Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China
Abstract
:1. Introduction
2. Background
2.1. Faults and Earthquakes in Beijing
2.2. Hydrological Conditions
3. Material and Methods
3.1. Data Collection
3.2. Analytical Methods
4. Results
4.1. Time Series Characteristics
4.2. ANOVA Analysis
5. Discussion
5.1. Self-Organizing Map (SOM) and K-Means Clustering Algorithms
5.2. Quantification of Groundwater Sources
5.3. Relationship Between Isotopes Changes and Seismic Activities
5.4. Mechanism Analysis
6. Conclusions
- (1)
- The isotopes at WLY have a change pattern of an initial rise and then a fall before earthquakes, and finally a gradual increasing stabilization after earthquakes. The change pattern at SS is opposite to at WLY; here, the change pattern was an initial fall and then a rise before earthquakes, and finally a stepwise reduction stabilization after earthquakes.
- (2)
- The differences in the time of rupture between carbonate and granite under sustained stress led to opposite patterns in isotopic changes. The carbonate rocks of the WLY aquifer were the first to form microfractures, mixing with surface water, resulting in peaks in isotopes values. The granites of the SS aquifer were not fractured, and deeper groundwater was squeezed into the column, resulting in lower isotope values.
- (3)
- δ2H and δ18O isotope variation is sensitive to changing stress states, highlight the potential importance of stable isotope indicators in earthquake-prediction studies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, M.; Ma, Y.; Han, Y.; Tian, L.; Yan, W.; Li, X. Studies on earthquake precursors in China: A review for recent 50 years. Geod. Geodyn. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Manga, M.; Wang, C.Y. Earthquake Hydrology, Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Martinelli, G. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences 2020, 10, 189. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Manga, M. Streamflow and water well responses to earthquakes. Science 2003, 300, 2047–2049. [Google Scholar] [CrossRef]
- Roeloffs, E.A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. 1998, 103, 869–889. [Google Scholar] [CrossRef]
- Shi, Z.; Liao, F.; Wang, G.; Xu, Q.; Mu, W.; Sun, X. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis. Geofluids 2017. [Google Scholar] [CrossRef]
- Toutain, J.; Munoz, M.; Poitrasson, F.; Lienard, A. Springwater chloride ion anomaly prior to a ML=5.2 Pyrenean earthquake. Earth Planet. Sci. Lett. 1997, 149, 113–119. [Google Scholar] [CrossRef]
- Wang, C.Y.; Manga, M. Earthquakes and Water; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Yan, Y.; Zhang, Z.; Zhou, X.; Wang, G.; He, M.; Tian, J.; Dong, J.; Li, J.; Bai, Y.; Zeng, Z.; et al. Geochemical characteristics of hot springs in active fault zones within the northern Sichuan-Yunnan block: Geochemical evidence for tectonic activity. J. Hydrol. 2024, 635. [Google Scholar] [CrossRef]
- Claesson, L.; Skelton, A.; Graham, C.; Dietl, C.; Mörth, M.; Torssander, P.; Kockum, I. Hydrogeochemical changes before and after a major earthquake. Geology 2004, 32, 641–644. [Google Scholar] [CrossRef]
- Kopylova, G.N.; Boldina, S.V.; Serafimova, Y.K. Earthquake precursors in the ionic and gas composition of groundwater: A review of world data. Geochem. Int. 2022, 60, 928–946. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Hu, L.; Su, S.; Zheng, C.; Liu, Z.; Lu, C.; Zhao, Y.; Liu, J.; He, H. Advances in seismic fluid geochemis-try and its application in earthquake forecasing. Chin. Sci. Bull. 2022, 67, 1404–1420. [Google Scholar] [CrossRef]
- Martinelli, G.; Dadomo, A. Factors constraining the geographic distribution of earthquake geochemical and fluid-related precursors. Chem. Geol. 2017, 469, 176–184. [Google Scholar] [CrossRef]
- Poitrasson, F.; Dundas, S.H.; Toutain, J.-P.; Munoz, M.; Rigo, A. Earthquake-related elemental and isotopic lead anomaly in a springwater. Earth Planet. Sci. Lett. 1999, 169, 269–276. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Wang, G. Groundwater trace elements change induced by M5.0 earthquake in Yunnan. J. Hydrol. 2020, 581. [Google Scholar] [CrossRef]
- Thomas, D. Geochemical precursors to seismic activity. Pure Appl. Geophys. 1988, 126, 241–266. [Google Scholar] [CrossRef]
- Wakita, H. Geochemical challenge to earthquake prediction. Proc. Natl. Acad. Sci. USA 1996, 93, 3781–3786. [Google Scholar] [CrossRef]
- Skelton, A.; Liljedahl-Claesson, L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Mörth, C.; Stefansson, A.; Tollefsen, E.; Siegmund, H. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at 2 sites in northern Iceland-A review. J. Geophys. Res. Solid Earth 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.-M.; Sveinbjörnsdóttir, Á.; Jónsson, S.; Sturkell, E.; Guðrúnardóttir, H.R.; Hjartarson, H. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef]
- Chen, Y.X.; Liu, J.B. Groundwater trace element changes were probably induced by the ML3.3 earthquake in Chaoyang district, Beijing. Front. Earth Sci. 2023, 11, 1260559. [Google Scholar] [CrossRef]
- Chen, Y.X.; Liu, G.; Huang, F.; Wang, Z.; Hu, L.; Yang, M.; Sun, X.; Hua, P.; Zhu, S.; Zhang, Y. Multiple geochem-ical parameters of the Wuliying well of Beijing seismic monitoring networks probably responding to the small earthquake of Chaoyang, Beijing, in 2022. Front. Earth Sci. 2024, 12, 1448035. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T. Paleontological Data Analysis; Blackwell Publishing: Oxford, UK, 2006; p. 351. [Google Scholar]
- Harper, D.A.T. Numerical Palaeobiology: Computer-Based Modelling and Analysis of Fossils and Their Distributions; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Copenhaver, M.D.; Holland, B. Computation of the distribution of the maximum studentized range statistic with application to multiple significance testing of simple effects. J. Stat. Comput. Simul. 1988, 30, 1–15. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for Matlab 5; Espoo, Finland, 2000; Available online: http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf (accessed on 20 April 2025).
- Bai, Y.; Wang, G.; Shi, Z.; Zhou, X.; Yan, X.; Zhang, S.; Mao, H.; Wang, C. Hydrogeochemical changes with emphasis on trace elements in an artesian well before and after the September 8, 2018 Ms 5.9 Mojiang Earthquake in Yunnan, southwest China. Appl. Geochem. Appl. Geochem. 2024, 167. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Moore, J.W.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018, 6, 5096. [Google Scholar] [CrossRef]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian stable isotope mixing models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Yu, J.S.; Yu, F.J.; Liu, D.P. The oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of China. Geochemistry 1987, 1, 22–26. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Shi, Z.; Wang, G.; Liu, F. Evaluating Spatiotemporal Variations of Groundwater Quality in Northeast Beijing by Self-Organizing Map. Water 2020, 12, 1382. [Google Scholar] [CrossRef]
- Taylor, H.P. Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Soc. 1977, 133, 509–558. [Google Scholar] [CrossRef]
- Zhai, Y.Z.; Wang, J.S.; Teng, Y.G.; Zuo, R. Variations of δD and δ18O in Water in Beijing and Their Implications for the Local Water Cycle. Resour. Sci. 2011, 33, 92–97. (In Chinese) [Google Scholar]
- Wei, X.; Yu, Y.L.; Li, W.Y.; Lu, C.C.; Huo, W.J. Hydrochemistry and isotopic characteristics of Guishui River Basin and their indicative significance. Environ. Sci. Technol. 2024, 47, 135–145. (In Chinese) [Google Scholar]
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C.J. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Lockner, D.A.; Beeler, N.M. Rock Failure and Earthquakes. In International Handbook of Earthquake and Engineering Seismology; Part A; Lee, W.H.K., Kanamori, H., Jennings, P.C., Kisslinger, C., Eds.; Academic Press: Amsterdam, The Netherlands, 2002; pp. 505–537. [Google Scholar]
- Gao, L. Study on Energy Evolution Mechanism and Catastrophe Characteristics During Rock Deformation and Failure; China University of Mining and Technology: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.; Ponomarev, A.; Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 1991, 35, 39–42. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Qu, L.Z.; Wang, X.Z.; Cheng, Y.F.; Shen, H.C. Simulation experiment on prolongation law of hydraulic fracture for different lithologic formations. J. China Univ. Pet. (Ed. Nat. Sci.) 2007, 31, 63–66. (In Chinese) [Google Scholar]
- Claesson, L.; Skelton, A.; Graham, C.; Mörth, C. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake. Geofluids 2007, 7, 427–440. [Google Scholar] [CrossRef]
- Wästeby, N.; Skelton, A.; Tollefsen, E.; Andrén, M.; Stockmann, G.; Liljedahl, L.C.; Sturkell, E.; Mörth, M. Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake. J. Geophys. Res. Solid Earth 2014, 119, 5727–5740. [Google Scholar] [CrossRef]
- Yang, N.; Wang, G.; Shi, Z.; Zhao, D.; Jiang, W.; Guo, L.; Liao, F.; Zhou, P. Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China. Water 2018, 10, 1667. [Google Scholar] [CrossRef]
- Huang, F.Q.; Deng, Z.H.; Gu, J.P.; Wang, H.M.; Lu, P.L. Research of the field of subsurface fluid anomalies before the Zhangbei earthquake. Earthquake 2002, 22, 114–122. [Google Scholar]
- Shi, Z.; Wang, G.; Liu, C. Advances in research on earthquake fluids hydrogeology in China: A review. Earthq. Sci. 2013, 26, 415–425. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhong, J.; Zhao, J.; Yan, R.; Tian, L.; Fu, H. Two Mechanisms of Earthquake-Induced Hydrochemical Variations in an Observation Well. Water 2021, 13, 2385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Huang, F.; Hu, L.; Wang, Z.; Yang, M.; Hua, P.; Sun, X.; Zhu, S.; Zhang, Y.; Wu, X.; et al. Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China. Geosciences 2025, 15, 192. https://doi.org/10.3390/geosciences15060192
Chen Y, Huang F, Hu L, Wang Z, Yang M, Hua P, Sun X, Zhu S, Zhang Y, Wu X, et al. Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China. Geosciences. 2025; 15(6):192. https://doi.org/10.3390/geosciences15060192
Chicago/Turabian StyleChen, Yuxuan, Fuqiong Huang, Leyin Hu, Zhiguo Wang, Mingbo Yang, Peixue Hua, Xiaoru Sun, Shijun Zhu, Yanan Zhang, Xiaodong Wu, and et al. 2025. "Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China" Geosciences 15, no. 6: 192. https://doi.org/10.3390/geosciences15060192
APA StyleChen, Y., Huang, F., Hu, L., Wang, Z., Yang, M., Hua, P., Sun, X., Zhu, S., Zhang, Y., Wu, X., Wang, Z., Xu, L., Han, K., Cui, B., Dong, H., Fei, B., & Zhou, Y. (2025). Two Opposite Change Patterns Before Small Earthquakes Based on Consecutive Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring Sites in Northern Beijing, China. Geosciences, 15(6), 192. https://doi.org/10.3390/geosciences15060192