-AGB Sources: Canonical and Non-Canonical Populations
by Javier Alcolea, Elisa Masa, Theo Khouri, Miguel Santander-García, Iván Gallardo Cava, Hans Olofsson, Carmen Sánchez Contreras, Valentín Bujarrabal, Wouter H. T. Vlemmings and Daniel Tafoya
Galaxies 2024, 12(6), 70; https://doi.org/10.3390/galaxies12060070 - 25 Oct 2024
Cited by 1 | Viewed by 1416
Abstract
Stellar evolution models serve as tools to derive stellar parameters from elemental and isotopic abundance ratios. For low-to-intermediate mass evolved stars, C/O, 12C/13C, and 17O/18O ratios are proxies of the initial mass, a largely unknown parameter in [...] Read more.
Stellar evolution models serve as tools to derive stellar parameters from elemental and isotopic abundance ratios. For low-to-intermediate mass evolved stars, C/O, 12C/13C, and 17O/18O ratios are proxies of the initial mass, a largely unknown parameter in post-AGB sources, yet fundamental to establish correlations with the main properties of their post-AGB envelopes, progressing in understanding their formation and evolution. In these sources, the C/O ratio can be constrained from the detection of C- or O-bearing species in addition to CO, while the 17O/18O ratio is straightforwardly determined from the C17O-to-C18O intensity ratio of rotational lines. However, the theory is at odds with the observations. We review the status of the question, including new accurate 17O/18O ratios for 11 targets (totaling 29). Comparing the results for the 17O/18O ratios and C-rich/O-rich chemical composition, we find that ∼45% of the cases are canonical, i.e., the observations align with standard model predictions. O-rich non-canonical sources, with 17O/18O ratios above the expected, can be explained by a premature interruption of their AGB evolution as a consequence of a quasi-explosive ejection of a large fraction of the initial mass. For non-canonical C-rich sources, with 17O/18O ratios below predictions, we suggest the possibility they are extrinsic C-rich stars. Full article
Show Figures

Figure 1

19 pages, 3320 KB  
Article
Estimation of Physical Stellar Parameters from Spectral Models Using Deep Learning Techniques
by Esteban Olivares, Michel Curé, Ignacio Araya, Ernesto Fabregas, Catalina Arcos, Natalia Machuca and Gonzalo Farias
Mathematics 2024, 12(20), 3169; https://doi.org/10.3390/math12203169 - 10 Oct 2024
Cited by 3 | Viewed by 2296
Abstract
This article presents a new algorithm that uses techniques from the field of artificial intelligence to automatically estimate the physical parameters of massive stars from a grid of stellar spectral models. This is the first grid to consider hydrodynamic solutions for stellar winds [...] Read more.
This article presents a new algorithm that uses techniques from the field of artificial intelligence to automatically estimate the physical parameters of massive stars from a grid of stellar spectral models. This is the first grid to consider hydrodynamic solutions for stellar winds and radiative transport, containing more than 573 thousand synthetic spectra. The methodology involves grouping spectral models using deep learning and clustering techniques. The goal is to delineate the search regions and differentiate the “species” of spectra based on the shapes of the spectral line profiles. Synthetic spectra close to an observed stellar spectrum are selected using deep learning and unsupervised clustering algorithms. As a result, for each spectrum, we found the effective temperature, surface gravity, micro-turbulence velocity, and abundance of elements, such as helium and silicon. In addition, the values of the line force parameters were obtained. The developed algorithm was tested with 40 observed spectra, achieving 85% of the expected results according to the scientific literature. The execution time ranged from 6 to 13 min per spectrum, which represents less than 5% of the total time required for a one-to-one comparison search under the same conditions. Full article
Show Figures

Figure 1

32 pages, 8140 KB  
Article
Constraining the Initial Mass Function via Stellar Transients
by Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera and Andrea Lapi
Universe 2024, 10(10), 383; https://doi.org/10.3390/universe10100383 - 29 Sep 2024
Cited by 2 | Viewed by 4083
Abstract
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, [...] Read more.
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim to determine the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple but flexible Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as a function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities via a Bayesian Markov Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination with a characteristic mass mc=0.100.08+0.24M and high-mass slope ξ=2.530.27+0.24 that are in accordance with the widely used IMF parameterizations (e.g., Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution allows us to constrain the maximum metallicity of LGRB progenitors to Zmax=0.120.05+0.29Z. We also find which progenitor fraction actually leads to SN Ia or LGRB emission (e.g., due to binary interaction or jet-launching conditions), put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with the galactic environment and cosmic history, and the properties of SN Ia, CCSN, and LGRB progenitors, especially considering the wealth of data incoming in the future. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

Back to TopTop