Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (193)

Search Parameters:
Keywords = stable isotopes δ2H and δ18O

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2742 KiB  
Article
Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning
by Danhe Wang, Chunxia Yao, Yangyang Lu, Di Huang, Yameng Li, Xugan Wu, Weiguo Song and Qinxiong Rao
Foods 2025, 14(14), 2458; https://doi.org/10.3390/foods14142458 - 13 Jul 2025
Viewed by 351
Abstract
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of [...] Read more.
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of stable isotope analysis and interpretable machine learning. We sampled Chinese mitten crabs from six origins representing diverse aquatic environments and farming practices, and analyzed their δ13C, δ15N, δ2H, and δ18O stable isotope compositions in different sexes and tissues (hepatopancreas, muscle, and gonad). By comparing the classification performance of Random Forest, XGBoost, and Logistic Regression models, we found that the Random Forest model outperformed the others, achieving high accuracy (91.3%) in distinguishing samples from different origins. Interpretation of the optimal Random Forest model, using SHAP (SHapley Additive exPlanations) analysis, identified δ2H in male muscle, δ15N in female hepatopancreas, and δ13C in female hepatopancreas as the most influential features for discriminating geographic origin. This analysis highlighted the crucial role of environmental factors, such as water source, diet, and trophic level, in origin discrimination and demonstrated that isotopic characteristics of different tissues provide unique discriminatory information. This study offers a novel paradigm for stable isotope traceability based on explainable machine learning, significantly enhancing the identification capability and reliability of Chinese mitten crab origin traceability, and holds significant implications for food safety assurance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 3264 KiB  
Article
The Crucial Role of Data Quality Control in Hydrochemical Studies: Reevaluating Groundwater Evolution in the Jiangsu Coastal Plain, China
by Claudio E. Moya, Konstantin W. Scheihing and Mauricio Taulis
Earth 2025, 6(3), 62; https://doi.org/10.3390/earth6030062 - 29 Jun 2025
Viewed by 309
Abstract
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing [...] Read more.
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing anthropogenic and climatic pressures. This study reassesses the hydrochemical and isotopic data from the Deep Confined Aquifer System (DCAS) in the Jiangsu Coastal Plain, China, by firstly applying QA/QC protocols. Anomalously high Fe and Mn concentrations in several samples were identified and excluded, yielding a refined dataset that enabled a more accurate interpretation of hydrogeochemical processes. Using hierarchical cluster analysis (HCA), principal component analysis (PCA), and stable and radioactive isotope data (δ2H, δ18O, 3H, and 14C), we identify three dominant drivers of groundwater evolution: water–rock interaction, evaporation, and seawater intrusion. In contrast to earlier interpretations, we present clear evidence of active seawater intrusion into the DCAS, supported by salinity patterns, isotopic signatures, and local hydrodynamics. Furthermore, inconsistencies between tritium- and radiocarbon-derived residence times—modern recharge indicated by 3H versus Pleistocene ages from 14C—highlight the unreliability of previous paleoclimatic reconstructions based on unvalidated datasets. These findings underscore the crucial role of robust QA/QC and integrated tracer analysis in groundwater studies. Full article
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Viewed by 272
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

13 pages, 2391 KiB  
Article
Stable Carbon Isotope Fractionation of Trichloroethylene Oxidized by Potassium Permanganate Under Different Environmental Conditions
by Yaqiong Dong, Yufeng Wang, Lantian Xing, Ghufran Uddin, Yuanxiao Guan, Zhengyang E, Jianjun Liang, Ping Li, Changjie Liu and Qiaohui Fan
Appl. Sci. 2025, 15(13), 7142; https://doi.org/10.3390/app15137142 - 25 Jun 2025
Viewed by 276
Abstract
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for [...] Read more.
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for the degradation of trichloroethylene (TCE); however, the influence of environmental factors on the isotope fractionation during this process remains unclear. In this study, compound-specific isotope analysis (CSIA) was conducted to investigate the variability in carbon isotope effects during the KMnO4-mediated degradation of TCE under varying conditions, including initial concentrations of KMnO4 and TCE, the presence of humic acid (HA), pH levels, and inorganic ions. The results showed that the overall carbon isotope enrichment factors (ε) of TCE ranged from −26.5 ± 0.5‰ to −22.8 ± 0.9‰, indicating relatively small variations across conditions. At low KMnO4/TCE molar ratio (n(KMnO4)/n(TCE)), incomplete oxidation and/or MnO2-mediated oxidation of TCE likely resulted in smaller ε. For dense, non-aqueous phase liquid (DNAPL) TCE, which represents extremely high concentrations, the ε value was −13.0 ± 1.7‰ during KMnO4 oxidation. This may be attributed to the slow dissolution of isotopically light TCE from the DNAPL phase, altering the δ13C signature of the reacted TCE and resulting in a significantly larger ε value than observed for dissolved-phase TCE oxidation. The ε values increased with rising pH, probably due to the decrease in oxidation potential (E0) of KMnO4 from pH ~2 to ~12, as well as the emergence of different degradation pathways and intermediates under varying pH conditions. Both SO42− and NO3 slightly influenced the ε values, potentially due to the formation of H2SO4 and HNO3 at lower pH, which may act as auxiliary oxidants and contribute to TCE degradation. A high concentration (50 mM) of HA led to a decrease in ε values, likely due to competitive interactions between HA and TCE for KMnO4, which reduced the effective oxidation of TCE. Overall, the carbon isotope enrichment factors for KMnO4-mediated TCE degradation are relatively stable, although certain environmental conditions can exert minor influences. These findings highlight the need for caution when applying quantitative assessment based on CSIA for KMnO4 oxidation of TCE. Full article
Show Figures

Figure 1

22 pages, 7146 KiB  
Article
Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes
by Muhammad Zakir Afridi, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Shoaib Qamar and Schradh Saenton
Sustainability 2025, 17(12), 5560; https://doi.org/10.3390/su17125560 - 17 Jun 2025
Viewed by 1769
Abstract
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas [...] Read more.
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas in Chiang Mai and Lamphun provinces. This study employed hydrogeological investigations, hydrometeorological data analyses, stable isotopic analysis (δ18O and δ2H), and groundwater flow modeling using a 3D groundwater flow model (MODFLOW) to quantify groundwater recharge and delineate important groundwater recharge zones within the basin. The results showed that floodplain deposits exhibited the highest recharge rate, 104.4 mm/y, due to their proximity to rivers and high infiltration capacity. In contrast, younger terrain deposits, covering the largest area of 1314 km2, contributed the most to total recharge volume with an average recharge rate of 99.8 mm/y. Seven significant recharge zones within the basin, where annual recharge rates exceeded 105 mm/y (average recharge of the entire basin), were also delineated. Zone 4, covering parts of densely populated Muaeng Lamphun, Ban Thi, and Saraphi districts, had the largest area of 330 km2 and a recharge rate of 130.2 mm/y. Zone 6, encompassing Wiang Nong Long, Bai Hong, and Pa Sang districts, exhibited the highest recharge rate of 134.6 mm/y but covered a smaller area of 67 km2. Stable isotopic data verified that recent precipitation predominantly recharged shallow groundwater, with minimal evaporation or isotopic exchange. The basin-wide average recharge rate was 104 mm/y, reflecting the combined influence of geology, permeability, and spatial distribution. These findings provide critical insights for sustainable groundwater management in the region, particularly in the context of climate change and increasing water demand. Full article
Show Figures

Figure 1

26 pages, 2710 KiB  
Article
From Contamination to Conservation: A Hydrochemical and Isotopic Evaluation of Groundwater Quality in the Semi-Arid Guire Basin (Morocco)
by Hanane Marzouki, Nouayti Nordine, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and El Khalil Cherif
Water 2025, 17(11), 1688; https://doi.org/10.3390/w17111688 - 3 Jun 2025
Cited by 2 | Viewed by 708
Abstract
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ [...] Read more.
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ2H, δ13C), multivariate statistical, and Geographic Information System (GIS) analyses alongside the Water Quality Index (WQI). Sixteen wells were monitored for physicochemical parameters (pH: 7–7.9; EC: 480–3004 μS/cm; BOD5: 1.03–30.5 mg/L; COD: 10.2–45.75 mg/L) and major ions, revealing widespread exceedances of Moroccan standards for Cl, HCO3, Mg2+, Ca2+, and NH4+. WQI classified 81% of samples as “Poor” to “Unsuitable for drinking” (WQI: 51–537), driven by elevated Cl, Na+, and SO42− from Triassic evaporite dissolution and NO3 (up to 45 mg/L) from agricultural runoff. Stable isotopes (δ18O: −7.73‰ to −5.08‰; δ2H: −66.14‰ to −44.20‰) indicate Atlantic-influenced recharge at 900–2200 m altitudes, with a δ18O-δ2H slope of 5.93 reflecting evaporation during infiltration. Strontium (Sr2+/Ca2+: 0.0024–0.0236) and bromide (Br/Cl: 8.47 × 10−5–9.88 × 10−4) ratios further confirm evaporitic dominance over anthropogenic contamination. This work provides actionable insights for policymakers, advocating for targeted restrictions on fertilizers, enhanced monitoring near evaporite zones, and artificial recharge initiatives. By linking geogenic/anthropogenic contamination to governance strategies, this study advances sustainable groundwater management in semi-arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 6998 KiB  
Article
Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China
by Yuxuan Chen, Fuqiong Huang, Leyin Hu, Zhiguo Wang, Mingbo Yang, Peixue Hua, Xiaoru Sun, Shijun Zhu, Yanan Zhang, Xiaodong Wu, Zhihui Wang, Lvqing Xu, Kongyan Han, Bowen Cui, Hongyan Dong, Boxiu Fei and Yonggang Zhou
Geosciences 2025, 15(6), 192; https://doi.org/10.3390/geosciences15060192 - 22 May 2025
Viewed by 514
Abstract
In comparison with conventional hydrological parameters such as water levels and temperatures, geochemical changes induced by earthquakes have become increasingly important. It should be noted that hydrogen (δ2H) and oxygen isotopes (δ18O) offer the greatest potential as precursor proxies [...] Read more.
In comparison with conventional hydrological parameters such as water levels and temperatures, geochemical changes induced by earthquakes have become increasingly important. It should be noted that hydrogen (δ2H) and oxygen isotopes (δ18O) offer the greatest potential as precursor proxies of earthquakes. Here, we conducted high-resolution sampling (weekly, 59 samples), measuring consecutive δ2H and δ18O levels at the two sites of the WLY well and SS spring in the Yan-Huai Basin of Beijing from June 2021 to June 2022. During the period of this sampling, several small earthquakes of ML > 1.6 occurred in Beijing. We used statistical methods (analysis of variance) to test the significant differences, used Self-Organizing Maps (SOMs) for data clustering, and then used Bayesian Mixing Models (MixSIAR) to calculate the proportions of the source contributions. We found significant four-stage patterns of change processes in δ2H and δ18O at both sites. The WLY well exhibited a distinct four-stage variation pattern: initial stable development (WT1) followed by a rapid rise (WT2) and sudden fall (WT3) before the small earthquakes, and finally gradual stabilization after earthquakes (WT4). In contrast, the SS spring displayed an inverse pattern, beginning with stable development (ST1), then undergoing a rapid falling (ST2) and sudden rising (ST3) before the small earthquakes, and finally stabilizing through stepwise reduction after the earthquakes (ST4). The most likely mechanisms were differences in the time of rupture between the carbonate in WLY and granite in SS under sustained stress. The stress induced source mixing of fluid from the surface or deeper groundwater-source reservoirs. The hypothesis was supported by the MixSIAR model, calculating the variational proportion of source contributions in the four stages. This work permitted the use of high-resolution isotopic data for statistical confirmation of concomitant shifts during the earthquakes, provided the mechanisms behind them, and highlighted the potential for the consecutive monitoring of hydrogen and oxygen isotopes indicators in earthquake-prediction studies. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

18 pages, 5072 KiB  
Article
The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis
by Lei Liu, Shouchuan Zhang, Jiahui He and Luyao Wang
Water 2025, 17(10), 1498; https://doi.org/10.3390/w17101498 - 16 May 2025
Viewed by 415
Abstract
Fluoride-enriched geothermal groundwater poses chronic health risks (e.g., dental and skeletal fluorosis) through prolonged exposure; nevertheless, hydrochemical-driven factors and the genetic mechanism of fluoride enrichment in such systems remain inadequately identified. This study employed hydrochemical characterization, isotopic tracing, and health risk models to [...] Read more.
Fluoride-enriched geothermal groundwater poses chronic health risks (e.g., dental and skeletal fluorosis) through prolonged exposure; nevertheless, hydrochemical-driven factors and the genetic mechanism of fluoride enrichment in such systems remain inadequately identified. This study employed hydrochemical characterization, isotopic tracing, and health risk models to elucidate the genetic mechanism of fluoride-enriched geothermal groundwater. The key findings reveal the following. (1) Geothermal groundwater (Cl-Na type; TDS 90–345 mg/L; pH 6.25–7.42) contrasts with alkaline river water (pH 7.48–8.05; SO4-Na/HCO3-Na) and saline seawater (TDS 23.9–28.2 g/L). Stable isotopes (δD, δ1⁸O) confirm atmospheric precipitation recharge with an elevation of 69–635 m. (2) The Self-Organizing Map algorithm categorized 30 geothermal samples into three groups: Cluster I—low temperature and pH, high TDS; Cluster II—high temperature, low F concentration; and Cluster III—low TDS, and high pH and F concentration. (3) Fluoride enrichment in Cluster III originated from the evaporite/fluorite dissolution under alkaline conditions and cation exchange interactions, while the inhibition of CaF2 dissolution by reverse cation exchange limited the accumulation of F in Cluster II and Cluster III samples. (4) Health risks disproportionately affect children (80% high risk) and women, necessitating pre-use defluorination. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

36 pages, 16597 KiB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 600
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 3892 KiB  
Article
Isotope Ratio Mass Spectrometry (IRMS)-Based Authentication of the Geographic Origins of Volvariella volvacea (Bull.) Singer
by Xing Liu, Qinxiong Rao, Qicai Zhang, Hao Geng, Yangyang Lu, Zhu Liu, Shanshan Chen, Peijun Li and Weiguo Song
Foods 2025, 14(6), 1074; https://doi.org/10.3390/foods14061074 - 20 Mar 2025
Viewed by 447
Abstract
The growing consumption of Volvariella volvacea has heightened concerns regarding its geographical authenticity. This study analyzed the proteins, 16 common amino acids, and 10 mineral elements (Ca, Cu, Fe, K, Mn, Mg, Na, Se, Sr, Zn) in samples from Fujian, Guangdong, Hubei, Jiangsu, [...] Read more.
The growing consumption of Volvariella volvacea has heightened concerns regarding its geographical authenticity. This study analyzed the proteins, 16 common amino acids, and 10 mineral elements (Ca, Cu, Fe, K, Mn, Mg, Na, Se, Sr, Zn) in samples from Fujian, Guangdong, Hubei, Jiangsu, Jiangxi, Shanghai, and Zhejiang, China, along with regional variations in stable isotope ratios. PCA and PLS-DA were applied for origin authentication. The results showed an average protein content of approximately 30 g/100 g (dry basis), with Guangdong samples being the highest. Amino acids exhibited significant regional differences, but the total essential amino acid and total amino acid contents did not. Mineral elements varied significantly by region, except for Cu and K. The Fujian, Hubei, Jiangxi, and Zhejiang samples exhibited significantly higher δ13C and δ15N values, while Shanghai samples had significantly higher δ2H and δ18O values. These differences enabled PCA to classify the samples into two groups: FHJZ (Fujian, Hubei, Jiangxi, Zhejiang) and GJS (Guangdong, Jiangsu, Shanghai). The PLS-DA model achieved 93.60% accuracy in distinguishing these two groups. Pairwise accuracy within the GJS group exceeded 80%, whereas that within the FHJZ group requires further improvement. These findings support the feasibility of stable isotope analysis for authenticating the geographical origin of Volvariella volvacea. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

21 pages, 4665 KiB  
Article
Hydrochemical Characteristics and Indicative Significance of Terminal Tributaries in Karst Water Systems: A Case Study of the Zhongdu River Basin in Southwest China
by Jun Zhang, Chi Chen, Jianwei Bu, Xing Xiong, Chunshan Xiao, Chenzhou Yang and Yinhe Huang
Water 2025, 17(6), 822; https://doi.org/10.3390/w17060822 - 12 Mar 2025
Viewed by 646
Abstract
The terminal tributaries of karst rivers are often under-researched, with low investigation coverage and incomplete surveys. These areas face significant human activity disturbances, fragile soil and water environments, and insufficient research on water quality conditions. Residents in their basins are confronted with urgent [...] Read more.
The terminal tributaries of karst rivers are often under-researched, with low investigation coverage and incomplete surveys. These areas face significant human activity disturbances, fragile soil and water environments, and insufficient research on water quality conditions. Residents in their basins are confronted with urgent issues of water scarcity and deteriorating water quality. This study focused on the Zhongdu River Basin, a terminal tributary in the Pearl River system in Southwest China. By measuring the conventional hydrochemical parameters and stable isotope ratios (e.g., δ18O and δ2H), this study employed methods such as hydrological and geochemical approaches, as well as classical statistical analyses, to reveal the hydrochemical characteristics, regulatory mechanisms, and water health status in the basin. Data show that the water in the Zhongdu River Basin is generally weakly alkaline, with a pH range between 6.46 and 8.28. The highest values for electrical conductivity (EC) and total dissolved solids (TDSs) are found upstream, reaching 497 μS/cm and 324.5 mg/L, respectively. The average dissolved oxygen (DO) value is 71.3 mg/L. The hydrochemical type is primarily HCO3-Ca2⁺, with Ca2⁺ and HCO3⁻ as the dominant ions. The surface water in the middle and lower reaches of the basin is strongly influenced by evaporation, with atmospheric precipitation as the main recharge source. Rock weathering is the primary influencing factor in the basin, with most minerals in a dissolved state. Agricultural activities are the primary pollution source in the basin, with domestic pollution having a minimal effect on water quality. Water quality was assessed using the entropy-weighted water quality index (EWQI) based on 11 parameters, indicating overall good water quality, classified as Grade I. The findings indicate that human activities have a minimal impact on the water quality in the region, and the basin is expected to maintain its healthy condition for an extended period. Full article
Show Figures

Figure 1

10 pages, 2722 KiB  
Article
Stable Isotope Investigations of Icicle Formation and Evolution
by Thomas Brubaker and R. V. Krishnamurthy
Hydrology 2025, 12(2), 30; https://doi.org/10.3390/hydrology12020030 - 9 Feb 2025
Viewed by 939
Abstract
Icicles are elongated structures formed from water flowing over hangings and crystallizing in sub-freezing conditions. These features are ubiquitous in several parts of the world that experience severe to moderate winter seasons. It has been suggested that they could be a source of [...] Read more.
Icicles are elongated structures formed from water flowing over hangings and crystallizing in sub-freezing conditions. These features are ubiquitous in several parts of the world that experience severe to moderate winter seasons. It has been suggested that they could be a source of recharge to groundwater. Icicles are presumed to affect groundwater quality via incorporation of atmospheric and roof top contaminants. Relatively little attention has been paid to these wintry features, insofar as only a few theoretical models have attempted to describe their formation. Stable isotope measurements (δ18O and δ2H) of icicles that were melted stepwise into fractions are presented as support for the models that invoke the rapid formation of icicles. Icicles exhibit minimal fraction to fraction isotope variation, suggesting a lack of isotope equilibrium and that kinetic effects dominate the freezing process. Deviations from the Global Meteoric Water Line (GMWL), which is similar to the Local Meteoric Water Line (LMWL), indicate that post-depositional processes, namely sublimation, may occur throughout the freezing process. Isotopic evidence lends support to a “growth-cessation-growth” variation of the already proposed methods of rapid icicle formation, where a cessation period occurs between pulses of rapid freezing during icicle growth. Full article
(This article belongs to the Special Issue Isotope Hydrology in the U.S.)
Show Figures

Figure 1

22 pages, 9846 KiB  
Article
Assessing Groundwater Connection/Disconnection to Waterholes Along the Balonne River and in the Barwon–Darling River System in Queensland and New South Wales, Australia, for Waterhole Persistence
by Harald Hofmann and Jonathan Marshall
Hydrology 2025, 12(1), 15; https://doi.org/10.3390/hydrology12010015 - 14 Jan 2025
Viewed by 1706
Abstract
Waterholes in semi-arid environment are sections of rivers that fill during high river flows or floods and keep water once flow ceases. They are essential water sources for rive ecosystems. Some waterholes remain even during prolonged droughts. The resilience of ecosystems in these [...] Read more.
Waterholes in semi-arid environment are sections of rivers that fill during high river flows or floods and keep water once flow ceases. They are essential water sources for rive ecosystems. Some waterholes remain even during prolonged droughts. The resilience of ecosystems in these environments depends on the persistence of the waterholes. While most semi-arid, ephemeral river systems are disconnected from regional groundwater and losing in most parts there may be some sections that can be connected to localised groundwater or parafluvial areas. To assess the persistence of waterholes the groundwater contribution to the water balance needs to be addressed. This study assesses groundwater connectivity to waterholes in a part of the Murray-Darling Basin, one of the largest watersheds in the world, using environmental tracers radon and stable isotopes. Approximately 100 samples were collected from 27 waterholes along the Narran, Calgoa, Barwon and Darling rivers, as well as 8 groundwater bore samples. The assessment of groundwater connectivity or the lack of is necessary from water balance modelling and estimation of persistence of these waterholes. As expected, the results indicate consistently low radon concentrations in the waterholes and very small deviation in stable isotopes δ18O and δ2H. In general, most of these waterholes are losing water to groundwater, indicated by low salinity (EC values) and low radon concentrations. While radon concentrations are small in most cases and indicative of little groundwater contributions, some variability can be assigned to bank return and parafluvial flow. It indicates that these contributions may have implications for waterhole persistence in ephemeral streams. The study demonstrates that in some cases local bank return flow or parafluvial flow may contribute to waterhole persistence. Full article
Show Figures

Figure 1

12 pages, 2718 KiB  
Article
Impact of Deep-Rooted Vegetation on Deep Soil Water Recharge in the Gully Region of the Loess Plateau
by Jingjing Jin, Xiaoyun Ding, Fengshi Li, Zichen Jia, Haoyan Wei, Junchao Li and Min Li
Water 2025, 17(2), 208; https://doi.org/10.3390/w17020208 - 14 Jan 2025
Viewed by 825
Abstract
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, [...] Read more.
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, though it has been rarely applied in complex gully areas. In this study, we measured δ2H, δ18O, and 3H in soil water under long-term natural grassland and C. korshinskii on the same slope. Both natural grassland and C. korshinskii plots received deep soil water from rainfall during the rainy season; however, the replenishment thresholds for soil water at depths of 2–10.4 m differed between the two vegetation types, corresponding to rainfall intensities of ≥20 mm and ≥50 mm, respectively. Following the conversion of natural grassland to C. korshinskii vegetation, the rate of soil water storage deficit increased by 46.4 mm yr−1, and deep drainage shifted from 39.6 mm yr−1 to 0 mm yr−1. Deep-rooted vegetation significantly depletes soil water to meet transpiration demands, thus hindering rainfall recharge. These findings have important implications for water and land resource management, especially in areas undergoing significant vegetation changes. Full article
Show Figures

Figure 1

17 pages, 2558 KiB  
Article
Influencing Factors and Calibration of the Direct Vapor Equilibration Method for Measuring Soil Water Isotopes
by Zhenguo Xing, Ruimin He, Jie Fang, Lu Bai, Xuejia Li, Xiaoqing Liu, Gang Liu and Mingjing Zhou
Water 2025, 17(1), 116; https://doi.org/10.3390/w17010116 - 4 Jan 2025
Viewed by 897
Abstract
The direct vapor equilibration-laser spectroscopy (DVE-LS) method can be used to measure the stable isotopes of soil water (δ2H and δ18O), a technique that is easier to operate and quicker for sampling compared to the traditional cryogenic vacuum distillation [...] Read more.
The direct vapor equilibration-laser spectroscopy (DVE-LS) method can be used to measure the stable isotopes of soil water (δ2H and δ18O), a technique that is easier to operate and quicker for sampling compared to the traditional cryogenic vacuum distillation (CVD) method. However, the soil water isotope values thus obtained often deviate from the true value, which is affected by the equilibrium temperature during the measurement process. Therefore, this study conducted an indoor experiment on five soil samples of varying textures. The dry soil was wetted by reference water samples to four different soil water content (SWC) values and then equilibrated at five different temperatures. The soil water isotope deviation value (SWIDV) of the DVE-LS method was determined by building a correction equation between SWIDV and the influencing factors (equilibrium temperature, soil clay content (SCC), and SWC, after which the correction equation values were compared to those calculated by the CVD method for the field-collected soil samples to check the accuracy. The results shows that the Δδ2H value increased with increasing equilibrium temperature and soil clay content, but decreased with increasing SWC. The multi-factor variance analysis shows that equilibrium temperature, SCC, and SWC significantly affected the Δδ2H values and deviation values with the DVE-LS method, but insignificantly affected the Δδ18O values and deviation values. The correction equations (3) was built at different equilibrium temperatures, and the RMSE decreased from 4.07‰ to 1.24‰ and from 8.99‰ to 4.14‰, respectively, as calibrated by the isotope values of soil samples collected in Changwu and Suide counties. The correction equations under various equilibrium temperatures increased the accuracy of the DVE-LS method in obtaining soil water isotope values and promoted the application of the DVE-LS method in soil water isotope analysis. Full article
Show Figures

Figure 1

Back to TopTop