Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,002)

Search Parameters:
Keywords = stability margins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4393 KiB  
Article
Development and Preclinical Evaluation of Fixed-Dose Capsules Containing Nicergoline, Piracetam, and Hawthorn Extract for Sensorineural Hearing Loss
by Lucia Maria Rus, Andrei Uncu, Sergiu Parii, Alina Uifălean, Simona Codruța Hegheș, Cristina Adela Iuga, Ioan Tomuță, Ecaterina Mazur, Diana Șepeli, Irina Kacso, Fliur Macaev, Vladimir Valica and Livia Uncu
Pharmaceutics 2025, 17(8), 1017; https://doi.org/10.3390/pharmaceutics17081017 (registering DOI) - 5 Aug 2025
Abstract
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural [...] Read more.
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural hearing loss. Methods: The first phase methodology comprised preformulation studies (DSC, FTIR, and PXRD) to assess compatibility among active substances and excipients. Subsequently, four formulations were prepared and tested for flowability, dissolution behavior in acidic and neutral media, and stability under oxidative, thermal, and photolytic stress. Quantification of the active substances and flavonoids was performed using validated spectrophotometric and HPLC-UV methods. Results: Among the tested variants, the F1 formulation (4.5 mg NIC, 200 mg PIR, 50 mg HE, 2.5 mg magnesium stearate, 2.5 mg sodium starch glycolate, and 240.5 mg monohydrate lactose per capsule) displayed optimal technological properties, superior dissolution in acidic media, and was further selected for evaluation. The antioxidant activity of the formulation was confirmed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Trolox Equivalent Antioxidant Capacity (TEAC), and iron chelation tests, and was primarily attributed to the flavonoid content of the HE. Acute toxicity tests in mice and rats indicated a high safety margin (LD50 > 2500 mg/kg), while ototoxicity assessments showed no adverse effects on auditory function. Conclusions: The developed formulation displayed good stability, safety, and therapeutic potential, while the applied workflow could represent a model for the development of future fixed-dose combinations. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals, 2nd Edition)
Show Figures

Figure 1

23 pages, 2216 KiB  
Article
Development of Financial Indicator Set for Automotive Stock Performance Prediction Using Adaptive Neuro-Fuzzy Inference System
by Tamás Szabó, Sándor Gáspár and Szilárd Hegedűs
J. Risk Financial Manag. 2025, 18(8), 435; https://doi.org/10.3390/jrfm18080435 - 5 Aug 2025
Abstract
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, [...] Read more.
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, this research aims to identify those financial ratios that most accurately reflect price dynamics in this specific industry. The model incorporates four widely used financial indicators, return on assets (ROA), return on equity (ROE), earnings per share (EPS), and profit margin (PM), as inputs. The analysis is based on real financial and market data from automotive companies, and model performance was assessed using RMSE, nRMSE, and confidence intervals. The results indicate that the full model, including all four indicators, achieved the highest accuracy and prediction stability, while the exclusion of ROA or ROE significantly deteriorated model performance. These findings challenge the weak-form efficiency hypothesis and underscore the relevance of firm-level fundamentals in stock price formation. This study’s sector-specific approach highlights the importance of tailoring predictive models to industry characteristics, offering implications for both financial modeling and investment strategies. Future research directions include expanding the indicator set, increasing the sample size, and testing the model across additional industry domains. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

18 pages, 11273 KiB  
Article
The Effect of Different Tightening Torques of Implant Cone Morse Abutment Connection Under Dynamic Fatigue Loading: An In Vitro Study
by Felice Lorusso, Antonio Scarano, Sergio Rexhep Tari, Ishita Singhal, Funda Goker, Maria Costanza Soldini, Gianluca Martino Tartaglia and Massimo Del Fabbro
Biomimetics 2025, 10(8), 511; https://doi.org/10.3390/biomimetics10080511 - 4 Aug 2025
Abstract
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue [...] Read more.
Background: The implant–abutment joint is important for the long-term marginal tissue integrity in terms of biomimetic design that replicates the natural dentition under mastication forces. This study aimed to evaluate conical implant–abutment joints coupled at different tightening torque values through a mechanical fatigue test. Methods: Eighty conic implants (Ø: 3.8 mm L: 10 mm) with a 6° cone morse joint were embedded in resin blocks with an inclination of 30° ± 2°. The samples were divided into 8 groups (4 Test and 4 Control). The implant–abutment joints were coupled with different tightening torques: 25 Ncm (Group I), 30 Ncm (Group II), 35 Ncm (Group III) and 40 Ncm (Group IV). An in vitro cyclic loading test (1 × 104 loads) was performed for 4 Test groups, while 4 Control groups did not receive any forces. All the samples were assessed with Scanning Electron Microscopy to compare the microfractures and microgaps on flexion and extension points. Results: Microscopy observation results showed significant differences among torque groups. We found that 30 Ncm had the best stability with less microgap. Conclusions: Tightening torque plays an important role in the distortion of the cone morse joint under mechanical forces. However, further studies should be conducted to validate the results using different implant–abutment joints for comparison. Full article
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Identification Method of Weak Nodes in Distributed Photovoltaic Distribution Networks for Electric Vehicle Charging Station Planning
by Xiaoxing Lu, Xiaolong Xiao, Jian Liu, Ning Guo, Lu Liang and Jiacheng Li
World Electr. Veh. J. 2025, 16(8), 433; https://doi.org/10.3390/wevj16080433 - 2 Aug 2025
Viewed by 185
Abstract
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification [...] Read more.
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification criteria, and multi-indicator comprehensive determination methods for weak nodes in distribution networks. A multi-criteria assessment method integrating voltage deviation rate, sensitivity analysis, and power margin has been proposed. This method quantifies the node disturbance resistance and comprehensively evaluates the vulnerability of voltage stability. Simulation validation based on the IEEE 33-node system demonstrates that the proposed method can effectively identify the distribution patterns of weak nodes under different penetration levels (20~80%) and varying numbers of DPV access points (single-point to multi-point distributed access scenarios). The study reveals the impact of increased penetration and dispersed access locations on the migration characteristics of weak nodes. The research findings provide a theoretical basis for the planning of distribution networks with high-penetration DPV, offering valuable insights for optimizing the siting of volatile loads such as electric vehicle (EV) charging stations while considering both grid safety and the demand for distributed energy accommodation. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

35 pages, 807 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 - 1 Aug 2025
Viewed by 155
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
Show Figures

Figure 1

23 pages, 20334 KiB  
Article
Transient Stability Analysis for the Wind Power Grid-Connected System: A Manifold Topology Perspective on the Global Stability Domain
by Jinhao Yuan, Meiling Ma and Yanbing Jia
Electricity 2025, 6(3), 44; https://doi.org/10.3390/electricity6030044 - 1 Aug 2025
Viewed by 158
Abstract
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on [...] Read more.
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on BSD theory, using the method of combining the manifold topologies and singularities at infinity. On this basis, the effect of large-scale doubly fed induction generators (DFIGs) replacing synchronous units on the BSD of the system is analyzed. Simulation results based on the IEEE 39-bus system indicate that the negative impedance characteristics and low inertia of DFIGs lead to a contraction of the stability domain. The principle of singularity invariance (PSI) proposed in this paper can effectively expand the BSD by adjusting the inertia and damping, thereby increasing the critical clearing time by about 5.16% and decreasing the dynamic response time by about 6.22% (inertia increases by about 5.56%). PSI is superior and applicable compared to traditional energy functions, and can be used to study the power angle stability of power systems with a high proportion of renewable energy. Full article
Show Figures

Figure 1

20 pages, 8538 KiB  
Article
Compressor Diffuser Design Impact on a Microjet Working Line—An Experimental and Numerical Case Study
by Valeriu Drăgan, Bogdan Gherman, Oana Dumitrescu, Cornel Mihai Tărăbîc and Cristian Olariu
Aerospace 2025, 12(8), 667; https://doi.org/10.3390/aerospace12080667 - 26 Jul 2025
Viewed by 211
Abstract
This study examines the performance of two diffuser configurations—a trumpet-shaped and a semi-diagonal design—for application in micro gas turbine engines, aiming to assess their suitability in terms of efficiency and operational flexibility. Both diffusers were initially evaluated using steady-state CFD simulations with the [...] Read more.
This study examines the performance of two diffuser configurations—a trumpet-shaped and a semi-diagonal design—for application in micro gas turbine engines, aiming to assess their suitability in terms of efficiency and operational flexibility. Both diffusers were initially evaluated using steady-state CFD simulations with the k-omega SST turbulence model, followed by experimental testing on an actual engine across the start-up sequence from idle to 70% of nominal speed. Performance was mapped over four constant-speed lines for each configuration. Results showed that the trumpet-shaped diffuser offered a greater choke margin but suffered from increased aerodynamic losses, whereas the semi-diagonal diffuser demonstrated higher efficiency but required closer alignment with the target operating point. The k-omega SST model showed strong predictive accuracy, with 5.13% agreement across all instrumented parameters for all investigated speed lines. These findings suggest that while the trumpet diffuser provides better stability, the semi-diagonal design is more efficient when properly targeted. Future work will focus on extending the analysis to higher speed ranges and transient regimes using harmonic balance CFD methods and enhanced data acquisition techniques. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 516 KiB  
Article
How Does Migrant Workers’ Return Affect Land Transfer Prices? An Investigation Based on Factor Supply–Demand Theory
by Mengfei Gao, Rui Pan and Yueqing Ji
Land 2025, 14(8), 1528; https://doi.org/10.3390/land14081528 - 24 Jul 2025
Viewed by 265
Abstract
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land [...] Read more.
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land factor prices within a reasonable range. This study establishes a theoretical framework to investigate how migrant workers’ return shapes land price formation mechanisms. Using 2023 micro-level survey data from eight counties in Jiangsu Province, China, this study empirically examines how migrant workers’ return affects land transfer prices and its underlying mechanisms through OLS regression and instrumental variable approaches. The findings show that under the current pattern of labor mobility, the outflow factor alone is no longer sufficient to exert substantial downward pressure on land transfer prices. Instead, the localized return of labor has emerged as a key driver behind the rise in land transfer prices. This upward mechanism is primarily realized through the following pathways. First, factor substitution effect: this effect lowers labor prices and increases the relative marginal output value of land factors. Second, supply–demand effect: migrant workers’ return simultaneously increases land demand and reduces supply, intensifying market shortages and driving up transfer prices. Lastly, the results demonstrate that enhancing the stability of land tenure security or increasing local non-agricultural employment opportunities can mitigate the effect of rising land transfer prices caused by the migrant workers’ return. According to the study’s findings, stabilizing land factor prices depends on full non-agricultural employment for migrant workers. This underscores the significance of policies that encourage employment for returning rural labor. Full article
Show Figures

Figure 1

16 pages, 10544 KiB  
Article
Development and Performance Evaluation of Hydrophobically Modified Nano-Anti-Collapsing Agents for Sustainable Deepwater Shallow Drilling
by Jintang Wang, Zhijun He, Haiwei Li, Jian Guan, Hao Xu and Shuqiang Shi
Sustainability 2025, 17(15), 6678; https://doi.org/10.3390/su17156678 - 22 Jul 2025
Viewed by 343
Abstract
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM [...] Read more.
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM and TEM. Adding 1 wt% of this agent to a bentonite slurry only marginally alters its rheology and maintains acceptable low-temperature flow properties. Microporous-membrane tests show filtrate passing through 200 nm pores drops to 55 mL, demonstrating excellent plugging. Core-immersion studies reveal that shale cores retain integrity with minimal spalling after prolonged exposure. Rolling recovery assays increase shale-cutting recovery to 68%. Wettability tests indicate the water contact angle rises from 17.1° to 90.1°, and capillary rise height falls by roughly 50%, reversing suction to repulsion. Together, these findings support a synergistic plugging–adsorption–hydrophobization mechanism that significantly enhances wellbore stability without compromising low-temperature rheology. This work may guide the design of high-performance collapse-prevention additives for safe, efficient deepwater drilling. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

20 pages, 8592 KiB  
Article
Spatial Differentiation in the Contribution of Innovation Influencing Factors: An Empirical Study in Nanjing from the Perspective of Nonlinear Relationships
by Chengyu Wang, Renchao Luo and Lingchao Zhou
Buildings 2025, 15(14), 2565; https://doi.org/10.3390/buildings15142565 - 21 Jul 2025
Viewed by 264
Abstract
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central [...] Read more.
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central urban area as a case study, this research applied gradient boosting regression trees (GBRT) and multiscale geographically weighted regression (MGWR) models to explore the contributions of influencing factors to innovation space agglomeration and its spatial differentiation. Findings demonstrated that (1) Innovation platforms and patents emerged as the most significant driving factors, collectively accounting for 54.8% of the relative contributions; (2) The contributions of influencing factors to innovation space agglomeration exhibited marked nonlinear characteristics, specifically categorized into five distinct patterns: Sustained Growth Pattern, Growth-Stabilization Pattern, Growth-Decline Pattern, Global Stabilization Pattern, and Global Decline Pattern. The inflection thresholds of marginal effects across factors ranged from approximately 12% to 55% (e.g., 40% for metro stations, 13% for integrated commercial hubs); (3) Each influence factor’s contribution mechanism showed pronounced spatial heterogeneity across different regions. Based on these discoveries, governments should optimize innovation resource allocation according to regional characteristics and enhance spatial quality to promote efficient resource integration and transformation. This research provides a novel perspective for understanding innovation space agglomeration mechanisms and offers actionable references for urban policymakers to implement context-specific innovation economic development strategies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Influence of Healing Abutment Height on Secondary Implant Stability Using Resonance Frequency Analysis: A Prospective Clinical Study
by Alicia Martín-Martín, Esteban Pérez-Pevida, Saray Férnandez-Hernández, Jaime Lubillo-Valdeón and Aritza Brizuela-Velasco
J. Clin. Med. 2025, 14(14), 5140; https://doi.org/10.3390/jcm14145140 - 19 Jul 2025
Viewed by 297
Abstract
Background/Objectives: The aim of the present study is to evaluate the influence of the healing abutment height on secondary implant stability measured by resonance frequency analysis. In this prospective observational clinical study of 30 implants, the secondary stability of the implant was measured [...] Read more.
Background/Objectives: The aim of the present study is to evaluate the influence of the healing abutment height on secondary implant stability measured by resonance frequency analysis. In this prospective observational clinical study of 30 implants, the secondary stability of the implant was measured via resonance frequency analysis of the abutment during the osseointegration process. Methods: Two groups were compared: a <4 group (n = 15), with a space between the healing abutment and the antagonist of <4 mm, and a ≥4 group (n = 15), with a space of ≥4 mm. Results: Statistically significant differences (p < 0.05) in the implant stability values obtained at surgery (T0) and at the eighth week of osseointegration (T8) were observed between the two groups, with higher values for the <4 group. Pearson’s correlation analysis revealed a trend towards a significant relationship with the mean force (−0.6546) and a linear inverse relationship, so that by decreasing the distance between the abutment and the contact with the antagonist, the secondary implant stability values increased. A comparison of the mesial and distal peri-implant marginal bone levels at T0 and T8 did not reveal statistically significant differences (p > 0.05). A greater healing abutment height, placing it closer to the antagonist, increases and accelerates secondary stability, as measured by resonance frequency analysis. Conclusions: The results of the study support the recommendation of using high healing abutments, placing the abutment close to the opposing occlusal plane, according to biomechanical criteria. Full article
(This article belongs to the Special Issue Research Progress in Osseointegrated Oral Implants)
Show Figures

Figure 1

19 pages, 23526 KiB  
Article
Improvement of Positive and Negative Feedback Power Hardware-in-the-Loop Interfaces Using Smith Predictor
by Lucas Braun, Jonathan Mader, Michael Suriyah and Thomas Leibfried
Energies 2025, 18(14), 3773; https://doi.org/10.3390/en18143773 - 16 Jul 2025
Viewed by 296
Abstract
Power hardware-in-the-loop (PHIL) creates a safe test environment to connect simulations with real hardware under test (HuT). Therefore, an interface algorithm (IA) must be chosen. The ideal transformer method (ITM) and the partial circuit duplication (PCD) are popular IAs, where a distinction is [...] Read more.
Power hardware-in-the-loop (PHIL) creates a safe test environment to connect simulations with real hardware under test (HuT). Therefore, an interface algorithm (IA) must be chosen. The ideal transformer method (ITM) and the partial circuit duplication (PCD) are popular IAs, where a distinction is made between voltage- (V-) and current-type (C-) IAs. Depending on the sample time of the simulator and further delays, simulation accuracy is reduced and instability can occur due to negative feedback in the V-ITM and C-ITM control loops, which makes PHIL operation impossible. In the case of positive feedback, such as with the V-PCD and C-PCD, the delay causes destructive interference, which results in a phase shift and attenuation of the output signal. In this article, a novel damped Smith predictor (SP) for positive feedback PHIL IAs is presented, which significantly reduces destructive interference while allowing stable operation at low linking impedances at V-PCD and high linking impedances at C-PCD, thus reducing losses in the system. Experimental results show a reduction in phase shift by 21.17° and attenuation improvement of 24.3% for V-PCD at a sample time of 100 µs. The SP transfer functions are also derived and integrated into the listed negative feedback IAs, resulting in an increase in the gain margin (GM) from approximately one to three, which significantly enhances system stability. The proposed methods can improve stability and accuracy, which can be further improved by calculating the HuT impedance in real-time and dynamically adapting the SP model. Stable PHIL operation with SP is also possible with SP model errors or sudden HuT impedance changes, as long as deviations stay within the presented limits. Full article
Show Figures

Figure 1

18 pages, 1149 KiB  
Article
Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study
by Alexandru Grigorie Nastase, Alin Mihai Vasilescu, Ana Maria Trofin, Mihai Zabara, Ramona Cadar, Ciprian Vasiluta, Nutu Vlad, Bogdan Mihnea Ciuntu, Corina Lupascu Ursulescu, Cristina Muzica, Irina Girleanu, Iulian Buzincu, Florin Iftimie and Cristian Dumitru Lupascu
Life 2025, 15(7), 1112; https://doi.org/10.3390/life15071112 - 16 Jul 2025
Viewed by 437
Abstract
Introduction: Liver transplantation remains the definitive treatment for end-stage liver disease but faces critical challenges including organ shortages and preservation difficulties, particularly with extended criteria donor (ECD) grafts. Hypothermic machine perfusion (HMP) represents a promising alternative to traditional static cold storage (SCS). Methods: [...] Read more.
Introduction: Liver transplantation remains the definitive treatment for end-stage liver disease but faces critical challenges including organ shortages and preservation difficulties, particularly with extended criteria donor (ECD) grafts. Hypothermic machine perfusion (HMP) represents a promising alternative to traditional static cold storage (SCS). Methods: This retrospective study analyzed outcomes from 62 liver transplant recipients between 2016 and 2025, comparing 8 grafts preserved by HMP using the Liver Assist® system and 54 grafts preserved by SCS. Parameters assessed included postoperative complications, hemodynamic stability, ischemia times, and survival outcomes. Results: HMP significantly reduced surgical (0% vs. 75.9%, p = 0.01) and biliary complications (0% vs. 34.4%, p = 0.004), improved hemodynamic stability post-reperfusion (∆MAP%: 1 vs. 21, p = 0.006), and achieved superior one-year survival rates (100% vs. 84.4%). Despite longer ischemia periods, grafts treated with HMP exhibited fewer adverse effects from ischemia-reperfusion injury. Discussion: These findings highlight the substantial benefits of HMP, particularly in improving graft quality from marginal donors and reducing postoperative morbidity. Further adoption of this technology could significantly impact liver transplantation outcomes by expanding the viable donor pool. Conclusions: The study underscores the effectiveness of hypothermic machine perfusion (HMP) as a superior preservation method compared to traditional static cold storage (SCS), HMP appears to be associated with improved short-term outcomes in liver transplantation. By substantially reducing postoperative complications and enhancing graft viability, HMP emerges as a pivotal strategy for maximizing the use of marginal donor organs. Further research and broader clinical implementation are recommended to validate these promising results and to fully harness the potential of HMP in liver transplantation. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 266
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop