The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
3. Sampling, Measurement, and Method
3.1. Sampling and Measurement
3.2. Self-Organizing Map (SOM)
4. Results
4.1. Hydrochemistry Characteristics
4.2. Isotope Characteristic
4.3. SOM Clustering Results
5. Discussion
5.1. Recharge Source
5.2. Hydrogeochemical Processes
5.2.1. Water–Rock Interactions
5.2.2. Mineral Dissolution
5.2.3. Alkaline Environment
5.2.4. Cation Exchange Interactions
5.3. Human Health Risk Assessment
6. Conclusions
- (1)
- Geothermal groundwater exhibited Cl-Na type characteristics, with an elevated TDS (90–345 mg/L) and pH (6.25–7.42). All samples exceeded the fluoride threshold (>1.0 mg/L), classifying them as fluoride-enriched. Stable isotope signatures (δD and δ1⁸O) aligned with the Global Meteoric Water Line, indicating meteoric recharge from elevations of 69–635 m. Distinct hydrochemical contrasts emerged between geothermal groundwater (HCO₃-Na type), river water (mixed SO₄−Na/HCO₃−Na; pH 7.48–8.05), and seawater (high salinity: 23.9–28.2 g/L; pH 7.80–7.85).
- (2)
- SOM-based clustering categorizes 30 geothermal samples into three groups: Cluster I (33.3%) features lower temperatures/pH with high TDS; Cluster II (53.3%) shows elevated temperatures but reduced F− levels; and Cluster III (13.4%) displays optimal F− enrichment (low TDS, high pH). Fluoride mobilization primarily derives from evaporite dissolution (fluorite) and alkaline-driven water–rock interactions. Cluster III’s pronounced F− enrichment correlated with favorable alkaline conditions and cation exchange, while the suppressed CaF₂ dissolution in Clusters I and Cluster II due to reverse cation exchange limited fluoride accumulation.
- (3)
- Health risk assessments reveal significant fluoride exposure threats across demographics, with children exhibiting heightened vulnerability (80% of sampling sites pose high risks). Gender disparities indicate greater health impacts on females versus males. Mandatory defluorination measures are imperative prior to geothermal resource utilization to mitigate public health risks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, I.; Singh, U.K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environ. Geochem. Health 2018, 40, 2259–2301. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-A.; Shao, H.; Tang, L.; Deng, B.; Li, H.; Wang, C. Hydrogeochemistry and geothermometry of geothermal waters from the Pearl River Delta region, South China. Geothermics 2021, 96, 102164. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, K.; Yu, C.; Deng, Y.; Zhang, Y.; Jia, W. Identifying the genetic mechanism of medium–low temperature fluoride-enriched geothermal groundwater by the self-organizing map and evaluating health risk in the Wugongshan area, southeast China. Environ. Geochem. Health 2024, 46, 274. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Zhou, X.; Li, X.L.; Wang, M.M.; Shen, Y.; Fang, B. Chemical Characteristics and Origin Analysis of Hot Spring Water for Sheep Honey-eating in Lanping Basin, Yunnan Province. Geoscience 2017, 31, 822–831. [Google Scholar]
- Xiao, Y.; Shao, J.; Frape, S.K.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: A case study from the Qaidam Basin, northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Wang, Y.; Huang, X.; Xiao, Y.; Pei, Q. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. Sci. Total Environ. 2021, 784, 147186. [Google Scholar] [CrossRef]
- Ye, X.Q.; Wu, G.D.; Yang, Y.; Huang, X. Hydrogen and Oxygen Stable Isotope Characteristics of Geothermal Spring Water in Shigaze Area, Tibet. J. Environ. Chem. 2022, 41, 2880–2895. [Google Scholar]
- Yeh, H.F.; Lee, C.H.; Hsu, K.C. Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: A case study from the Chih-Pen Creek basin, Taiwan. Environ. Earth Sci. 2011, 62, 393–402. [Google Scholar] [CrossRef]
- Rashid, A.; Guan, D.-X.; Farooqi, A.; Khan, S.; Zahir, S.; Jehan, S.; Khattak, S.A.; Khan, M.S.; Khan, R. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 2018, 635, 203–215. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Tian, H.; Huang, X.; Zhang, Z.; Liu, Y.; Xiao, Y.; Li, R. Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China. Environ. Earth Sci. 2021, 80, 576. [Google Scholar] [CrossRef]
- Yuan, X.C.; Zhang, Y.H.; Wang, Y.; Huang, X.; Sun, M.; LÜ, G. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sediment. Geol. Tethyan Geol. 2023, 43, 357–372. [Google Scholar]
- Qu, S.; Zhao, Y.; Zhang, K.; Wang, J.; Li, M.; Yang, X.; Ren, X.; Hao, Y.; Yu, R. Multi isotopes (δD, δ18Owater, 87Sr/86Sr, δ34S and δ18Osulfate) as indicators for groundwater salinization genesis and evolution of a large agricultural drainage lake basin in Inner Mongolia, Northwest China. Sci. Total Environ. 2024, 946, 174181. [Google Scholar] [CrossRef]
- Bromley, C.J.; Currie, S.; Manville, V.R.; Rosenberg, M.D. Recent ground subsidence at Crown Road, Tauhara and its probable causes. Geothermics 2009, 38, 181–191. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Z.Y.; Xi, L.P.; Dou, H.P. Study and Simulation of mixing action of thermal storage fluid in Xianyang City. Ground Water 2012, 34, 36–39. [Google Scholar]
- Qu, S.; Duan, L.; Mao, H.; Wang, C.; Liang, X.; Luo, A.; Huang, L.; Yu, R.; Miao, P.; Zhao, Y. Hydrochemical and isotopic fingerprints of groundwater origin and evolution in the Urangulan River basin, China’s Loess Plateau. Sci. Total Environ. 2023, 866, 161377. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.N.; Zhan, Y.H.; Guo, H.M. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, H.; Zhang, Y.; Wei, H.; Dong, T. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation. Appl. Geochem. 2015, 63, 436–445. [Google Scholar] [CrossRef]
- Qu, S.; Zhao, Y.; Li, M.; Zhang, K.; Wang, J.; Duan, L.; Ma, H.; Miao, P.; Yu, R. Spatio-seasonal characteristics and controlling factors of surface water stable isotope values (δ 18 O and δD) across the Inner Mongolia Reaches of the Yellow River Basin, China: Implication for hydrological cycle. J. Hydrol. Reg. Stud. 2024, 53, 101843. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water 2018, 10, 80–96. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, X.; Guo, H.; Zhang, Y.; Cao, H.; Luo, T.; Gong, Z.; Huang, H. Coupling Hydrochemistry and Stable Isotopes (δ2H, δ18O and 87Sr/86Sr) to Identify the Major Factors Affecting the Hydrochemical Process of Groundwater and Surface Water in the Lower Reaches of the Yarlung-Zangbo River, Southern Tibet, Southwestern China. Water 2022, 14, 3906. [Google Scholar] [CrossRef]
- Wang, X.; Lu, G.P.; Hu, B.X. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids 2018, 2018, 8715080. [Google Scholar] [CrossRef]
- Lu, G.; Liu, R. Aqueous chemistry of typical geothermal springs with deep faults in Xinyi and Fengshun in Guangdong Province, China. J. Earth Sci. 2015, 26, 60–72. [Google Scholar] [CrossRef]
- Cao, J.J. Rare Earth Elements Geochemistry of Dongtian Gold Deposit in Western Guangdong. J. Rare Earths 2004, 4, 484–488. [Google Scholar]
- Chen, L.; Ma, T.; Du, Y.; Xiao, C.; Chen, X.; Liu, C.; Wang, Y. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China. J. Volcanol. Geotherm. Res. 2016, 318, 45–54. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, L.; Li, S.; Wang, Z.; Ye, Z.; Chen, J.; Yang, Z. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province. Environ. Chem. 2020, 39, 512–523. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Rao, Z.; Liao, F.; Shi, Z.; Huang, X.; Chen, X.; Yang, Y. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. J. Clean. Prod. 2021, 329, 129697. [Google Scholar] [CrossRef]
- Qu, S.; Duan, L.; Shi, Z.; Mao, H.; Wang, G.; Liu, T.; Yu, R.; Peng, X. Identifying the spatial pattern, driving factors and potential human health risks of nitrate and fluoride enriched groundwater of Ordos Basin, Northwest China. J. Clean. Prod. 2022, 376, 134289. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, D. Hydrogeochemical characteristics of coal mine based on box-plot and its application in water inrush source identification. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 11167–11180. [Google Scholar] [CrossRef]
- Moussaoui, I.; Rosa, E.M.; Cloutier, V.; Neculita, C.M.; Dassi, L. Chemical and isotopic evaluation of groundwater salinization processes in the Djebeniana coastal aquifer, Tunisia. Appl. Geochem. 2023, 149, 105555. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Zhao, C.Y. Geochemical behaviors of rare earth elements in granite-hosted geothermal systems in SE China. Geothermics 2023, 115, 102826. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Zhang, Y.S. Distribution characteristics and genesis of high-fluoride groundwater in the Niuxin Mountain, Oinhuangdao. Earth Sci. Front. 2018, 25, 307–315. [Google Scholar]
- GB/T 17017-2010; Chinese Ministry of Health. Control Criteria for Endemie Fluorosis Areas. National Disease Control and Prevention Administration: Beijing, China, 2010.
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E Supplemental Guidance for Dermal Risk Assessment); EPA/540/R/99/005; Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004.
- USEPA. Drinking Water Standards and Health Advisories; Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- USGS. National Water Summary 1990–1991: Hydrologic Events and Stream Water Quality; Water Supply Paper 2400; U.S. Geological Survey: Reston, VA, USA, 1993; p. 59.
- WHO. WHO Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
T | pH | TDS | K+ | Ca2+ | Na+ | Mg2+ | HCO3− | SO42− | Cl- | F− | δD | δ18O | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | °C | mg/L | ‰ | ‰ | ||||||||||
Geothermal groundwater | Max | 99 | 8.30 | 9861 | 134 | 1164 | 2592 | 14 | 146 | 213 | 5618 | 12 | −35.0 | −5.1 |
Min | 61 | 7.00 | 564 | 3 | 7 | 173 | 0 | 0 | 40 | 143 | 3 | −47.0 | −8.2 | |
Ave | 82 | 7.30 | 4451 | 53.5 | 388.8 | 1281.9 | 5.5 | 60.6 | 125.9 | 2548.7 | 4.7 | −41.0 | −6.5 | |
SD | 11 | 0.33 | 3143 | 51.2 | 374.3 | 874.8 | 4.4 | 29.8 | 61.0 | 1838.7 | 1.8 | 23.10 | 0.62 | |
CV (%) | 14 | 5 | 71 | 96 | 96 | 68 | 79 | 49 | 48 | 72 | 37 | 22 | 10 | |
Sea water | Max | 26 | 7.85 | 23,899 | 278.7 | 350.6 | 7594.4 | 831.5 | 635.9 | 1821.0 | 14,245.9 | / | −7.9 | −1.4 |
Min | 26 | 7.80 | 28,200 | 272.6 | 281.1 | 6624.3 | 725.5 | 121.0 | 1667.8 | 13,144.0 | / | −17.3 | −5.2 | |
Ave | 26 | 7.83 | 26,049 | 275.6 | 315.9 | 7109.4 | 778.5 | 378.5 | 1744.4 | 13,695.0 | / | −12.6 | −3.3 | |
SD | 0 | 0.02 | 2150 | 2.9 | 34.7 | 485.0 | 53.0 | 257.4 | 76.6 | 551.0 | / | 4.70 | 1.90 | |
CV (%) | 0 | 0 | 8 | 1 | 11 | 7 | 7 | 68 | 4 | 4 | / | 37 | 58 | |
Groundwater | Max | 24 | 7.42 | 345 | 7.1 | 3.4 | 91.4 | 0.7 | 208.4 | 8.1 | 16.2 | 15.3 | / | / |
Min | 22 | 6.25 | 90 | 4.6 | 3.0 | 10.8 | 0.1 | 25.5 | 6.4 | 9.6 | 0.2 | / | / | |
Ave | 23 | 6.84 | 217 | 5.9 | 3.2 | 51.1 | 0.4 | 117.0 | 7.3 | 12.9 | 7.8 | / | / | |
SD | 1 | 0.59 | 127 | 1.3 | 0.2 | 40.3 | 0.3 | 91.5 | 0.9 | 3.3 | 7.6 | / | / | |
CV (%) | 0 | 9 | 59 | 21 | 6 | 79 | 75 | 78 | 12 | 26 | 97 | / | / | |
River | Max | / | 8.05 | 114 | 5.6 | 7.0 | 22.0 | 0.9 | 36.6 | 17.8 | 19.8 | 0.8 | / | / |
Min | / | 7.48 | 54 | 3.0 | 4.8 | 5.8 | 0.5 | 13.4 | 4.1 | 4.8 | 0.2 | / | / | |
Ave | / | 7.67 | 73 | 3.8 | 5.9 | 10.3 | 0.7 | 23.2 | 13.7 | 8.5 | 0.4 | / | / | |
SD | / | 0.21 | 21 | 0.9 | 0.8 | 6.0 | 0.2 | 8.4 | 4.9 | 5.7 | 0.3 | / | / | |
CV (%) | / | 3 | 29 | 25 | 13 | 58 | 30 | 36 | 36 | 66 | 67 | / | / |
Cluster | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
DBI | NaN * | 0.8125 | 0.6058 | 0.8021 | 0.7896 |
No. | Average Recharge Elevation (m) | Average Temperature of Recharge Area (°C) |
---|---|---|
GDGG1 | 501 | 14 |
GDGG2 | 443 | 15 |
GDGG3 | 368 | 16 |
GDGG4 | 433 | 15 |
GDGG5 | 392 | 15 |
GDGG6 | 411 | 15 |
GDGG7 | 178 | 17 |
GDGG8 | 70 | 18 |
GDGG9 | 127 | 17 |
GDGG10 | 129 | 17 |
GDGG11 | 179 | 17 |
GDGG12 | 69 | 18 |
GDGG13 | 124 | 17 |
GDGG14 | 134 | 17 |
GDGG15 | 417 | 16 |
GDGG16 | 373 | 15 |
GDGG17 | 345 | 17 |
GDGG18 | 484 | 15 |
GDGG19 | 635 | 14 |
GDGG20 | 279 | 16 |
GDGG21 | 469 | 15 |
GDGG22 | 460 | 15 |
GDGG23 | 321 | 18 |
GDGG24 | 518 | 14 |
GDGG25 | 318 | 16 |
GDGG26 | 557 | 14 |
GDGG27 | 491 | 15 |
GDGG28 | 628 | 13 |
GDGG29 | 304 | 16 |
GDGG30 | 518 | 14 |
Parameter | Unit | Children | Female | Male |
---|---|---|---|---|
Oral reference dose for F− (RfDoral) | mg/(kg × day) | 0.04 | 0.04 | 0.04 |
Gastrointestinal absorption factor (ABSgi) | - | 1 | 1 | 1 |
Drinking rate (IR) | L/day | 0.7 | 1.5 | 1.5 |
Exposure frequency (EF) | days/year | 365 | 365 | 365 |
Exposure duration (ED) | years | 6 | 30 | 30 |
Average body weight (BW) | kg | 15 | 55 | 75 |
Average time (AT) | days | 2190 | 10,950 | 10,950 |
Skin permeability (K) | cm/h | 0.001 | 0.001 | 0.001 |
Contact duration (T) | h/d | 0.4 | 0.4 | 0.4 |
Exposure frequency of daily dermal contact (EV) | - | 1 | 1 | 1 |
Unit conversion factor (CF) | L/cm3 | 0.001 | 0.001 | 0.001 |
Skin surface area (Sa) | - | 6597.01 | 15,475.85 | 18,742.36 |
Average body height (H) | cm | 99.4 | 153.4 | 165.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, S.; He, J.; Wang, L. The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis. Water 2025, 17, 1498. https://doi.org/10.3390/w17101498
Liu L, Zhang S, He J, Wang L. The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis. Water. 2025; 17(10):1498. https://doi.org/10.3390/w17101498
Chicago/Turabian StyleLiu, Lei, Shouchuan Zhang, Jiahui He, and Luyao Wang. 2025. "The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis" Water 17, no. 10: 1498. https://doi.org/10.3390/w17101498
APA StyleLiu, L., Zhang, S., He, J., & Wang, L. (2025). The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis. Water, 17(10), 1498. https://doi.org/10.3390/w17101498